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Field studies indicate an intensification of mineral weathering with advance-

ment from arbuscular mycorrhizal (AM) to later-evolving ectomycorrhizal

(EM) fungal partners of gymnosperm and angiosperm trees. We test the

hypothesis that this intensification is driven by increasing photosynthate

carbon allocation to mycorrhizal mycelial networks using 14CO2-tracer exper-

iments with representative tree–fungus mycorrhizal partnerships. Trees

were grown in either a simulated past CO2 atmosphere (1500 ppm)—under

which EM fungi evolved—or near-current CO2 (450 ppm). We report a

direct linkage between photosynthate-energy fluxes from trees to EM and

AM mycorrhizal mycelium and rates of calcium silicate weathering. Calcium

dissolution rates halved for both AM and EM trees as CO2 fell from 1500 to

450 ppm, but silicate weathering by AM trees at high CO2 approached rates

for EM trees at near-current CO2. Our findings provide mechanistic insights

into the involvement of EM-associating forest trees in strengthening biological

feedbacks on the geochemical carbon cycle that regulate atmospheric CO2 over

millions of years.
1. Introduction
Approximately 20% of the contemporary terrestrial biosphere’s annual primary

production (ca 55260 Gt C yr21) [1] is allocated below-ground to support roots

and associated symbiotic mycorrhizal fungi for nutrient and water acquisition

[2]. In bioenergy terms, this flux equates to between 25 � 103 and 83 � 103 TW h

of energy—up to six times annual electricity production from fossil fuels

[3]—and plays an important role in driving global biogeochemical cycles.

Conceptual advances and experimental evidence implicate increasing carbon-

energy fluxes from trees to mycorrhizal fungi in accelerating inorganic nutrient

cycling and land-to-ocean element transfers by enhancing mineral dissolution

[4–8]. This biological feedback is important over multi-million-year timescales,

because intensified weathering of continental calcium silicates strengthens the

long-term sink for atmospheric CO2 ([CO2]a) by enhancing land-to-ocean

calcium export and carbon sequestration into marine carbonates [5,9].

One mechanistic explanation for the proposed intensification of mineral

weathering with the diversification of mycorrhizal fungi and their host trees

is the ‘carbon-energy flux’ hypothesis. The hypothesis predicts that biotic

weathering rates are driven by photosynthate-energy fluxes directed below-

ground into mycorrhizal networks. These fluxes control the active surface
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Figure 1. Weathering reactors with representative trees of (a) G. biloba (AM), (b) S. sempervirens (AM), (c) M. grandiflora (AM), (d ) P. sylvestris (EM) and
(e) B. pendula (EM) (scale bar, 100 mm). ( f ) Typical AM fungal colonization of Ginkgo roots and (g) EM hyphal tips and associated mycelium of Pinus roots
from our experiments (scale bars, 1 mm). (h,i) Hyphal interactions with basalt grains in mesh cores (scale bars, 0.1 mm). (Online version in colour.)
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area of mycorrhizal mycelium (the fungal network of hyphae)

and its capacity for mineral weathering and inorganic nutrient

acquisition for host trees [5], whose productivity is regulated

by [CO2]a.

Here, we investigate the carbon-energy flux hypothesis

in the context of the major evolutionary diversification

of tree–fungus mycorrhizal partnerships, from ancestral

arbuscular mycorrhizas (AM) to more recently evolved ecto-

mycorrhiza (EM), and against the background of past high

CO2 atmospheres. The origin and radiation of EM fungi

began over 200 Myr after AM fungi in association with the

evolutionary rise of angiosperm trees in the Cretaceous [10].

Studies of contemporary ecosystems indicate that EM fungal

networks typically receive more (7–30%) net carbon fixed

from their hosts than AM fungi (approx. 10%) [2], and this sus-

tains larger EM mycelial networks [2,5–7]. Limited field

evidence suggests that EM trees use this carbon flux to inten-

sify weathering by a factor of 1.9–2.6 compared with AM

trees, but this mechanistic linkage remains untested [7]. We

quantify the effect of past high [CO2]a because it regulates

host tree productivity and likely ranged between 1100 and

1700 ppm during the Cretaceous when EM fungi first appeared

[11,12]. Experiments were therefore undertaken at 1500 ppm
and near-current 450 ppm [CO2]a to capture the effect of past

CO2-rich atmospheres compared with the modern situation.

Guided by time-constrained molecular phylogenies [13,14],

we selected mycorrhizal host trees that represent exemplar

taxa of past forests. These included early AM gymnosperm

hosts Ginkgo biloba and Sequoia sempervirens and the early

AM angiosperm host Magnolia grandiflora (figure 1). The

responses of these AM partnerships were compared with

Pinus sylvestris (EM gymnosperm) and Betula pendula (EM

angiosperm), which have stem-group ages dating to the

Cretaceous. We quantified carbon flows into mycorrhizal

networks using standardized methodology involving 14CO2

tracers, and measured corresponding rates of calcium

dissolution from basalt colonized by mycorrhizal mycelium

as the most important silicate rock for global geochemical

carbon cycling.
2. Material and methods
Saplings were cultivated in free-draining weathering reactors

(figure 1a–e) in a sand and compost substrate mixed with

species-specific mycorrhizal inoculum sourced from Westonbirt
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Arboretum, UK (see the electronic supplementary material).

Saplings (n ¼ 4) were kept alongside plant-free control reactors

in controlled environment growth rooms (two per [CO2]a) and

maintained at 450 or 1500 ppm [CO2]a and otherwise constant

environmental conditions. All weathering reactors were rotated

between growth rooms each month and watered to field capacity

twice weekly. We verified mycorrhizal status by light microscopy

to visualize EM root tips and by clearing and staining roots to

observe AM colonization (figure 1f,g).

Hyphal in-growth cores covered in root-excluding mesh

(35 mm pore-size) were inserted horizontally into the weathering

reactors at 200 mm depth (figure 1a–e). Cores were filled with

5.0 g of well-characterized Tertiary basalt (0.3–2.0 mm grain size,

with a specific surface area of 68 cm2 g21 [7]), along with 4.0 g of

0.05–0.10 mm pure quartz sand and sealed with gas-tight septa.

After five months, trees were pulse-labelled with 5 MBq
14CO2 liberated from NaH14CO3 into transparent polythene

bags enclosing the canopy and sealed to the stem. Gas samples

were taken at 2–5 h intervals from hyphal in-growth cores,

post-labelling to monitor root and mycorrhizal fungal respiration

of 14C. Cores were left in situ until the peak respired-14CO2 flux

was detected, then removed to quantify non-respired-14C allo-

cation to mycorrhizal hyphae colonizing basalt. Carbon

allocation was calculated, accounting for the 12C : 14C ratio of

CO2 inside the labelling bags in each treatment. We visually con-

firmed mycorrhizal hyphal colonization of basalt grains across

all treatments (figure 1h,i). Core pore-water solution pH was

measured and calcium silicate dissolution rates from basalt

were determined relative to basalt samples from plant-free con-

trol reactors using sequential extractions following Quirk et al.
[7] (see the electronic supplementary material).

Carbon fluxes to hyphal in-growth cores (following natural

log normalization) and calcium dissolution rates were analysed

using two-way ANOVA (mycorrhiza and [CO2]a effects), both

between and within mycorrhizal groupings using MINITAB

v. 12.21. We re-ran the two-way ANOVAs as ANCOVAs using

natural log of calcium dissolution, with pH of core pore-water

as a covariate to verify that calcium dissolution was not primarily

driven by bulk pH.

log C allocation

(nmol kg–1)
log C allocation

(nmol kg–1)

Figure 2. Photosynthate allocation through mycorrhizal mycelium to basalt and
rates of silicate-bound calcium dissolution over the duration of the study for each
tree species (a,c), and each mycorrhizal type (b,d ) at each [CO2]a. Cross-plots of
carbon allocation and silicate-bound calcium dissolution for (e) each species: AM
Ginkgo (circles), AM Sequoia (triangles), AM Magnolia (squares), EM Pinus
(inverted triangles) and EM Betula (diamond); and (f ) mycorrhizal type (circles
are AM and squares are EM). Open symbols represent 450 ppm, filled symbols
represent 1500 ppm [CO2]a. All values show mean+ s.e.m. (Online version in
colour.)
3. Results and discussion
Our experiments show that both the advance from AM to EM

mycorrhizal functional types and high atmospheric [CO2]a

increase carbon fluxes into mycorrhizal mycelium and drive

enhanced silicate weathering (figure 2). At high [CO2]a,

photosynthate allocation to mycorrhizal mycelium colonizing

basalt was 2–7 times greater for EM Pinus and Betula
than for the AM trees (figure 2a,b) (F4,27 ¼ 3.84; p ¼ 0.014).

Moreover, this photosynthate allocation via EM mycelium

doubled at 1500 ppm compared with that at 450 ppm

[CO2]a (figure 2b) (F1,10 ¼ 9.07; p ¼ 0.013). For AM trees,

carbon allocation to mycorrhizal fungi varied greatly

between species and generally doubled at 1500 ppm [CO2]a,

but this was not significant (figure 2a,b) (F1,18 ¼ 0.01; p ¼
0.920). Stimulation of carbon-energy flows into EM mycelium

by high [CO2]a is independently supported by previous

studies of mycorrhizal P. sylvestris seedlings grown at

700 ppm versus 350 ppm [CO2]a in which exudation of low

molecular weight organic compounds, implicated in mineral

weathering, increased by up to 270% [15].

In parallel with increased carbon allocation with the advance

from AM to EM, and its response to high [CO2]a, there was a

corresponding rise in rates of calcium silicate dissolution

from basalt (figure 2c– f; electronic supplementary material,
table S1) (two-way interaction: F4,30 ¼ 3.18; p ¼ 0.027). Calcium

dissolution was not explained by the pH of solutions surround-

ing the basalt grains (F1,29 ¼ 0.05; p¼ 0.825; log Ca-dissolution:

F1,29¼ 0.38; p ¼ 0.543); and bulk soil solution pH associa-

ted with the basalt was close to neutral across all treatments

(electronic supplementary material, table S2). Fungal-driven

mineral dissolution is likely due to microscale acidification pro-

cesses at the interface between fungal hyphal tips and the

mineral surface, and such effects are not detected by bulk soil sol-

ution chemical analyses [5,16]. AM trees at high [CO2]a showed

a 2.4-fold increase in weathering compared with 450 ppm

[CO2]a, and EM trees a 1.7-fold increase (figure 2d; F1,36 ¼

19.55; p , 0.0001), with both groups showing large variations

between species (figure 2c).
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Averaged across our tree–mycorrhiza partnerships, EM

trees were associated with significantly higher calcium dissol-

ution rates than AM species at both ambient and elevated

[CO2]a (F1,36 ¼ 38.38; p , 0.0001) (figure 2d ). EM-driven

amplification of weathering at ambient [CO2]a was 3.6

times that of AM, comparable with that seen for mature

trees under field conditions [7]. Overall, silicate weathering

rates by AM trees at high [CO2]a approached those of EM

trees at near-current [CO2]a (figure 2c,d ). This suggests that

AM fungi, particularly under the high [CO2]a characterizing

much of the Phanerozoic, likely contributed more to terres-

trial weathering processes, pedogenesis and biogeochemical

element cycling than previously realized [17]. Greater invest-

ment of carbon in EM compared with AM mycelium is

implicated in fuelling more carbon-intensive weathering pro-

cesses. These include active uptake of weathered ions and

acidification of the localized weathering environment by

extrusion of organic acids and chelating compounds such

as those complexing with calcium and aluminium [5,16].

Our results provide direct experimental support for the

carbon-energy flux hypothesis and a unifying explanation for

field observations of enhanced weathering by EM versus AM

trees under common climates [6,7]. Although our experiments
necessarily employed contemporary fungal strains, AM fungal

genes controlling functions of the symbiosis are ancient and

highly conserved, retaining similarities to fungi in the Mucoro-

mycotina and Chytridomycota from which they diverged

hundreds of millions of years ago [18]. Similarly, the ‘symbiotic

toolbox’ genes of EM fungi—required for establishment and

functioning of the symbiosis—probably date back tens of

millions of years [19]. This indicates that our findings offer

insights into the mechanisms behind strengthening terrestrial

biotic feedbacks on the geochemical carbon cycle associated

with evolutionary advancement of trees and mycorrhizal

fungi. We propose that, in line with an earlier theoretical analy-

sis [11], the spread of host trees partnering EM fungi increased

below-ground carbon-energy fluxes, which accelerated silicate

dissolution to play a role in driving the Earth’s long-term

[CO2]a drawdown since the Cretaceous [11].
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