This is a repository copy of Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/90344/

Version: Accepted Version

Article:
Morales, MJ, Figueiredo e Silva, RC, Lobato, LM et al. (3 more authors) (2016) Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil. Ore Geology Reviews, 72 (1). pp. 510-531. ISSN 0169-1368

https://doi.org/10.1016/j.oregeorev.2015.08.009

For example: © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Title: Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: microthermometric and LA-ICP-MS analysis of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil

Article Type: Research Paper

Keywords: Quadrilátero Ferrífero, fluid inclusions, LA-ICP-MS, hydrothermal alteration, quartz veins, metamorphic fluids

Abstract: The Lamego orogenic gold deposit (440,742 Oz gold measured reserves and 2.4 million t measured resources, with an average grade of 5.71 Au g/t and the cut-off grade of 2.15 g/t Au; AGA personal communication, 2014) is located in the 5 km-long trend that includes the world-class Cuiabá deposit. It is hosted in the Neoarchean metavolcano-sedimentary rocks of the Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil. Mineralization is associated mainly with metachert-banded iron formation (BIF) and carbonaceous phyllites in the reclined Lamego fold, in which the Cabeça de Pedra orebody represents the hinge zone. Mineralization is concentrated in silicification zones and their quartz veins, as well as in sulfide minerals, product of BIF sulfidation. Hydrothermal alteration varies according to host rock, with abundant sulfide-carbonate in BIF, and sericite-chlorite in carbonaceous phyllite. Quartz veins classification according to structural relationships and host rocks identified three vein systems. The V1 system, mainly composed of smoky quartz (Qtz I) and pyrite, is extensional and crosscuts the S0 bedding of BIF, and is parallel to the fold axis. The V2 system, of same composition, is represented by veins that are parallel to the S1-2 foliation and S0 bedding. This system is also characterized by silicification zones in the BIF-carbonaceous phyllite contact that has its maximum expression in the hinge zone of folds. The V3 system has milky quartz (Qtz II) veins, which result from the recrystallization of smoky quartz, located mainly in shear zones and faults; these veins form structures en echelon and vein arrays. The most common ore minerals are pyrite, As-pyrite and arsenopyrite. Fluid inclusion-FI trapped in all quartz veins present composition in the H2O-CO2 ± CH4-NaCl system. Fluid evolution can be interpreted in two stages: i) aqueous-carbonic fluid trapped in Qtz I, of low salinity (~ 2% equiv. wt% NaCl), and ii) carbonic-aqueous fluid, of moderate salinity (average 9 % equiv. wt% NaCl) hosted in Qtz II. Both stages are characterized by decrepitation temperatures in the range of 200 to 300°C, and suggest a fluid of metamorphic origin. Applying the arsenopyrite geothermometer, the calculated formation temperature for the Cabeça de Pedra orebody is 300 to 375°C. The vertical intersection of the isochors allows a pressure calculation between 4 to 4.5 kbar. The composition of individual FIs of this orebody, obtained by LA-ICP-MS analyses, compared with results of FIs for the Carvoaria Velha deposit, Córrego do Sítio lineament, highlights a standard composition typical of metamorphic fluids with Na> K> Ca> Mg, which increase or decrease in concentration as a function of salinity in both deposits. Trace elements vary according to...
fluid-rock reactions, and are directly related to the host rock composition. The comparison of data sets of the two deposits shows that the Cabeça de Pedra Fls have a higher enrichment in Zn, while Cu, As and Sb are richer in Carvoaria Velha, suggesting influence of the host rock geochemistry. The suggested mechanisms for gold precipitation are: i) hydrolysis of the carbonaceous matter of phyllite and BIF, affecting fO2, destabilizing sulfur complexes and enhancing gold precipitation; ii) replacement of BIF iron carbonates by sulfides; and iii) the continuous pressure changes that lead to silica precipitation and free gold. Other than playing the long-recognized role of the carbonaceous phyllites as a fluid barrier, the data highlights their importance as a source of metals.

Suggested Reviewers: Ross R Large PhD
Distinguished Professor, CODES – ARC CENTRE OF EXCELLENCE IN ORE DEPOSITS, University of Tasmania
Ross.Large@utas.edu.au
Experience has focused on the exploration and genesis of sediment-hosted gold deposits, especially Carlin type and orogenic type, and also investigation of geochemical methods to determine the trace element chemistry of the paleo-oceans, and their relationship to global metallogenesis.

Francisco J Rios PhD
Researcher, CENTRO DE DESENVOLVIMENTO DA TECNOLOGIA NUCLEAR-CDTN
javier@cdtn.br
Expertise with fluid inclusions and mineral deposits

Steffen Hagemann PhD
Professor, School of Earth and Environment, The University of Western Australia
steffen.hagemann@uwa.edu.au
Expertise with Economic Geology, Structural-hydrothermal alteration and fluid chemistry control evolution and control of metallic deposits, mainly orogenic gold.

Erin E Marsh MSc
Researcher, USGS Denver Inclusion Analysis Laboratory, U.S. Geological Survey, Denver
emarsh@usgs.gov
Expertise with fluid inclusions and isotopes

Opposed Reviewers: Christoph A Heinrich PhD
Professor, Inst. f. Geochemie und Petrologie, ETH Zürich
christoph.heinrich@erdw.ethz.ch
Differences in previous studies
Cover Letter for Submission of Manuscript

Subject: Submission of a manuscript for evaluation

Belo Horizonte, May 07th 2015.

We enclose herewith the manuscript entitled "Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: microthermometric and LA-ICP-MS analysis of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil" for possible evaluation and publication in the journal Ore Geology Reviews. The submission contains text, 12.jpeg images (that configure 12 figures), and 7 tables.

The aim of this study is to contribute to the understanding of the origin, physical and chemical characteristics of the fluids and their influence on the formation of the Cabeça de Pedra orebody at the relatively unknown BIF-hosted Lamego gold deposit. At the onset we approach this objective by classifying the different vein systems of the Cabeça de Pedra orebody and detailing their petrographic characteristics. These are complemented by fluid inclusion microthermometry, arsenopyrite geothermometer and in situ LA-ICP-MS microanalyses of the fluid inclusions. The LA-ICP-MS results from Lamego were undertaken to demonstrate the role of the host rocks, especially carbonaceous phyllites, their influence on the source of metals and the hydrothermal fluid evolution, and were compared with results of FIs for the Carvoaria Velha gold deposit, Córrego do Sítio lineament.

The study is fully financed by Brazil's National Council of Technological and Scientific Development-CNPq, Vale and AngloGold Ashanti Córrego do Sítio Mineração S/A-AGA. The student's scholarship is granted by CAPES. LML also acknowledge grants from the CNPq.

University of Minas Gerais is fully aware of this submission.

Thank you for considering this submission.

Kind regards

Milton Julian Morales Peña
Suggested Reviewers Letter:

Subject: Submission of a manuscript for evaluation

Belo Horizonte, May, 07th 2015

Ross Large, PhD
UTAS Distinguished Professor
Professor of Economic Geology, CODES – ARC CENTRE OF EXCELLENCE IN ORE DEPOSITS, University of Tasmania
Ross.Large@utas.edu.au
Experience has focused on the exploration and genesis of sediment-hosted gold deposits, especially Carlin type and orogenic type, and also investigation of geochemical methods to determine the trace element chemistry of the paleo-oceans, and their relationship to global metallogenesis.

Francisco Javier Rios, PhD
Researcher at CENTRO DE DESENVOLVIMENTO DA TECNOLOGIA NUCLEAR-CDTN, Minas Gerais, Brazil
javier@cdtn.br
Expertise with fluid inclusions and mineral deposits.

Steffen Hagemann, PhD
Professor, School of Earth and Environment
The University of Western Australia
steffen.hagemann@uwa.edu.au
Expertise with Economic Geology, Structural-hydrothermal alteration and fluid chemistry control evolution and control of metallic deposits, mainly orogenic gold.

Erin E. Marsh, Msc
Researcher at USGS Denver Inclusion Analysis Laboratory
U.S. Geological Survey, Denver
emarsh@usgs.gov
Expertise with fluid inclusions and isotopes.
Highlights Letter:

Subject: Submission of a manuscript for evaluation

Belo Horizonte, May 07th 2015

This work presents:

01) Classification of different vein systems of the Cabeça de Pedra orebody at the relatively unknown Archean BIF-hosted Lamego gold deposit and detailed petrographic characteristics;
02) Arsenopyrite geothermometer;
03) Fluid inclusion microthermometry studies and in situ LA-ICP-MS microanalyses of the fluid inclusions. Few other fluid inclusion studies have been undertaken for the orogenic gold deposits in QF region, and no LA-ICP-MS microanalyses of the inclusions have even been reported. These analyses were undertaken to demonstrate the role of the host rocks, especially carbonaceous phyllites, their influence on the source of metals and the hydrothermal fluid evolution;
04) A comparison with results of LA-ICP-MS of FIs for the Carvoaria Velha gold deposit, Córrego do Sítio lineament.
Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: microthermometric and LA-ICP-MS analysis of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil

Milton J. Moralesa*, Rosaline C. Figueiredo e Silvaa, Lydia M. Lobatoa, Sylvio D. Gomesa, Caio C. C. O. Gomesb, David A. Banksc.

a Universidade Federal de Minas Gerais, CPMTC-Instituto de Geociências, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte – MG, Brazil.

b AngloGold Ashanti Córrego do Sítio Mineração S/A, Lamego mine, Rua Mestre Caetano, Sabará – MG, Brazil

c School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom

*corresponding author: mjulianmoralesp@gmail.com
Abstract

The Lamego orogenic gold deposit (440,742 Oz gold measured reserves and 2.4 million t measured resources, with an average grade of 5.71 Au g/t and the cut-off grade of 2.15 g/t Au; AGA personal communication, 2014) is located in the 5 km-long trend that includes the world-class Cuiabá deposit. It is hosted in the Neoarchean metavolcano-sedimentary rocks of the Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil. Mineralization is associated mainly with metachert-banded iron formation (BIF) and carbonaceous phyllites in the inclined Lamego fold, in which the Cabeça de Pedra orebody represents the hinge zone. Mineralization is concentrated in silicification zones and their quartz veins, as well as in sulfide minerals, product of BIF sulfidation. Hydrothermal alteration varies according to host rock, with abundant sulfide-carbonate in BIF, and sericite-chlorite in carbonaceous phyllite. Quartz veins classification according to structural relationships and host rocks identified three vein systems. The V1 system, mainly composed of smoky quartz (Qtz I) and pyrite, is extensional and crosscuts the S_0 bedding of BIF, and is parallel to the fold axis. The V2 system, of same composition, is represented by veins that are parallel to the $S_{1,2}$ foliation and S_0 bedding. This system is also characterized by silicification zones in the BIF-carbonaceous phyllite contact that has its maximum expression in the hinge zone of folds. The V3 system has milky quartz (Qtz II) veins, which result from the recrystallization of smoky quartz, located mainly in shear zones and faults; these veins form en echelon and vein arrays. The most common ore minerals are pyrite, As-pyrite and arsenopyrite. Fluid inclusion-FI trapped in all quartz veins present composition in the $H_2O-CO_2±CH_4-NaCl$ system. Fluid evolution can be interpreted in two stages: i) aqueous-carbonic fluid trapped in Qtz I, of low salinity ($\sim 2\%$ equiv. wt% NaCl), and ii) carbonic-
aqueous fluid, of moderate salinity (average 9 % equiv. wt% NaCl) hosted in Qtz II. Both stages are characterized by decrepitation temperatures in the range of 200 to 300°C, and suggest a fluid of metamorphic origin.

Applying the arsenopyrite geothermometer, the calculated formation temperature for the Cabeça de Pedra orebody is 300 to 375°C. The vertical intersection of the isochors allows a pressure calculation between 4 to 4.5 kbar. The composition of individual FIs of this orebody, obtained by LA-ICP-MS analyses, compared with results of FIs for the Carvoaria Velha deposit, Córrego do Sítio lineament, highlights a standard composition typical of metamorphic fluids with Na> K> Ca> Mg, which increase or decrease in concentration as a function of salinity in both deposits. Trace elements vary according to fluid-rock reactions, and are directly related to the host rock composition. The comparison of data sets of the two deposits shows that the Cabeça de Pedra FIs have a higher enrichment in Zn, while Cu, As and Sb are richer in Carvoaria Velha, suggesting influence of the host rock geochemistry. The suggested mechanisms for gold precipitation are: i) hydrolysis of the carbonaceous matter of phyllite and BIF, affecting fO₂, destabilizing sulfur complexes and enhancing gold precipitation; ii) replacement of BIF iron carbonates by sulfides; and iii) the continuous pressure changes that lead to silica precipitation and free gold. Other than playing the long-recognized role of the carbonaceous phyllites as a fluid barrier, the data highlights their importance as a source of metals.

Keywords: Quadrilátero Ferrífero, fluid inclusions, LA-ICP-MS, hydrothermal alteration, quartz veins, metamorphic fluids
1. Introduction

The Neoarchean Rio das Velhas greenstone belt represents a supracrustal sequence, which had its tectonomagmatic activity peak between 2780-2700 Ma (Noce et al., 2007). It hosts world-class orogenic (Groves et al., 1998) gold deposits, and has historically been studied with exploration purposes since the Portuguese colonization of Brazil in the seventeenth and eighteenth centuries, the so-called gold cycle (Russell-Wood, 1984).

Geographically located in the central-south part of the state of Minas Gerais, southeast of Brazil, the Quadrilátero Ferrífero (QF) mineral district is part of the extreme south of the Craton São Francisco (Almeida, 1967; Almeida and Hasui, 1984), comprising three main units: granite-gneiss terrains; the Rio das Velhas greenstone belt; and Proterozoic metasedimentary sequences (Dorr et al., 1957; Dorr, 1969). The Rio das Velhas Supergroup, host to the largest number of gold deposits in the QF (Lobato et al., 2001a, 2001b), is divided into the 1) Nova Lima Group, composed of a metavolcano-sedimentary sequence, and 2) Group Maquiné, composed of continental clastic sequences (Baltazar and Zucchetti, 2007).

The different gold deposits in the region were formed during the Archean deformation that affected the Rio das Velhas Supergroup, associated with large volumes of hydrothermal fluids (e.g. Ribeiro-Rodrigues et al., 2007; Vial et al., 2007a, 2007b), which are correlated in age and background characteristics with other deposits present in different cratons of the world (Goldfarb et al., 2001, 2005). World-class deposits as Morro Velho (> 500 ton) and Cuiabá (> 100 ton), and smaller ones as Raposos, Juca Vieira, São Bento, Córrego do Sítio and Lamego are hosted in different rocks of the Nova Lima Group, and present varying mineralization styles (Lobato et al., 1998a, 1998b, 2001b).
The Lamego gold deposit is situated in the town of Sabará (Fig. 1), some 5 km from the world-class Cuiabá deposit. It is exploited underground by AngloGold Ashanti Córrego do Sítio Mineração S/A (AGA) since 2009. The deposit is hosted by the intermediate portion of the Rio das Velhas greenstone belt sequence. Sales (1998) was the first to recognize the local lithostratigraphy at the mine site. From bottom to top it is composed of metabasalt (chlorite-carbonate-sericite-quartz schists), banded chert layers with banded iron formation (BIF) that are both carbonaceous and/or ferruginous, carbonaceous and micaceous phyllites, with mineral paragenesis compatible with the greenschist facies mineralogy (Herz, 1970, 1978). Smoky quartz in silicification zones is abundant and widespread, in association with quartz veining, and these contain the highest gold grades. Replacement-style hydrothermal alteration of BIF is host to the remaining gold resources.

The deposit is structurally controlled, with veins arranged with shear zones, and in accordance rock competence, in a concordant or discordant arrangement with the foliation. Some areas have breccia textures with fragments of the host rocks. The smoky quartz veins are assigned to the first stages of mineralization, whereas milky quartz is assigned to the recrystallization of smoky quartz and-or to the final stages of the hydrothermal processes (Martins, 2011). The structure at Lamego is dominated by a rootless, reclined, isoclinal fold in the sense of Ramsay (1968), called the Lamego fold (Martins et al., 2011). There are four orebodies, and these are Queimada, Carruagem, Arco da Velha and Cabeça de Pedra, the latter being the object of the present study.

The aim of this study is to contribute to the understanding of the origin, physical and chemical characteristics of the fluids and their influence on the formation of this gold deposit. At the onset we approach this objective by classifying the different vein systems of
the Cabeça de Pedra orebody and detailing their petrographic characteristics. These are complemented by fluid inclusion microthermometry, arsenopyrite geothermometer and in situ LA-ICP-MS microanalyses of the fluid inclusions. Few other fluid inclusion studies have been undertaken for these deposits (e.g., Alves, 1995; Godoy, 1994; Ribeiro et al; 2015; Xavier et al., 2000), and no LA-ICP-MS microanalyses of the inclusions have even been reported. The LA-ICP-MS results from Lamego were undertaken to demonstrate the role of the host rocks, especially carbonaceous phyllites, their influence on the source of metals and the hydrothermal fluid evolution, and were compared with results of FIs for the Carvoaria Velha gold deposit, Córrego do Sítio lineament.

2. Regional Geology

The Quadrilátero Ferrífero (Fig. 1) represents a granite-gneiss terrain overlain by a greenstone-belt type sequence of Archean age, and Proterozoic supracrustal sequences.

The granite-gneiss terrains are composed of trondhjemitic-tonalitic-granodioritic gneiss, or TTG, and represent the basement of the QF, whose most representative units are the Belo Horizonte, Barão, Caeté and Santa Barbara complexes (Fig. 1). These rocks are Paleo to Mesoarchean, dated in the range 3380 to 2900 Ma (Teixeira et al., 1996), and have been subjected to metamorphism and migmatization dated between 2920-2834 Ma, and is also affected by Rhyacian (formerly Transamazonian; 2.22 - 2.05 Ga; Brito Neves, 2011) at 2041 ± 5 Ma (Noce et al., 1998). The unit is intruded by Neoarchean metatonalites, metandesites, metagranites and Paleoproterozoic mafic dikes (Carneiro, 1994; Noce, 1995), and is the source of debris for the upper greenstone sedimentary units (Schrank and Machado, 1996; Schrank et al., 2002).
The Rio das Velhas greenstone belt (Fig. 1), dated in the range 2800-2740 Ma (Machado and Carneiro, 1992; Machado et al., 1989b; Noce et al., 2002), comprises a Neoarchean volcano-sedimentary sequence formally proposed as Rio das Velhas Supergroup by Loczy and Ladeira (1976), which comprises two stratigraphic units, the Nova Lima and Maquiné Groups. From the base to the top, the Nova Lima Group is composed a volcanic komatiitic-tholeitic unit with chemical sedimentary rocks associated, superimposed by a felsic volcanioclastic unit with associated volcanism and an upper clastic unit (Baltazar and Zucchetti, 2007) all in greenschist facies metamorphism (Herz, 1970, 1978).

The Nova Lima Group was divided into seven sedimentary lithofacies associations (Baltazar and Pedreira 1996, 1998; Baltazar and Zucchetti, 2007; Pedreira and Silva, 1996; Zucchetti and Baltazar, 2000): mafic-ultramafic, chemical volcano-sedimentary, chemical-clastic sedimentary, volcanioclastic (where the Lamego deposit is located), resedimented, and coastal (or coastal and non-marine) associations (Fig. 1).

The Maquiné Group is divided into the Palmital (O'Rourke, 1957) and Casa Forte (Gair, 1962) formations. The former is composed of quartz phyllites and the latter of quartzites and conglomerates.

The Proterozoic sequences are the Minas Supergroup, Itacolomi Group and Espinhaço Supergroup. The Minas Supergroup (Dorr et al., 1957; Dorr, 1969) is in angular and erosive discordance on the Rio das Velhas greenstone belt rocks and its distribution defines the geometric shape of the QF. It is a metasedimentary unit of Paleoproterozoic age, composed of clastic and chemical sediments hosted in a package of quartzites, metaconglomerates, metapelites and a thick sequence of iron formations of Lake Superior-
type (Klein and Ladeira, 2000), which age of sedimentation had been calculated between 2580 and 2050 Ma (Renger et al., 1994).

The Itacolomi Group outcrops in the NE part of the QF and is composed of clastic sedimentary sequences. The Espinhaço Supergroup is composed by conglomerates, sandstones and mafic rocks and covers a small part of the QF that was deposited in the range between 1840-1715 Ma (Machado et al., 1989a, 1989b).

The first generation D1 is associated with the Archean event, in a compressive regime, with a tectonic transport from N to S. E-striking and N-dipping thrust faults, and open, sub-horizontal flexural normal folds to S-verging and ENE-plunging tight to isoclinal folds.

The D2 event, also of Archean age, represents a compressive regime with tectonic transport of NE to SW. The orientation of the thrust faults are NW (030-050 /40-60), isoclinal and tight folds with convergence to SW and NW direction. The stretching and mineral lineations have a (060-070 / 20-30) orientation. Gold mineralization in the Rio das Velhas Supergroup is assigned to this deformation event.
The D3 generation is associated with the Rhyancian event (2100-1900 Ma), of extensional character and tectonic transport from WNW to ESSE. Its characterized by the nucleation of regional synclines and the onset of the Minas Supergroup deposition. The D4 deformation is part of the Brasiliano (650-500 Ma) tectonic cycle with compressive regime and simple shear, and convergence of E to W.

3. Geology of Lamego deposit

The Lamego deposit (Fig. 2) has four orebodies, Queimada, in the inverted limb of the fold, Arco da Velha in the normal limb, Carruagem, where the inverted and normal limbs intercept, and Cabeça de Pedra, located in the hinge zone of the fold, and the object of study in this article.

3.1. Lithostratigraphy

The Lamego deposit is in the intermediate part of the Nova Lima Group, of the volcaniclastic association of Baltazar and Zucchetti (2007). The structure at Lamego is dominated by a rootless, reclined, type-2, isoclinal fold in the sense of Ramsay (1968), called the Lamego fold (Lobato et al., 2013; Martins et al. 2011,), with a 4.8 km outcropping perimeter and an axis oriented NE-SW (Martins, 2011).

It is a BIF-hosted, orogenic-type gold deposit, which stratigraphy was initially described by Sales (1998), and re-evaluated by Martins (2011). From bottom to top, the sequence is formed by the following rocks (Fig. 2):

Metabasalt. It forms the core of the fold, and is represented by chlorite-, carbonate-, quartz-rich metabasalts. Where strongly hydrothermalized and deformed, these are chlorite-
carbonate-sericite-quartz schists, that are locally sulfidized (mainly pyrite), in association with quartz veins and boudins that also contain carbonate (mainly ankerite) and sulfide minerals. The contact with the upper units can be concordant or not (Martins, 2011).

Chert and banded iron formation (BIF). This unit is formed by metamorphosed Algoma-type (Gross, 1980) BIF, and ferruginous or carbonaceous metachert. It is characterized by metachert bands associated with some very fine-grained carbonates (ankerite and siderite) and sulfides bands, composed by hydrothermal pyrite, (±magnetite) and chlorite. This banding is interpreted as sedimentary (Martins, 2011).

Carbonaceous phyllite. It occurs in the lower contact, normal or discordant with the BIF. It is composed mainly of carbonaceous matter, quartz, chlorite and carbonate (Martins, 2011).

Micaceous phyllite. This unit occurs on the top of the sequence, formed by quartz, carbonate, sericite-muscovite, pyrite (±chalcopyrite and sphalerite). The lower contact with the carbonaceous phyllite is normal and discordant (Martins, 2011).

Dolerite dikes and sills. Dolerite dikes and sills are exposed mainly in the Carruagem orebody level 1, and in the Cabeça de Pedra open pit. They may be parallel to or crosscut both carbonaceous and micaceous pelites, and BIF. They are foliated only near the contacts with wall rocks, and contain hornblende, actinolite-tremolite, epidote, chlorite, carbonate, plagioclase, sericite and quartz (Villanova, 2011).
3.2. Structural geology and hydrothermal alteration at the Lamego deposit

The structural evolution at Lamego has been the object of detailed investigation by Lobato et al. (2013), Martins (2011) and Martins et al. (2011). The text that follows is a summary of their work.

The primary planar structures (S₀) are the compositional and gradational bedding that dip mainly to the SE. At levels 1 of the Queimada, Arco da Velha and Cabeça de Pedra orebodies, S₀ has an axis oriented at 117/38. The S₁₋₂ foliation is the most conspicuous planar structure in the Lamego deposit, and it is mostly parallel or sub-parallel to S₀.

A L₁₋₂ lineation is described on the S₁₋₂ foliation planes, and characterized by the intersection of this surface’s planes with S₀. For orebodies Queimada level 1 and Cabeça de Pedra levels 1 and 2, S₁₋₂ and L₁₋₂ are strongly concentrated in the SE, on average trending 124/35. Together with the bedding plane S₀, S₁₋₂ foliation defines folds that are always associated with meta-sedimentary and metavolcanic rocks. The attitude of these folds is concentrated in the SE, with a plunge close to 25°, and is parallel to sub-parallel to the mineral lineation L₁₋₂.

The S₃ crenulation cleavage, or spaced cleavage plane, is developed mainly in metapelitic rocks. The L₃ is made up by the intersection of the S₁₋₂ with S₃ foliation planes. The F₃ open folds have amplitudes up to 3 m, and are best identified in the carbonaceous phyllite. The L₃ is distributed along N-S, trends 097/85, and coincides with the S₃ foliation planes (Martins et al., 2011).

Shear zones are mapped in all schistose layers and lithological contacts on centimeter to meter scale, with the development of S-C structures that indicate shearing towards the
NW. Faults are restricted to the carbonaceous phyllite and dip 30° to 90°, with a consistent NW sense of reverse slip.

The structural evolution at Lamego is associated with the progressive ductile D₁-D₂ deformation events, and D₃ that characterizes structures in a ductile-brittle environment. The orebodies have plunges varying from 95/22, in the Carruagem, to 120/25 in the Cabeça de Pedra orebodies, respectively. The structural nature of the small orebodies that jointly comprise the four larger orebodies suggests their development in a pinch-and-swell and boudin system with two orthogonal stretching directions. A chocolate-tablet structural array is thus defined during mineralization.

There are three main types of hydrothermal alteration that dominate and affect all rock types. They are represented by quartz, carbonate and sulfide minerals, and developed parallel to the S₁-2 foliation. These alteration minerals are best exposed in BIF and carbonaceous pelites, but less well developed in the footwall metabasalt and micaceous pelites. Metabasalt is particularly altered to chlorite, sericite, carbonate, quartz, and pyrite. Widespread zones of silicification dominate, with abundant smoky and milky (recrystallization product of smoky crystals) quartz veins, and minor carbonates, sericite,
pyrite and carbonaceous matter. These zones locally form breccias and boudins, with width ranging between 1 to 35 m.

The sulfides are mostly represented by pyrite, As-rich pyrite, arsenopyrite, less chalcopyrite and sphalerite, and also minor pyrrhotite and galena.

4. Materials and methods

The procedures for sampling and the methods of analyses were the following:

1) Two drill cores (LCPD011 and LCPD009) were sampled in the Cabeça de Pedra orebody, which crosses the structure at different depths, lithologies and grades, giving priority to silicified zones (Fig. 3). Twelve polished thin sections of quartz veins were prepared for petrographic studies, and seven double polished sections (~ 130 μm thick) were prepared for fluid inclusions analysis.

2) Macro- and microscopic petrographic studies focused on quartz veins and veinlets, with definition of petrographic characteristics;

3) Detailed petrographic mapping of fluid inclusions (FIAs) in quartz crystals from gold mineralized and barren veins was undertaken to discriminate inclusion types, sizes, morphologies and definition of fluid inclusion assemblages (FIA). A Leica petrographic microscope was used, with 10x oculars and objective lenses of 2.5x 5x, 10x, 20x, 50x and 100x;

4) Fluid inclusion microthermometric studies were conducted using a fully automated Linkam THMSG600 heating and freezing stage with a TMS 93 temperature controller. The stage was calibrated between – 56.6 °C and 374.1 °C
with synthetic fluid inclusion Linkam standards (pure H$_2$O and mixed H$_2$O-CO$_2$). The cyclic technique (Goldstein and Reynolds, 1994) was used to acquire better precision in measurements of transition of temperature between carbonic phases. The accuracy of the freezing measurement runs is about ±0.1 °C and for heating runs ±1 °C between 200 and 500 °C. Apparent salinity has been reported in equivalent percentage weight of NaCl. Calculations of salinity and density were made using the MacFlinCor program (Brown and Hagemann, 1995);

5) Raman spectroscopy was used to assess gases and fluids contained within the FIs. This technique allows a correlation between the composition and phase behavior, during the studies of cooling of FIs. Raman spectra were obtained on a Jobin Yvon/Horiba LABRAM-HR 800 spectrographer equipped with a He-Ne laser (632.8 nm). The Raman signal was collected by a BX-41 Olympus microscope using 10×, 50× and 100× objectives. The acquisition time ranges from 10 to 120 s, depending on sample background fluorescence, and the laser power from 0.06 to 6 mW. Spectra were acquired 10-30 times to reduce signal/noise ratio. Collected Raman spectra were analyzed and optimized with Labspec 4.18 and Origin 8.0. Background was corrected and when necessary normalized and peak deconvoluted. Measurements were performed at the Raman Laboratory of Spectroscopy in the Department of Metallurgic and Materials Engineering at UFMG;

6) Individual inclusions were analysed by laser-ablation inductively-coupled mass-spectrometry (LA-ICP-MS). The sections were introduced into the sample chamber of the ArF 193-nm excimer laser Geolas Q Plus. Before the chamber was closed, all air is expelled through a He flow. Inside the chamber, the
samples were analyzed for 300 s, during which several inclusions were opened by the laser ablation process. The entire content of inclusions extracted is transported as an aerosol together with He gas. The samples were then analyzed by ICP-MS Agilent 7500c quadrupole, equipped with an octopole reaction cell. The analyses were calibrated using the NIST SRM 610 standard. The data collected from the ICP-MS were processed by the SILLs software (Guillong et al., 2008), for calibration, background correction and floating of the integration signal. During this procedure, to ensure that the fluid inclusions signals were being processed without the interference of the host crystal, only spectra containing signals coincident with Na and other cations were processed. This analysis was done in the Laser Ablation ICP-MS laboratory at the University of Leeds, England;

7) Electron microprobe analyses were performed on arsenopyrite crystals using the JEOL model JXA 8900RL, at the Electronic Microscopy and Microanalytical (LMA) Laboratory at the Physics, Geology and Chemistry-CDTN-CNEN Consortium Laboratory, at the Universidade Federal de Minas Gerais, UFMG, Brazil.

5. Veins associated with the Cabeça de Pedra orebody

The quartz veins in the Cabeça de Pedra orebody are constrained by different structures, and are closely associated with the formation of the Lamego fold, which lithotypes controlling the morphology of each vein system (Table 1). Three vein systems are classified in order to study the fluid inclusions, using as criterion the associated structures (Fig. 4). Usually, they are associated with boudins and pinch-and-swell
structures, although in the more competent BIF, veins of planar features dominate. One of these systems was subsequently subdivided into four families according to host rock (Table 1).

The V1 veins are hinge-zone associated (Martins, 2011), crosscut all structures, and originated during the extensional phase of the Cabeça de Pedra orebody folding, with vein widths that diminish in relation to the axial fold plane. The mineralogy of V1 consists mainly of quartz, carbonate and sulfides.

As depicted in Figure 4, where V1 veins crosscut BIF along hinge zones, the associated V1 minerals may migrate along lateral bands to form V2 veins and impose a pseudo-stratification (Fig. 4); this typically forms replacement-style sulfide mineralization. The V2 veins are usually folded and controlled by the S_{1-2} foliation or S_{0} bedding plane. These veins are especially well developed in association with silicification zones along the contact between BIF and carbonaceous phyllite. Where associated with foliated rocks, schists and phyllites, V2 is subdivided into V2a, V2c and V2d veins, whereas where hosted in BIF only V2b veins are defined (Fig. 4).

The V2 mineralogy is generally simple, comprising 70-80% of smoky quartz, 10-25% carbonate and 10% sulfides, in which the most common are pyrite, As-pyrite and arsenopyrite, and locally chalcopyrite and sphalerite. Arsenopyrite is especially associated with V2 veins hosted in carbonaceous phyllites (V2c). The hydrothermal alteration associated with these veins varies according to their host rock, but it is common to find chlorite and carbonates in metabasalt, carbonate and sericite in carbonaceous and micaceous phyllites, and abundant sulfides in BIF. In the silicification zones, sulfide minerals are less abundant (<5%; Martins, 2011).
The V3 veins (Table 1; Fig 4) are classified as an independent system, once it exhibits another morphological style. It is more typical of shear zones and faults, with structures like en echelon, vein arrays and stockwork, and basically consists of milky quartz veins. Comb-textured quartz crystals are also observed.

In all vein systems, quartz can be classified into two types: Qtz I - smoky, subhedral and anhedral (Fig. 5a), with medium to large sizes (0.5 - 5 mm). It is extremely deformed, with wavy extinction, irregular and displaying recrystallized borders. In addition, it presents a great quantity of fluid inclusions and fine fragments of carbonaceous matter. According to the mine geologists, this quartz is directly associated with gold precipitation since it carries the highest gold grades. The Qtz II is milky, granoblastic, which size ranges from very fine (~ 0.05 mm) to coarse (4 mm), with the latter related to a higher degree of recrystallization (Fig. 5b). The content of carbonaceous matter decreases dramatically giving its characteristic color. This quartz is barren and interpreted as a late-stage phase.

The sulfides in all mineralized veins have a paragenetic sequence pyrrhotite, pyrite, arsenical pyrite, arsenopyrite, with pyrrhotite usually as rare relics in the nuclei of pyrite crystals. Pyrite constitutes a primary generation formed as subhedral and porous crystals, evolving to an arsenical pyrite with alteration rims (Morey et al., 2008), and finally to euhedral arsenopyrite. Gold commonly fills the porosity of arsenical pyrite (Fig. 5C).
6. Fluid inclusions

6.1. FI Petrography

The fluid inclusions (FI) were detailed according to their host minerals, mineralized (Qtz I) or barren (Qtz II), taking into account FI size, phase relations and chronological order in relation to the crystal.

Chronologically, the FI located in the center of Qtz I crystals, isolated or forming clusters, could in principal be considered as primary. However, due to the intense deformation experienced by the Lamego rocks, we adopt them as pseudosecondary and linked to gold precipitation at the early stage of hydrothermal alteration.

The FIs were grouped according to frequency, shape, relative age, size and chemical composition (acquired with Raman spectroscopy), classifying these into 5 groups (Fig. 6A):

Type IA: isolated clusters of pseudosecondary two-phase inclusions, at room temperature, restricted to the Qtz I, commonly with negative crystal shapes and rounded. The size ranges of <15 µm to 5 µm, and the ratio of liquid and vapor is 9:1 (Fig. 6B).

Type IB: isolated clusters of pseudosecondary two-phase inclusions, restricted to the center of the Qtz II (advanced recrystallization) crystals. The shape can be of negative crystals, and some irregular curved shapes. The registered size is <20 µm to 5 µm, and the ratio of liquid and vapor is 9:1 (Fig. 6C).

Type II: Trails of pseudosecondary two-phase inclusions, present in Qtz I and Qtz II, with rounded and elongated shapes. They present partially necking down. The size is <5 µm up to 15 µm and the ratio of liquid to vapor is 9:1. The FI are intragranular (Fig. 6 D).
Type III: They form linear pseudosecondary trails aligned parallel to crystal boundaries of the Qtz II (exclusively inside polygonal granoblastic, recrystallized quartz). They are enriched in liquid (<5% vol. gas). The shapes are rounded and have sizes <5 μm, which limited its analysis with Raman spectroscopy.

Type IV: Secondary inclusions crossing crystal boundaries of Qtz I and Qtz II (transgranular trails), developed late in the hydrothermal process, and strongly affected by necking down. Two-phase FIs, present in the two types of quartz, have irregular and amoeboid shapes. The size ranges from <5 to 40 μm, with a liquid to vapor ratio of 9:1.

6.2. Raman Spectroscopy

The chemical composition of FIAFs was determined by this technique, which the acquired spectra showing the composition without appreciable variations in the fluid evolution. All FI types are composed by H₂O ± CO₂, some of them with very small proportions of CH₄ and N₂ (Fig. 6E). The particularity of the type IA inclusions is the great amount of fine particles composed by carbonaceous matter (Figure 6F), which are represented with the spectra of graphite (Frezzotti et al., 2012).

6.3. Microthermometry results

Some 100 FIs that were measured include types IA, IB and II. The FIs types III and IV were not measured, not only because of their average size of <5 μm, but also because they were strongly affected by necking down (Roedder, 1984). Results are summarized in Table 2 and Figure 7.
6.3.1. Freezing

In the Figure 7 and Table 2, types IA, IB and II inclusions have CO$_2$ melting temperatures of (T_{mCO2}) ranging from -60.2 to -51.1°C, indicating an abundant presence of volatile CO$_2$ and CH$_4$ ratio (Shepherd, 1985). These phases were confirmed by Raman spectroscopy (Fig. 6E). In relation to the temperature of the first melting ice (T_e), types IA and II inclusions range from -38.4 to -26.9°C, whereas type IB inclusions from -35.1 to -29.6°C, indicating the presence of complex cations, such as Fe$^{2+}$ and Mg$^{2+}$, besides Na$^+$ in the fluid (Borisenko, 1977). The clathrate melting temperature (T_{Clath}) has a wide range of temperatures in type IA, with two trends between 1.9 and 5.3°C, and between 6.3 to 12.0°C (Fig. 7). Types IB and II show a range of 1.6 to 9.5°C (Fig. 7).

6.3.2. Heating

All types of FIs registered decrepitation temperature (T_{dec}) prior to homogenization, with rare exceptions. The decrepitation temperature variations are between 199.5 and 365.9°C in FIA IA, 220.8°C and 383.3°C for FIA IB, and 228.6°C and 383.3°C for FIA II (Fig. 8 and Table 2). Few inclusions recorded total homogenization temperature (T_{htot}) to liquid within a wide range, from 185.4 to a maximum of 373.4°C for all types of inclusions.

6.3.3. Quantitative estimation of fluid inclusions composition

Salinity, density and proportions of volatile estimates of aqueous and carbonic phases were calculated using the MacFlinCor software (Brown and Hagemann, 1995). Equations of state by Jacobs and Kerrick (1981) using the chemical system H$_2$O-CO$_2$-CH$_4$-NaCl were applied for all FI types. Fluid inclusions containing CH$_4$ ratios of the volatile phase were calculated using the graphical method by Thiéry et al. (1994). The salinity values and
density vary widely, 0.02 to 13.32 eq. wt% NaCl and 0.94 to 1.07 g/cm3 for type IA, 6.3 to 11.88 eq. wt% NaCl and 0.98 to 1.06 g/cm3 for type IB and 4.97 to 13.69 eq. wt% NaCl and 0.95 to 1.07 in g/cm3 type II (Table 3). In relation to the carbonic phase, all FIs contain values from 1 to 8 mol% CO$_2$, and a maximum of 1.7 mol% CH$_4$ (Table 3).

7. LA-ICP-MS fluid inclusion analyses

7.1. Cabeça de Pedra orebody, Lamego deposit

Individual measurements of the elements K, Ca, Mg, Mn, Fe, Cu, Zn, Sr, Ag, Ba, La, Pb, Li, As, Sb and Au were made using LA-ICP-MS at least in 230 FIs of types (Fig. 9 and Table 4): (i) IA in samples 9-8 (V1 vein hosted in BIF), 11-3 (V2 vein hosted in BIF) and 11-7 (V2 vein hosted in carbonaceous phyllites); and (ii) IB in samples 9-7 and 11-2 (V3 vein hosted in in carbonaceous phyllites). Lanthanum was discarded as concentrations represent interference of host mineral (matrix); concentrations of Li are below detection (LOD) in all analyses, as well as the majority of Au and Ag measurements. In the case of Au and As, they were measured separately or were not measured for every inclusion assemblage, as is the case of sample 11-7.

Figure 9 and Table 4 shows that the concentration of the cations Na, K, Ca and Mg increases proportionately to salinity in all vein types, and all analyzed inclusions are Na rich. Manganese is found at low levels and Fe concentration is maintained without a significant change in all types of veins (Fig. 9). The base metals Cu, Zn and Pb increase in their concentration in quartz veins hosted in carbonaceous phyllites, as well as Sr, in comparison to veins hosted in BIF (Fig. 9), where the concentrations of these elements is
considerably lower. The metals Ag, Sb, As and Au have low concentrations in the measured fluid inclusions in all vein types, with some increase in content, especially Sb and As, in veins hosted in carbonaceous phyllites (Fig. 9).

7.2. Carvoaria Velha deposit, Córrego do Sítio lineament

The Carvoaria Velha orogenic gold deposit, located in the northeast of Quadrilátero Ferrífero, 120 km from Belo Horizonte, and 120 km from the Lamego mine, is hosted in metagraywackes and carbonaceous phyllites of the Nova Lima Supergroup, where these rocks are intruded by mafic dikes and sills (Roncato et al., 2015). According to Ribeiro et al. (2015), quartz veins associated with mineralization are V1 system (see table 5), composed mainly of quartz and carbonate, and containing FIs classified as types 1A and 1B. Type 1A inclusions are pseudosecondary trapped in smoky quartz (Qtz I) with a composition of H$_2$O + CO$_2$ ± CH$_4$, salinity in the range of 4.7 to 13.2 eq. wt% NaCl, and a density of 0.94 to 1.06 g/cm3. Type 1B inclusions are pseudosecondary, restricted to recrystallized quartz (Qtz II), H$_2$O + CO$_2$ ± CH$_4$ composition and density of 0.92 to 1.04 g/cm3. The V4 veins are hosted in mafic dikes (DB1), and contain pseudosecondary aqueous fluid inclusions classified as type 2, which average salinity of 15 eq. wt% NaCl, and density between 0.97 and 0.99 g/cm3.

For comparison, about 125 individual FIs of types 1A, 1B and 2 of Ribeiro et al. (2015) were measured using LA-ICP-MS. They correspond to samples 192.2 and 195.7, which include V1 veins hosted in carbonaceous phyllite; 130.0 where a V1 vein is hosted in metagraywacke, and 160.0 with a V4 vein hosted in mafic dike - DB1, dominated by chlorite and carbonate alteration, with subordinate pyrite and quartz.
The results (see Table 6 and Fig. 10) indicate higher contents of cations \(\text{Na} > \text{K} > \text{Ca} > \text{Mg} \) in V1 veins hosted in carbonaceous phyllite and metagraywacke, increasing their concentration as a function of salinity. In the case of V4 veins, the concentration of these elements is higher due to their significantly greater salinity, but also the \(\text{Ca} \) and \(\text{Mg} \) concentration increases in comparison to \(\text{K} \). There is a noticeable difference in the contents of base metals, which have a higher concentration in V4 veins hosted in mafic dikes, mainly \(\text{Cu} \) and \(\text{Zn} \), and also \(\text{Sr} \) and \(\text{Ba} \). In V1 veins hosted in both carbonaceous phyllite and metagraywacke, there is a positive \(\text{Zn} > \text{Cu} \) ratio (Fig. 10). The ratio \(\text{Cu} > \text{Zn} \) is positive in V4 veins for mafic rocks (Fig. 10). Another important observation is the high concentration of \(\text{Sb} \) in the V1 veins hosted in carbonaceous phyllite, with a moderate concentration of \(\text{As} \), in contrast with V1 vein hosted in metagraywacke, which is more depleted in both metals. For the case of \(\text{Au} \) and \(\text{Ag} \), these are usually below the detection limit in all veins. Lithium is also below the detection limits.

8. Arsenopyrite geothermometer and pressure estimation for the Cabeça de Pedra orebody, Lamego deposit

Arsenopyrite may be used as geothermometer when the variation of the arsenic content in the ore is equivalent to the temperature of formation, by using the phase diagram of Fe-As-S system (Kretschmar and Scott, 1976). According to the authors, some criteria must be considered, and these include mineral paragenesis in the Fe-As-S system; application to ore systems where arsenopyrite formed at temperatures >300°C; and concentration of elements as Ni, Co and Sb less than 1 wt%.
For the case of the Cabeça de Pedra orebody, chemical composition of arsenopyrite crystals was measured in samples 11-3a, 11-3b, 11-4 and 11-5, where crystals are in equilibrium with gold particles, and with parageneses matching the Apy-Py stability field (Fig. 11B). Arsenopyrite crystals are commonly associated with the alteration rims of As-rich pyrite, where some crystal areas are more enriched in arsenic than others (Fig. 11A), the former being associated with gold precipitation (Morey et al., 2008). The results of the microprobe analyses are shown in table 7, the atomic percentage of As being between 28.17 and 30.61% at., with an average of 29.83% at. Using the diagram proposed by Kretschmar and Scott (1976), temperatures of formation equivalent to atomic percentages of As are in the range of 300 to 375°C, and an average of 337.5°C (Fig. 11B).

The pressure estimates for the Cabeça de Pedra orebody were calculated intercepting the average temperature of the arsenopyrite geothermometer. This is designed vertically with the isochore of each inclusion, assuming that the inclusions were not affected by any other processes after imprisonment (Brown and Hagemann, 1995; Hagemann, 1993). The results indicate that the orebody was formed at a minimum average pressure of 4045.2 bar and a maximum of 4494.8 bar (Fig. 11C).

9. Discussion

9.1. Nature of veins in the Cabeça de Pedra orebody

Quartz veins are classified according to their structural characteristics, mineralogy and field crosscutting relationships, in order to establish the chronological sequence presented in Figure 4. The V1 vein system is hinge-zone associated, crosscut all structures,
and originated during the extensional phase of the Cabeça de Pedra orebody folding. During folding, competent rocks, such as BIF, fractured parallel to the axis near the hinge zone, allowing fluid to infiltrate via faults and shear zones (Martins et al., 2011) that acted as channels and created the V1 vein system, dominated by smoky quartz (Qtz I). This is represented by fault-fill and extensional quartz veins according to the criteria of Robert and Poulsen (2001). Where the V1 vein system uses the S_{1-2} and S_0 structures as infiltration channels, they are denominated V2 veins (Fig. 4). As these silicification fronts could not move beyond the impermeable carbonaceous phyllite barrier, which prevented further fluid infiltration, massive quartz zones (V1 and V2 veins) concentrated in the hinge zones of folds, and locally brecciated rock portions (Martins et al., 2011) were developed along the BIF-carbonaceous phyllite contact, indicating an increase in P_f relatively to P_L (Fig. 4; Fig 11C). The progressive deformation recrystallized the Qtz I of existing veins, forming milky quartz (Qtz II), which can be observed from the early to the advanced stages of recrystallization, represented by the V3 vein system (Fig. 4; Fig. 5B).

9.2. Hydrothermal fluid evolution

The fluid associated with gold mineralization in the Cabeça de Pedra orebody has a composition in the H_2O-CO_2-NaCl ± CH_4 aqueous-carbonic system. The salinity is low to moderate, averaging ~ 9 eq wt% NaCl for V2 and V3, and ~ 2 eq wt% NaCl for the V1 vein systems, respectively (Fig. 8A). The volume percentage of the volatile phase in all FIs is about 10 to 15%, indicating that the fluid was homogeneous with no evidence of boiling (Roedder, 1984).

The diagram T_{dec} vs salinity (Fig. 8A) shows that in V1 and V2 vein systems the salinity varies in the same temperature range. The data are grouped in two families, with
variations of 0 to 4 eq. wt% NaCl for V1, and from 7 to 13 eq. wt % NaCl for V2. For the
case of the V3 vein system (Fig. 8B, C), data are grouped with an average salinity of 9 eq.
wt % NaCl. The range of salinity for all three V1, V2 and V3 indicates an increase in
salinity with recrystallization of quartz advances. Recrystallization took place during the
D$_1$-D$_2$ progressive deformation (Lobato et al., 2013; Martins et al., 2011), which may have
cased grain boundaries migration, while the quartz crystal structure accommodated the
crystalline dislocations (Urai et al., 1986). This process can be observed at different
recrystallization stages, starting with fine polygonal crystals in an incipient stage (Fig. 5B),
being formed along the edges of smoky quartz crystals, to a more advanced stage during
which veins of milky quartz are developed (Fig. 5B; Fig. 4).

The color of the smoky quartz is due mainly to the large amount of FIs, most of
which contain very fine particles of carbonaceous matter (Fig. 6F), particularly present in
type IA FIs, indicated by the Raman spectrum. The change in color (smoky quartz to milky
quartz), takes place once quartz is recrystallized, and results from the migration of
carbonaceous matter to the edges of the crystals (Schmatz and Urai, 2011). The water loss
in FI during recrystallization (Drury and Urai, 1990; Schmatz and Urai, 2011), resulting
from aqueous FIs accumulating along crystal edges (type III, Fig. 6A), may have caused the
salinity increase in FIs trapped in recrystallized quartz (Qtz II) leading to higher salinity
values observed in V3 veins (Fig. 8B). This also may have been the case for relatively
higher salinity values in V2 veins (similar to V3; Fig. 8A), possibly due to a partial
recrystallization of Qtz I (Fig. 5B).
Taking into account the vein classification and their FI studies, the fluid evolution for the Cabeça de Pedra orebody of the Lamego deposit is interpreted in two stages, characterizing what is interpreted to have a metamorphic origin:

Stage 1: aqueous-carbonic fluid of low salinity (average 2 eq. wt% NaCl) with a decrepitation temperature in the range of 200 to 300°C, represented by type IA FIs trapped in smoky quartz (Qtz I);

Stage 2: carbonic-aqueous fluid, with moderate salinity (average 9% eq. wt% NaCl) with the same range of decrepitation temperature, represented by type IB FIs trapped in recrystallized, milky quartz (Qtz II).

Considering that the microthermometric data are not accurate to estimate the minimum entrapment temperature, since the majority of FIs decrepitated before homogenizing, the arsenopyrite geothermometer was applied, and temperature values are calculated between 300 to 375°C (Fig. 11B). Based on these temperatures, pressure was estimated within 3.5 to 4.7 kbar (Fig. 11C), indicating that the hydrothermal fluid was subjected to continuous pressure changes (Sibson et al., 1988) that must have favored silica precipitation with gold.

Regarding the CH\textsubscript{4} content, FI studies in different deposits hosted in Archean rocks of the QF region report high proportions of this gas (e.g., Godoy, 1994; Alves, 1995; Xavier et al, 2000; Lobato et al., 2001b, Ribeiro et al., 2015), due to the hydrolysis reaction of carbonaceous matter (2C + 2H\textsubscript{2}O = CO\textsubscript{2} + CH\textsubscript{4} or C + 2H\textsubscript{2} = CH\textsubscript{4} + O\textsubscript{2}) present in the host rock. In the case of the Cabeça de Pedra orebody, the maximum ratio CO\textsubscript{2}:CH\textsubscript{4} is 4:1 (Table 3), with a maximum CH\textsubscript{4} concentration of 22.6 mol% in the carbonic phase.
9.3. Gold precipitation mechanisms

The processes for gold precipitation in the Cabeça de Pedra orebody are:

1. Hydrolysis of carbonaceous matter of both phyllite and BIF, incorporating CH$_4$ to the fluid and decreasing fO$_2$, causing destabilization of the gold-sulfur complexes;

2. The decrease of the total sulfur concentration in solution and reduced sulfur in the fluid during BIF sulfidation, possibly following reactions: i) FeCO$_3$ + 2H$_2$S + 1/2O$_2$ = FeS$_2$ + CO$_2$ + 2H$_2$O (Phillips, 1986); ii) Fe$_3$O$_4$ + 6H$_2$S = 3FeS$_2$ + 4H$_2$O + 2H$_2$ (Phillips and Powell, 2010). Gold precipitates in pyrite, associated with the overgrowth of arsenopyrite, where arsenic precipitation is strongly favored by fluid reduction (Heinrich and Eadington, 1986), and hence As has an association with gold and carbonaceous shales (Phillips and Powell, 2010);

3. The continuous variations in pressure, associated with the formation of faulting and folding, allowed the infiltration of large amounts of fluids, mainly in the hinge zones of BIF (V1 vein system), evolving to breccia-textured massive quartz with free gold. This is particularly well observed along the contact between carbonaceous phyllite and BIF (V2 vein system).

9.4. LA-ICP-MS in fluid inclusions of the Cabeça de Pedra orebody

The high concentration of major elements, such as Na, K, Ca and Mg, in FIs hosted in carbonaceous phyllites and BIF, is similar to that of metamorphic fluids in orogenic gold systems (Ridley and Diamond, 2000). This is a consequence from the salinity increase in FIs in all types of analyzed veins with the order of abundance Na> K> Ca> Mg. The
cations K, Ca and Mg are responsible for the lower eutectic temperature (-35°C) when compared to fluids containing only Na (Borisenko, 1977). Particularly, the enrichment in K and Mg in the fluid reflects the formation of hydrothermal alteration minerals, such as sericite and chlorite, which are typical of proximal alteration zones of metamafic rocks (Ridley and Diamond, 2000), as described by Martins et al. (2011).

As shown in Table 4 and Figure 9, Zn has the highest concentration in veins hosted in carbonaceous phyllites, V2 vein (sample 11-7), and V3 veins (up to 3783 ppm) when compared to veins hosted in BIF (up to 612 ppm). Yamaguchi (2002) reports values between 100 and 200 ppm of Zn in black shales from different Archean cratons world while, and suggests hydrothermal activity for these concentrations. Coveney (2003) suggests that the source for Zn enrichment, together with other metals (Ni, Mo, As, Pt, Pd and Au), in the cambrian black shales of south China is hydrothermal fumaroles. On the other hand, Lehmann et al. (2003) interpret that the same black shales are not associated with volcanic activity, and the authors postulate that metals enrichment is due to direct precipitation of sea water via reduction of the black shales. This may indicate that during hydrothermal fluid interaction to form the Cabeça de Pedra orebody at Lamego, Zn was leached from the carbonaceous phyllite and concentrated in fluid. Copper is more concentrated in veins hosted in carbonaceous phyllite (up to 1293 ppm; Table 4), than in those in BIF (up to 201 ppm; Table 4 and Figs. 9 and 11A). This indicates as well as Zn, the carbonaceous phyllite is the source of Cu (Large et al., 2011).

The content of As (Table 4) in veins hosted in carbonaceous phyllite (229-975 ppm) is higher than in veins hosted in BIF (37-183 ppm). According to Large et al. (2011), black shales have the capacity of adsorb As and Au cations in both organic matter particles and
diagenetic pyrite, suggesting carbonaceous phyllite as a possible source for these metals in Lamego. Concentration of Au (up to 41 ppm) and Ag (up to 50 ppm) is below the detection limit (Table 4) in the majority of the analyzed veins, indicating that these metals were precipitated and the fluid was metal depleted. Rauchenstein-Martinek et al. (2014) also found extremely low Au (max 0.33 ppm) and Ag (max 2 ppm) results, and the authors concluded that metamorphic fluids are commonly unsaturated in gold. A pre-enrichment of gold in the fluid source is essential to generate orogenic deposits, and also that carbonaceous phyllite and mafic rocks are the most favorable rock types for this process (Large et al., 2011). In the case of the Cabeça de Pedra orebody, gold must have been therefore incorporated in solution during the metamorphic devolatilization (Phillips and Powell, 2010; Pitcairn et al., 2006, 2014) of carbonaceous phyllites similarly to what is suggested by Tomkins (2010, 2013a, 2013b) and Large et al. (2011). However, the metabasalt may also have been a source of gold, but probably not for As and Sb (Pitcairn et al., 2015).

9.5. LA-ICP-MS in fluid inclusions of the Carvoaria Velha deposit, Córrego do Sítio lineament

Fluid inclusions in quartz veins of the Carvoaria Velha deposit, Córrego do Sítio lineament (Ribeiro et al., 2013) show a similar concentration of the elements Na, K, Ca and Mg (Fig. 10) typical of metamorphic fluids (Ridley and Diamond, 2000). The Cu and Sr contents are noticeably higher in veins hosted in mafic dikes (Table 6), with Cu values up to 3420 ppm and up to 545 ppm for Sr, when compared to a maximum of 1300 ppm Cu, and 180 ppm Sr in veins hosted in carbonaceous phyllite. These values indicate an
important mafic contribution for these metals, but do not exclude carbonaceous phyllite as possible source.

Antimony-rich (variation from 5000 to 9000 ppm) inclusions of veins hosted in carbonaceous phyllite at Carvoaria Velha (Table 6 and Fig. 10) suggest leaching of Sb from carbonaceous-dominated host rocks. However, this contrasts with the abundant prevalence of berthierite (FeSb$_2$S$_4$) therein. The presence of both Sb phases, berthierite and stibnite (Ribeiro et al., 2013), and Sb in the fluid must result from the pronounced availability of this metal in the whole rock package at the Córrego do Sítio lineament, which is characterized only by the presence of clastic metasedimentary rocks (Roncato et al., 2015). One must also take into account the high efficiency of Sb solubility in fluids interacting with carbonaceous phyllites (Obolensky et al., 2007). Fan et al. (2004) report an enrichment in Sb (50 to 90 ppm) in black shales from the antimony Xikuangshan deposit, China, suggesting these rocks as the source of metals. Comparing the Xikuangshan concentrations with those obtained in veins from the Carvoaria Velha deposit, there is a clear increase of 100 to 200 times in the Sb concentration, assuming that the original carbonaceous shale was Sb rich.

In relation to As, its behavior is similar to Sb, since it is also in solution (up to 2500 ppm; Table 6), with arsenopyrite being by far the predominant sulfide at Carvoaria Velha (Ribeiro et al., 2013). Fluid As-S-Fe buffering via arsenopyrite + pyrite development Heinrich and Eadington (1986), in a similar temperature range as that of Carvoaria Velha (300 to 375°C, Ribeiro et al., 2015), was such that both As and Fe (Fig. 11) were still retained in the fluid phase (Table 6).
Gold and silver are depleted in all veins (Table 6) suggesting that these were precipitated, similar to veins associated with the Cabeça de Pedra orebody, Lamego deposit.

10. Conclusions

Fluid inclusion microthermometric studies combined with LA-ICP-MS in FIs and arsenopyrite geothermometer of different vein systems of the Cabeça de Pedra orebody, at the Lamego orogenic gold deposit, Quadrilátero Ferrífero, allow the following conclusions:

1. Three vein systems are identified, V1, V2 and V3, where the early-stage smoky quartz is referred to as Qtz I, and its recrystallized product is Qtz II. The latter constitutes milky, granoblastic crystals.

2. The Cabeça de Pedra orebody was formed from the interaction of low salinity (~ 2 eq. wt% NaCl), aqueous-carbonic metamorphic fluids, at temperatures between 200 and 370°C, and a variable pressure of 4 to 4.5 kbar, obtained in Qtz I smoky quartz. The FIs of recrystallized, milky quartz (Qtz II) contain moderate salinities of ~9 eq. wt% NaCl (Fig. 12A,B). This salinity increase is interpreted as a result of water loss in the FIs during quartz recrystallization Qtz I to Qtz II, when aqueous FIs accumulate along the crystal edges.

3. According to the characteristics of the fluid, T and P conditions, and mineralization styles, it is concluded that the orebody was formed in similar conditions described for orogenic gold deposits elsewhere (Groves et al., 1998; Hagemann & Cassidy, 2000), and resembles the proposed models for other gold deposits of the Archean rocks of the QF (Lobato et al., 2001b).
4. Fluid infiltration in host rocks must have taken place in several stages, which were closely linked to the formation of the Lamego fold. Competent rocks, such as BIF, fractured parallel to the axis near the hinge zone, allowing fluid to flow via faults and shear zones (Martins et al., 2011) that acted as channels and created the V1 vein system (Fig. 4). As V1 veins evolved and penetrated along the S$_{1-2}$ foliation and bedding S$_0$ planes, the V2 veins developed. Silicification was constrained to the BIF-carbonaceous phyllite contacts, since it could not move beyond the impermeable carbonaceous phyllite barrier. Further fluid infiltration was prevented and massive quartz zones were concentrated in the hinge zones of folds, locally forming brecciated portions (Martins et al., 2011) along the BIF-phyllite contact, indicating an increase in P$_f$ relatively to P$_L$ (Fig. 12A). Pressure played a very important role in mineralization, since the large silicification zones that contain the highest gold grades that must have been produced due to fluctuations in fluid pressure during infiltration (e.g., Sibson et al., 1988).

5. Gold precipitation was related predominantly to the (i) sulfidation of BIF (Fig. 12C), generating mainly pyrite in association with gold, especially during As enrichment; and (ii) hydrolysis of carbonaceous matter in phyllite, which affected fO$_2$, destabilized the sulfur complexes, and resulted in free gold particles.

6. The interaction of the hydrothermal fluid with the host rocks has determined the incorporation and depletion of certain elements in the remaining fluid, detected by the LA-ICP-MS technique in FIs. The compositional fluid differences of the Cabeça de Pedra orebody (Lamego) and the Carvoaria Velha deposit (Córrego do Sitio lineament) are closely related to compositional variations of the host metasedimentary units. Carbonaceous phyllites from Lamego provided
base metals (i.e., Zn) to the hydrothermal fluid, whereas quartz veins associated with the same rock type at the Carvoaria Velha have significant Sb. Not only were the original black shales enriched in both Zn and Sb, but they seem to have been sourced differently.

7. For both the Cabeça de Pedra and Carvoaria Velha deposits, the source of Au and As was possibly the pre-enriched carbonaceous phyllite. These elements were probably leached during the metamorphic devolatization (Large et al., 2011), indicating a local metal and fluid source during gold mineralization.

8. The role of carbonaceous phyllites for fluid entrapment and gold concentration has been indicated in the case of some Rio das Velhas greenstone-belt-hosted deposits (e.g., Lobato et al., 2001b; Xavier et al., 2000). They also pointed out the importance of the hydrolysis of carbonaceous matter affecting fO₂, destabilizing sulfur complexes and enhancing gold precipitation. The present contribution highlights, for the first time in the Rio das Velhas greenstone belt gold deposits, that carbonaceous phyllites also acted as the source of metals, most importantly gold, similarly to what is postulated for example by Gaboury (2013), Large et al. (2011), and Tomkins (20013b), supplied by the black shales of the original Archean stratigraphy. This has enormous exploration implication in this vast region, where chemical and clastic sedimentary rocks dominate the greenstone belt sequence (Baltazar and Zucchetti, 2007).

Acknowledgements

This paper contains results of the M.Sc. dissertation of the first author at the Universidade Federal de Minas Gerais-UFMG, Brazil, with scholarship from Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior – CAPES. The authors wish to acknowledge AngloGold Ashanti Córrego do Sítio Mineração S/A for their technical, logistic and financial support during our research. Special thanks to all technicians, helpers and geologists in the Lamego mine, especially geologist Fernando Villanova. The main research funds were provided by a project with joint resources from the Brazil’s National Council of Technological and Scientific Development-CNPq and Vale. We are also thankful to School of Earth and Environmental, University of Leeds, England; Centro de Pesquisas Prof. Manoel Teixeira da Costa-CPMTC-UFMG; Luis Garcia of Microanalyses Laboratory of UFMG and Maria Sylvia Dantas for technical collaboration in the Raman Spectroscopy Lab – Department of Metallurgy and Materials Engineering (UFMG). Finally, we would like to express our appreciation to the reviewers and the editorial staff. LML acknowledges a research grant from the CNPq.

References

carbonate-sulfide veins of the Carvoaria Velha deposit, Córrego do Sítio gold lineament, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geology Reviews 67, 11–33.

Zucchetti, M., Baltazar, O.F., 2000. Rio das Velhas Greenstone Belt lithofacies associations, Quadrilátero Ferrífero, Minas Gerais, Brazil. 31th International Geological Congress, Rio de Janeiro, Brazil, CD-ROM.
Figure captions

Figure 1 – Simplified geological and structural map of the Quadrilátero Ferrífero region. The main lithofacies associations of the Nova Lima Group, Rio das Velhas greenstone belt (Baltazar and Zucchetti, 2007), and some of the gold deposits are shown (from Lobato et al., 2001). Gold deposits: 1 – Cuiabá; 2 – Raposos; 3 – Morro Velho; 4 – Bela Fama; 5 – Bicalho; 6 – Esperança; 7 – Paciência; 8 – Juca Vieira; 9 – São Bento; 10 -Córrego do Sítio; 11 – Brumal; 12 – Lamego; 13 – Santana; 14 – Engenho d’Água. Studied area is highlighted in a green square, and detailed in Figure 2. Also highlighted in red is the Córrego do Sítio area.

Figure 2 – Geological map of the Lamego deposit. Modified after Villanova, 2011.

Figure 3 – Cross-section of the Cabeça de Pedra orebody showing the schematic logging sampled LCPD009 and LCPD011 drill cores, with gold grades (in ppm) and depths from where quartz veins were collected. Data source of gold grades from AGA (2008).

Figure 4 – Schematic diagram illustrating the different quartz vein systems at the Cabeça de Pedra orebody, Lamego deposit. Also shown are photographs of examples from core and hand samples. Veins types hosted in the metavolcano-sedimentary rocks are: V1 – smoky quartz-carbonate extensional veins that crosscut S₀ in BIF; V2a – smoky quartz-carbonate veins, along main S₁₂ foliation in metabasalt, which may be folded and boudinaged; V2b – smoky quartz-carbonate veins, developed along bedding S₀ in BIF; V2c – smoky quartz-
carbonate veins, along main S_{1-2} foliation in carbonaceous phyllite with boudins and pinch-and-swell structures and silicification zones along the contact between BIF and carbonaceous phyllite; V2d – smoky quartz-carbonate veins controlled by S_{1-2} foliation in micaceous phyllite; V3 – milky quartz-carbonate veins in smoky quartz associated with shear zones and faults, with en echelon vein arrays and stockwork structures.

Figure 5 – Photomicrographs showing: A) Different types of quartz in V2 vein types. Qtz I is only present as smoky quartz, and Qtz II as polygonal crystals associated with Qtz I borders (transmitted light, crossed nicols, 5x). B) Tips of quartz in V2 and V3 veins: polygonal Qtz II (incipient recrystallization) associated with Qtz I as smoky quartz, and granoblastic Qtz II (advanced recrystallization) as milky quartz (transmitted light, crossed nicols, 2.5x). C) Gold associated with proximal hydrothermal alteration minerals in BIF. The abbreviations correspond to: Apy – arsenopyrite; Po – pyrrhotite; Py – pyrite; Au – gold; Qtz – quartz; Cb – carbonate.

Figure 6 – A) Schematic map showing the distribution (at room temperature) of the main fluid inclusion types in mineralized and barren quartz veins at the Cabeça de Pedra orebody, Lamego deposit. Photomicrographs showing: B) Pseudosecondary type IA inclusions (square, rectangular or oval in shape) restricted to smoky quartz (Qtz I); C) Pseudosecondary type IB inclusions restricted to recrystallized quartz (Qtz II); D) Pseudosecondary trails of type II inclusions in Qtz I and Qtz II. E) Representative Raman spectra of all types of fluid inclusion with more abundant components in the vapor phase. F) Raman spectrum of a type IA fluid inclusion with graphite fragments.
Figure 7 – Histograms showing microthermometric characteristics of fluid inclusions trapped in quartz veins from the Cabeça de Pedra orebody, Lamego deposit. Microthermometry data includes CO$_2$ melting (T_{mCO2}), final fusion ice (T_e), clatrate melting (T_{mCl}), and CO$_2$ homogenization (T_{hCO2}) temperatures.

Figure 8 – Diagram showing salinity versus decrepitation (T_{dec}) temperature for inclusions: A) type IA; B) type IB; C) type II with a few data of total homogenization ($T_{htot L-V}$).

Figure 9 – Diagrams showing metal concentrations obtained from LA-ICP-MS microanalyses of fluid inclusion assemblages and individual fluid inclusions in the Cabeça de Pedra orebody. The box plot represents the average value for a fluid inclusion type, with the respective standard deviations shown by the error bars in different veins types.

Figure 10 – Diagrams showing metal concentrations obtained from LA-ICP-MS microanalyses of fluid inclusion assemblages and individual fluid inclusions at the Carvoaria Velha gold deposit (Riberio et al., 2015), Córrego do Sítio lineament. These results are meant be compared with data obtained for the Cabeça de Pedra orebody, Lamego deposit.

Figure 11 – A) Backscattered scanning image of As-rich pyrite (Py) and arsenopyrite (Apy) crystals showing alteration rims (red lines) with associated gold particles. B) Diagram of
Kretschmar and Scott (1976) shows arsenic % atomic concentration versus temperature applied for arsenopyrite geothermometer. Values for this study are represented as a red area. The abbreviations correspond to: Apy – arsenopyrite; Po – pyrrhotite; Py – pyrite; Lö – loellingite. C) Pressure estimates of IA, IB and II fluid inclusions, calculated from the intersection of arsenopyrite geothermometer with the isochores.

Figure 12 – Schematic hydrothermal fluid model for the gold mineralization at the Cabeça de Pedra orebody, Lamego deposit. A) Metamorphic fluid (green arrows) carries cations during metamorphic devolatilization of carbonaceous phyllites. B) Fluid-rock interaction and leaching of cations of carbonaceous phyllites. C) Replacement-style of gold precipitation in BIF.
<table>
<thead>
<tr>
<th>System</th>
<th>Family</th>
<th>Host structure</th>
<th>Mineralogy</th>
<th>Host rock</th>
<th>Orientation</th>
<th>Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Parallel to axial plane / hinge zone</td>
<td>Smoky Qtz, Py, Apy, Au</td>
<td>BIF</td>
<td>15/60</td>
<td>Massive/extensional veins</td>
<td></td>
</tr>
<tr>
<td>V2a</td>
<td>S1-2</td>
<td>Smoky Qtz, Cb, Py, Apy, Ccp</td>
<td>Metabasalt</td>
<td>130/35</td>
<td>Pinch and swell, boudins</td>
<td></td>
</tr>
<tr>
<td>V2b</td>
<td>S0</td>
<td>Smoky Qtz, Py, Apy, Au</td>
<td>BIF</td>
<td>130/35</td>
<td>Massive/extensional veins</td>
<td></td>
</tr>
<tr>
<td>V2c</td>
<td>S1-2</td>
<td>Smoky Qtz, Cb, Py, Ccp</td>
<td>Carbonaceous phyllite along BIF contact</td>
<td>130/35</td>
<td>Pinch and swell, boudins</td>
<td></td>
</tr>
<tr>
<td>V2d</td>
<td>S1-2</td>
<td>Smoky Qtz, Cb, py</td>
<td>Micaceous phyllite</td>
<td>130/35</td>
<td>Pinch and swell, boudins</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>--</td>
<td>Milky quartz veins in smoky quartz</td>
<td>Smoky quartz</td>
<td>No preferential orientation</td>
<td>Comb, vein arrays, tension gashes</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Microthermometry data for V1, V2 and V3 veins of the Cabeça de Pedra Orebody, Lamego deposit. Mean and standard deviation (1σ) values are shown for N > 3 in the second line of each sample.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Vein Type</th>
<th>Fl Type</th>
<th>N</th>
<th>T_{mCO2}</th>
<th>T_e</th>
<th>T_{m ice}</th>
<th>T_{Clath}</th>
<th>T_{hCO2}</th>
<th>T_{tot L-V}</th>
<th>T_{Dec}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-3</td>
<td>V2</td>
<td>IA</td>
<td>4</td>
<td>-59.9 to -53.0</td>
<td>-35.8 to -31.2</td>
<td>-9.8 to -8.2</td>
<td>6.3 to 9.7</td>
<td>24.2 to 28.0</td>
<td>211.8 to 259.2</td>
<td>236.57 ± 21.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>-58.0 to -53.5</td>
<td>-32.3 to -28.3</td>
<td>-9.9 to -9</td>
<td>3.1 to 8.6</td>
<td>15.5 to 27.7</td>
<td>253.86 ± 366.5</td>
<td></td>
</tr>
<tr>
<td>9-7</td>
<td>V2</td>
<td>IA</td>
<td>4</td>
<td>-55.5 to -51.1</td>
<td>-35.5 to -30.4</td>
<td>-9.9 to -9.6</td>
<td>1.9 to 2.8</td>
<td>23.8 to 28.8</td>
<td>323.77 ± 1.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V2</td>
<td>IA</td>
<td>9</td>
<td>-58.5 to -52.1</td>
<td>-36.7 to -29.5</td>
<td>-9.9 to -7.6</td>
<td>2.4 to 5.3</td>
<td>21.8 to 29.3</td>
<td>174.86 ± 296.4</td>
<td></td>
</tr>
<tr>
<td>11-7</td>
<td>V2</td>
<td>IA</td>
<td>3</td>
<td>-58.7 to -51.6</td>
<td>-36.2 to -29.8</td>
<td>-9.2 to -8.6</td>
<td>3.1 to 4.9</td>
<td>5.5 to 9.3</td>
<td>283.75 ± 290.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V1</td>
<td>IA</td>
<td>10</td>
<td>-58.3 to -50.4</td>
<td>-38.4 to -31.6</td>
<td>-9.8 to -8.1</td>
<td>7.8 to 10</td>
<td>14.4 to 29</td>
<td>272.65 ± 43.45</td>
<td></td>
</tr>
<tr>
<td>9-7</td>
<td>V3</td>
<td>IB</td>
<td>7</td>
<td>-55.2 to -52.4</td>
<td>-34.7 to -29.6</td>
<td>-9.8 to -9.2</td>
<td>3.4 to 4.8</td>
<td>17.1 to 24.5</td>
<td>242.1 ± 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3</td>
<td>IB</td>
<td>12</td>
<td>-56.8 to -52.3</td>
<td>-35.1 to -31.3</td>
<td>-9.9 to -9.2</td>
<td>3.6 to 5.1</td>
<td>19.9 to 25.8</td>
<td>234.5 ± 260.3</td>
<td></td>
</tr>
<tr>
<td>11-3</td>
<td>V2</td>
<td>IB</td>
<td>2</td>
<td>-54.2 to -53.7</td>
<td>-32.4 to -31.2</td>
<td>-9.2 to -8.9</td>
<td>9 to 9.1</td>
<td>12.4 to 14.5</td>
<td>248.9 ± 250.4</td>
<td></td>
</tr>
<tr>
<td>11-5</td>
<td>V3</td>
<td>IB</td>
<td>2</td>
<td>-58.2 to -53.9</td>
<td>-32.5 to -31.4</td>
<td>-8.2 to -7.6</td>
<td>6.5 to 6.6</td>
<td>18.2 to 23.4</td>
<td>284.6 ± 293.7</td>
<td></td>
</tr>
<tr>
<td>9-6</td>
<td>V3</td>
<td>IB</td>
<td>9</td>
<td>-56.9 to -52.3</td>
<td>-34.6 to -31.9</td>
<td>-9.9 to -8.9</td>
<td>3 to 5.8</td>
<td>15.4 to 23.1</td>
<td>223.9 ± 319.6</td>
<td></td>
</tr>
<tr>
<td>9-7</td>
<td>V3</td>
<td>IB</td>
<td>9</td>
<td>-60.2 to -51.1</td>
<td>-36.6 to -26.9</td>
<td>-9.8 to -9.2</td>
<td>4.3 to 5.7</td>
<td>13.6 to 21.9</td>
<td>264.7 ± 295.5</td>
<td></td>
</tr>
<tr>
<td>11-2</td>
<td>V3</td>
<td>IB</td>
<td>8</td>
<td>-57.8 to -52.3</td>
<td>-33.2 to -29.8</td>
<td>-9.9 to -9.2</td>
<td>1.6 to 5.3</td>
<td>14.2 to 25.8</td>
<td>248.9 ± 269.3</td>
<td></td>
</tr>
<tr>
<td>11-5</td>
<td>V3</td>
<td>IB</td>
<td>4</td>
<td>-58.3 to -55.7</td>
<td>-33.3 to -28.2</td>
<td>-9.2 to -8.3</td>
<td>6.8 to 9.5</td>
<td>18.3 to 28.8</td>
<td>228.6 ± 274.9</td>
<td></td>
</tr>
<tr>
<td>9-6</td>
<td>V3</td>
<td>IB</td>
<td>9</td>
<td>-60.2 to -52.3</td>
<td>-33.5 to -29.7</td>
<td>-10.1 to -9.4</td>
<td>3.6 to 5.8</td>
<td>17.8 to 25.2</td>
<td>233.4 ± 331.2</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: T_{mCO2} – melting temperature of CO$_2$, T_{Clath} – clatrate melting temperature, T_{hCO2} – CO$_2$ homogenization temperature with transition from liquid to gas, $T_{h tot L-V}$ – total homogenization temperature from liquid to vapour phase, T_{Dec} – decrepitation temperature, T_e – eutectic temperature, T_{mice} – ice final melting temperature. N – measurement value.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Vein Type</th>
<th>Fl Type</th>
<th>N</th>
<th>Eq. Wt% NaCl</th>
<th>Bulk XH2O</th>
<th>Bulk XCO2</th>
<th>Bulk XNaCl</th>
<th>Bulk XCH4</th>
<th>Bulk density</th>
<th>Bulk volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-3</td>
<td>V2</td>
<td>IA</td>
<td>4</td>
<td>0.62 to 6.87</td>
<td>0.03 to 0.032</td>
<td>0.02 to 0.021</td>
<td>0 to 0.008</td>
<td>0.966 to 1,02</td>
<td>19,434 to 19,58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>6</td>
<td>12,15 to 13,32</td>
<td>0.07 ± 0.05</td>
<td>0.02 ± 0.01</td>
<td>0.004 ± 0.006</td>
<td>1 ± 0.04</td>
<td>20,91 to 2,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-7</td>
<td>V2</td>
<td>IA</td>
<td>4</td>
<td>12,15 to 13,32</td>
<td>0.028 ± 0.03</td>
<td>0.04 ± 0.04</td>
<td>1.03 to 1,05</td>
<td>19,47 to 19,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>6</td>
<td>12,15 to 13,32</td>
<td>0.028 ± 0.03</td>
<td>0.04 ± 0.04</td>
<td>1.05 ± 0.007</td>
<td>19,51 ± 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-2</td>
<td>V2</td>
<td>IA</td>
<td>9</td>
<td>8,50 to 12,68</td>
<td>0.02 to 0.07</td>
<td>0.02 to 0.04</td>
<td>0 to 0.1</td>
<td>1.01 to 1,04</td>
<td>19,39 to 21,05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>6</td>
<td>6,86 ± 3,19</td>
<td>0.07 ± 0.05</td>
<td>0.02 ± 0.01</td>
<td>0.004 ± 0.006</td>
<td>1 ± 0.04</td>
<td>20,91 to 2,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-8</td>
<td>V1</td>
<td>IA</td>
<td>10</td>
<td>0.02 to 4.25</td>
<td>0.037 ± 0.021</td>
<td>0.005 ± 0.004</td>
<td>0.002 ± 0.005</td>
<td>0.97 ± 0.019</td>
<td>19,75 ± 0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>7</td>
<td>9,28 to 11,33</td>
<td>0.036 ± 0.017</td>
<td>0.03 ± 0.02</td>
<td>0.004 ± 0.008</td>
<td>1.03 ± 0.018</td>
<td>20,24 ± 0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-2</td>
<td>V3</td>
<td>IB</td>
<td>12</td>
<td>8,81 to 11,05</td>
<td>0.013 to 0.034</td>
<td>0.028 to 0.036</td>
<td>0.004</td>
<td>1.03 ± 1,058</td>
<td>18,71 to 19,45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>8</td>
<td>9,81 ± 0,76</td>
<td>0.018 ± 0.007</td>
<td>0.031 ± 0.002</td>
<td>0.01 ± 0.008</td>
<td>0.02 ± 0.006</td>
<td>-</td>
<td>19,38 to 19,41</td>
<td></td>
</tr>
<tr>
<td>11-3</td>
<td>V3</td>
<td>IB</td>
<td>2</td>
<td>1,80 to 2,00</td>
<td>0.003 ± 0.007</td>
<td>0.005 to 0.006</td>
<td>-</td>
<td>0.98 ± 0.99</td>
<td>19,38 to 19,41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>4</td>
<td>6,37 ± 3,41</td>
<td>0.02 to 0.07</td>
<td>0.02 to 0.04</td>
<td>0 to 0.008</td>
<td>1.017 ± 0,008</td>
<td>19,38 to 19,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-7</td>
<td>V3</td>
<td>IB</td>
<td>9</td>
<td>7,30 to 11,88</td>
<td>0.035 ± 0.014</td>
<td>0.03 ± 0.001</td>
<td>0.031 ± 0.005</td>
<td>-</td>
<td>1,041 ± 0,019</td>
<td>19,33 ± 0.65</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>9</td>
<td>9,86 ± 10,03</td>
<td>0.035 ± 0.014</td>
<td>0.03 ± 0.001</td>
<td>0.031 ± 0.005</td>
<td>-</td>
<td>1,041 ± 0,019</td>
<td>19,33 ± 0.65</td>
<td></td>
</tr>
<tr>
<td>11-2</td>
<td>V3</td>
<td>I1</td>
<td>8</td>
<td>8,50 to 13,69</td>
<td>0.015 to 0.032</td>
<td>0.023 to 0.045</td>
<td>-</td>
<td>0.96 ± 1,07</td>
<td>18,77 ± 24,52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>4</td>
<td>10,02 ± 2,20</td>
<td>0.053 ± 0.055</td>
<td>0.031 ± 0.008</td>
<td>-</td>
<td>1.029 ± 0,03</td>
<td>20,17 ± 1,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-5</td>
<td>V3</td>
<td>II</td>
<td>4</td>
<td>1,02 to 6,02</td>
<td>0.043 ± 0.006</td>
<td>0.003 to 0.018</td>
<td>0 to 0.017</td>
<td>0.95 ± 1,004</td>
<td>20,10 to 21,29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>9</td>
<td>7,30 to 11,05</td>
<td>0.013 to 0.076</td>
<td>0.024 to 0.035</td>
<td>0 to 0.017</td>
<td>1.008 ± 1,057</td>
<td>18,69 to 20,87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Microthermometric data of aqueous-carbonic inclusions (types IA, IB and II).
Table 4
Summary of LA-ICP-MS analyses of FI in the Cabeça de Pedra orebody. Individual element concentrations are in ppm, calculated using the salinity of the fluid inclusions.

| Sample | FI Type | N FI | Salinity (wt.%) | Na | K | Ca | Mg | Mn | Fe | Cu | Zn | Sr | Ag | Ba | Pb | Li | N FI | As | Ag | Sb | Au |
|--------|---------|------|-----------------|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 9-8 | IA | 10 | 2.43 | 9656| 5656| 1984| 598 | 32 | 845 | 151 | 321 | 17 | 3 | 9 | 40 | - | 13 | 37 | 1 | 12 | - |
| | IA | 9 | 2.43 | 9656| 6741| 1573| 520 | - | 416 | 40 | 302 | 13 | 2 | 20 | 29 | - | 14 | 46 | - | 22 | 3 |
| 11-3 | IA | 6 | 3.67 | 14571| 10249| 1917| 432 | 55 | 1178| 174 | 359 | 46 | 2 | 74 | 86 | - | 10 | 183 | 1 | 43 | - |
| | IA | 7 | 3.67 | 14571| 7078 | 4324| 434 | 135 | 1934| - | 575 | 31 | 1 | 15 | 45 | - | 12 | 133 | 1 | 43 | 2 |
| 11-7 | IA | 6 | 10.2 | 40465| 21164| 4621| 5359| - | 5385| - | 3783| 42 | - | 53 | 59 | - | - | - | - | - | - |
| | IA | 9 | 10.2 | 40465| 21811| 5718| 4457| - | 4888| - | 3252| 65 | - | 95 | 179 | - | - | - | - | - |
| 11-7 | IA | 11 | 10.2 | 40465| 22923| 5730| 4018| - | 3212| 818 | 3482| 47 | 20 | 36 | 179 | - | - | - | - | - | - |
| | IA | 7 | 10.2 | 40465| 23114| 8019| 431 | - | 5940| 433 | 2179| 53 | - | 29 | 267 | - | - | - | - | - | - |
| 11-2 | IA | 7 | 9.81 | 38914| 20541| 8262| 4682| 207 | 1026| 446 | 2433| 336 | 5 | 191 | 785 | - | 13 | 975 | - | 372 | - |
| | IA | 8 | 9.81 | 38914| 15735| 4802| 12994| 534 | 920 | 796 | 2597| 103 | 4 | 195 | 236 | - | 7 | - | - | 254 | - |
| | IA | 6 | 9.81 | 38914| 21734| 12729| 1916| 230 | 74 | 350 | 1316| 246 | 2 | 60 | 257 | - | - | - | - | - |

Table

Note: - = below detection limit or not measured.
Table 5
Synthesis of vein characteristics in the Carvoaria Velha deposit. From Ribeiro et al. (2015)

<table>
<thead>
<tr>
<th>Type</th>
<th>Mineralogy</th>
<th>Thick-ness</th>
<th>Host rock</th>
<th>Geometry</th>
<th>Orientation</th>
<th>Distribution and nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to mineralization V1</td>
<td>Quartz – ankerite – sulphides/sulphosalts – gold veins</td>
<td>1–600 cm</td>
<td>Metagraywacke, schist and phyllite</td>
<td>● Lenticular in schistosity</td>
<td>118 / 70</td>
<td>● Parallel to schistosity Sn *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● Milimetric to centimetric folded veins inlets</td>
<td></td>
<td>● Folded with axial plane foliation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● Pinch-and-swell</td>
<td></td>
<td>● Shear veins</td>
</tr>
<tr>
<td>Late to mineralized veins V2</td>
<td>Quartz – ankerite-pyrite veins</td>
<td>2–300 cm</td>
<td>Metagraywacke, schist and phyllite</td>
<td>● Lenticular centimetric veins</td>
<td>286 / 33</td>
<td>● Parallel to schistosity Sn + 1 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● Planar to fracture arrays, brecciated</td>
<td></td>
<td>● Extensional veins</td>
</tr>
<tr>
<td></td>
<td>Quartz – ankerite veins</td>
<td>1–20 cm</td>
<td>Metagraywacke, schist and phyllite</td>
<td>● Irregular to stockwork</td>
<td>054 / 84</td>
<td>● Parallel to schistosity Sn + 3 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● Fracture veins</td>
</tr>
<tr>
<td></td>
<td>Quartz – calcite veins</td>
<td>1–15 cm</td>
<td>Metamafic dykes and sills</td>
<td></td>
<td>Irregular</td>
<td>● Extensional veins</td>
</tr>
</tbody>
</table>

Note: * indicates a particular characteristic or property.
Table

Table 6
Summary of LA-ICP-MS analyses of FI in the Carvoaria Velha, Côrrego do Sitio deposit. Individual element concentrations are in ppm, calculated using the salinity of the fluid inclusions.

<table>
<thead>
<tr>
<th>Sample</th>
<th>FI Type</th>
<th>N FI</th>
<th>Salinity (wt.%</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Mn</th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
<th>Sr</th>
<th>Ag</th>
<th>Ba</th>
<th>Pb</th>
<th>Li</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.2</td>
<td>IA</td>
<td>10</td>
<td>8.6</td>
<td>34099</td>
<td>20626</td>
<td>4974</td>
<td>1665</td>
<td>1027</td>
<td>4312</td>
<td>583</td>
<td>435</td>
<td>30</td>
<td>11</td>
<td>157</td>
<td>280</td>
<td>-</td>
</tr>
<tr>
<td>195.7</td>
<td>IA</td>
<td>4</td>
<td>5.8</td>
<td>22997</td>
<td>15460</td>
<td>3169</td>
<td>330</td>
<td>-</td>
<td>1859</td>
<td>1311</td>
<td>376</td>
<td>55</td>
<td>38</td>
<td>186</td>
<td>213</td>
<td>-</td>
</tr>
<tr>
<td>130.0</td>
<td>IB</td>
<td>8</td>
<td>4.5</td>
<td>17843</td>
<td>12153</td>
<td>1990</td>
<td>954</td>
<td>20</td>
<td>1866</td>
<td>230</td>
<td>390</td>
<td>79</td>
<td>8</td>
<td>49</td>
<td>103</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>5</td>
<td>4.5</td>
<td>17843</td>
<td>11300</td>
<td>3588</td>
<td>892</td>
<td>26</td>
<td>1362</td>
<td>314</td>
<td>214</td>
<td>59</td>
<td>9</td>
<td>35</td>
<td>44</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>8</td>
<td>4.5</td>
<td>17843</td>
<td>12681</td>
<td>1609</td>
<td>795</td>
<td>71</td>
<td>1628</td>
<td>465</td>
<td>449</td>
<td>38</td>
<td>1</td>
<td>28</td>
<td>78</td>
<td>-</td>
</tr>
<tr>
<td>195.7</td>
<td>IB</td>
<td>8</td>
<td>8.5</td>
<td>33703</td>
<td>23195</td>
<td>3753</td>
<td>1473</td>
<td>1105</td>
<td>1763</td>
<td>795</td>
<td>804</td>
<td>191</td>
<td>57</td>
<td>319</td>
<td>247</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>9</td>
<td>8.5</td>
<td>33703</td>
<td>19866</td>
<td>1756</td>
<td>4709</td>
<td>167</td>
<td>5180</td>
<td>502</td>
<td>782</td>
<td>180</td>
<td>45</td>
<td>241</td>
<td>275</td>
<td>-</td>
</tr>
<tr>
<td>160.0</td>
<td>II</td>
<td>6</td>
<td>15</td>
<td>59475</td>
<td>24271</td>
<td>20736</td>
<td>7504</td>
<td>2620</td>
<td>2249</td>
<td>3421</td>
<td>430</td>
<td>545</td>
<td>17</td>
<td>404</td>
<td>98</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>7</td>
<td>15</td>
<td>59475</td>
<td>43444</td>
<td>-</td>
<td>10018</td>
<td>4519</td>
<td>-</td>
<td>2344</td>
<td>299</td>
<td>306</td>
<td>79</td>
<td>368</td>
<td>108</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>FI Type</th>
<th>N FI</th>
<th>Salinity (wt.%</th>
<th>As</th>
<th>Ag</th>
<th>Sb</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.2</td>
<td>IA</td>
<td>10</td>
<td>8.6</td>
<td>141,6</td>
<td>5,1</td>
<td>1851,1</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>IA</td>
<td>8</td>
<td>8.6</td>
<td>36,1</td>
<td>6,5</td>
<td>975,4</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>IA</td>
<td>5</td>
<td>8.6</td>
<td>-</td>
<td>6,0</td>
<td>6888,1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IA</td>
<td>2</td>
<td>8.6</td>
<td>575,7</td>
<td>18,3</td>
<td>12407,9</td>
<td>7,5</td>
</tr>
<tr>
<td></td>
<td>IA</td>
<td>8</td>
<td>8.6</td>
<td>790,0</td>
<td>23,3</td>
<td>7311,5</td>
<td>4,3</td>
</tr>
<tr>
<td>130.0</td>
<td>IB</td>
<td>7</td>
<td>4,5</td>
<td>45,2</td>
<td>10,9</td>
<td>82,9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>6</td>
<td>4,5</td>
<td>162,8</td>
<td>8,4</td>
<td>3172,7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>6</td>
<td>4,5</td>
<td>67,3</td>
<td>15,1</td>
<td>102,8</td>
<td>-</td>
</tr>
<tr>
<td>195.7</td>
<td>IB</td>
<td>4</td>
<td>8,5</td>
<td>1057,4</td>
<td>50,3</td>
<td>3292,8</td>
<td>85,8</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>4</td>
<td>8,5</td>
<td>2474,0</td>
<td>38,9</td>
<td>2866,0</td>
<td>47,4</td>
</tr>
</tbody>
</table>

Note: - = below detection limit or not measured.
Table 7
Composition data of arsenopyrite crystals from mineralized samples of the Cabeça de Pedra orebody, obtained from electron microprobe analysis.

<table>
<thead>
<tr>
<th>% wt</th>
<th>As</th>
<th>Fe</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43,11</td>
<td>35,19</td>
<td>22,42</td>
<td>100,72</td>
</tr>
<tr>
<td></td>
<td>42,95</td>
<td>35,19</td>
<td>22,53</td>
<td>100,67</td>
</tr>
<tr>
<td></td>
<td>43,25</td>
<td>35,04</td>
<td>22,33</td>
<td>100,62</td>
</tr>
<tr>
<td></td>
<td>43,15</td>
<td>34,72</td>
<td>21,95</td>
<td>99,82</td>
</tr>
<tr>
<td></td>
<td>43,88</td>
<td>35,59</td>
<td>22,10</td>
<td>101,57</td>
</tr>
<tr>
<td></td>
<td>43,35</td>
<td>35,49</td>
<td>22,42</td>
<td>101,26</td>
</tr>
<tr>
<td></td>
<td>41,33</td>
<td>35,81</td>
<td>22,91</td>
<td>100,05</td>
</tr>
<tr>
<td></td>
<td>42,92</td>
<td>35,37</td>
<td>22,11</td>
<td>100,40</td>
</tr>
<tr>
<td></td>
<td>41,72</td>
<td>35,71</td>
<td>23,04</td>
<td>100,46</td>
</tr>
<tr>
<td></td>
<td>40,22</td>
<td>35,34</td>
<td>23,55</td>
<td>99,11</td>
</tr>
<tr>
<td></td>
<td>42,59</td>
<td>35,34</td>
<td>22,54</td>
<td>100,47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100,72</th>
<th>100,67</th>
<th>100,62</th>
<th>99,82</th>
<th>101,57</th>
<th>101,26</th>
<th>100,05</th>
<th>100,40</th>
<th>100,46</th>
<th>99,11</th>
<th>100,47</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>% at</th>
<th>As</th>
<th>Fe</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30,20</td>
<td>33,06</td>
<td>36,74</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>30,05</td>
<td>33,05</td>
<td>36,90</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>30,34</td>
<td>33,00</td>
<td>36,67</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>30,58</td>
<td>33,02</td>
<td>36,40</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>30,61</td>
<td>33,32</td>
<td>36,07</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>30,22</td>
<td>33,21</td>
<td>36,58</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>28,90</td>
<td>33,61</td>
<td>37,49</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>30,20</td>
<td>33,40</td>
<td>36,41</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>29,07</td>
<td>33,38</td>
<td>37,55</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>28,17</td>
<td>33,22</td>
<td>38,60</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td>29,83</td>
<td>33,23</td>
<td>36,94</td>
<td>100,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100,00</th>
</tr>
</thead>
</table>

Average
Figure

(A) Type IA

(B) Type IB

(C) Type II

Salinity (eq. wt% NaCl)

T depletation (°C)
Figure

Click here to download high resolution image
Submission Checklist Letter

Subject: Submission of a manuscript for evaluation
Belo Horizonte, May 07th 2015

➢ Name designated as the corresponding author, along with their:
 ✓ E-mail address.
 ✓ Full postal address.
 ✓ Telephone and fax numbers.
 ✓ Keywords and/or classification codes, if required.

➢ Potential Referees.
 ✓ Names and addresses are present.

➢ Online submission or submission by e-mail text files are:
 ✓ Word processing format.
 ✓ Spell checked.

➢ Graphics and image:
 ✓ 12 images are present and separated in 12 files.
 ✓ In high-resolution.
 ✓ JPEG format.
 ✓ Have been uploaded/attached.
 ✓ All figure captions are available.

➢ Tables:
 ✓ 7 tables are present in 7 different files;
 ✓ Include title and description.
 ✓ Have been uploaded/attached

➢ Further considerations:
 ✓ Spelled checked.
 ✓ References are in the correct format for the journal and used the EndNote® software.
 ✓ All references mentioned in the Reference list must be cited in the text, and vice versa.
 ✓ Color figures should be clearly marked as being intended for color reproduction on the Web (free of charge) and in print or to be reproduced in color on the Web (free of charge) and in black and white in print. If color is only required on the Web, black and white versions of the figures must also be supplied for printing purposes.

Thank you for considering this submission. Kind regards

Milton Julian Morales Peña
Conflict of Interest Letter

Subject: Submission of a manuscript for evaluation

Belo Horizonte, May 07th 2015

The following authors, Milton Julian Morales Peña, Rosaline Cristina Figueiredo e Silva, Lydia Maria Lobato and Sylvio Dutra Gomes are researchers associated with the Geology department, Universidade Federal de Minas. The author David A. Banks is researcher associated with the School of Earth and Environment, University of Leeds. We hereby declare that:

i. We are not AngloGold Ashanti Córrego do Sítio S/A employees.

ii. We have not been paid for the production and publication of this work.

iii. We do not have shares of the company.

iv. The publication of this article will not result in any financial gain for the authors.

Furthermore, the author Caio C. C. O. Gomes is employee of the company AngloGold Ashanti Corrégo do Sítio Mineração S/A. However, the author declare thar:

v. He was not paid for the production and publication of this work.

vi. The publication of this article will not result in financial gain for either one, or serve as a factor for promotion to senior posts in the company.

For the exposed above, all authors declare to have no conflict of interest in the publication of this work.

Thank you for considering this submission. Kind regards

Milton Julian Morales Peña