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Abstract

The framework for sensitivity analysis in discrete multi-criteria decision

analysis developed by Rios Insua and French allows simultaneous variation

of all parameters and applies to many paradigms for decision analysis. How-

ever its computational load may inhibit use, particularly in the context of a

decision conference where results are required in near real time. In order to

improve on the current algorithm and its implementation, we investigate, on

the one hand, an opportunistic approach aimed at reducing the number of

optimisation problems solved in the original framework and, on the other, an

alternative framework based on distance analysis. Computational results on

linear and bilinear models are reported.

KEYWORDS: multi-criteria decision analysis, sensitivity analysis

1 Introduction

Multi-criteria decision models rely on two forms of numeric input: objective data
defining the physical aspects of the alternatives, states and consequences of the
decision model, and judgemental data relating to the decision-maker(DM)’s beliefs
and preferences. In this context, sensitivity analysis allows exploration of the effects
of variations in judgemental input on the ranking of alternatives. However it also
plays the role of an aid to the elicitation process of decision analysis by focussing
discussion and reflection on the judgemental data, (French, 1992).

Rios Insua and French (1991) have developed a conceptual framework for sen-
sitivity analysis in multi-criteria decision making with a discrete set of alternatives
which allows simultaneous variation of judgemental data and which applies to many
paradigms for decision analysis. Extension of this framework to the case of a con-
tinous set of alternatives is discussed in (Rios Insua et al, 1997) and its description
from a statistical decision theory perspective is given in (French, 1995; Rios Insua
et al, 2000).

The framework is largely based on mathematical programming and involves solv-
ing a potentially large number of mathematical programmes of various types, some
of which are nonlinear and nonconvex. Consequently the computational load may
inhibit use of the framework particularly when decision analyses are performed in
the context of decision conferences, where it is desirable for sensitivity analyses to
be conducted in near real time, preferably on a PC. In principle variations in the ob-
jective data could also be handled within the framework but our principal concern is
with judgemental data, which is inherently more uncertain and whose examination
aids problem understanding.

An alternative approach to sensitivity analysis in the multi-criteria decision mak-
ing context is through simulation (see, fror example, Butler et al, 1997). Simulation
approaches may also suffer computational problems if constraints on the values of
the judgemental data of the form envisaged in (Rios Insua, 1990) are present due
to the difficulty of sampling in continuous spaces defined by general constraints
(Rinnooy Kan and Timmer, 1986).

The present work is an attempt to address the question of computational load
in the Rios Insua-French framework through two avenues:
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1. Given that many of the problems in the filtering process of the original algo-
rithm are existence problems rather than optimisation problems, use an op-
portunistic approach to exploit this observation and reduce the overall number
of optimisation problems to be solved.

2. Modify the basic algorithm for sensitivity analysis given in (Rios Insua, 1990)
to concentrate on distance analysis, through which immediate contenders for
optimality are detected.

Note that a parallel processing approach to handling the computational load has
been investigated previously, (Salhi et al, 1995). Results with parallel implementa-
tions will be discussed.

This paper is organised as follows. Section 2 recalls the concept of the original
algorithm for sensitivity analysis. Section 3 discusses implementations of the original
framework, including parallel implementations which were considered in the past
as an obvious way of handling computational load. In Section 4 the alternative
framework is given. Section 5 discusses an opportunistic approach to reducing the
number of optimisation problems. Section 6 is a conclusion and discussion of the
experimental results obtained with the two approaches.

2 The Original Algorithm Concept

As perceived in (Rios Insua, 1990), sensitivity analysis is a crucial step of the decision
making iterative process. This step filters the alternatives through four phases:

• The dominance (D) phase;

• The potential optimality (PO) phase;

• The adjacent potential optimality (APO) phase;

• The distance analysis (DA) phase.

A detailed algorithm for sensitivity analysis can be found in (Proll et al, 1993).
It is phrased in terms of two major problem descriptors: a function ψj(ω) which
evaluates alternative j for a given vector, ω, of judgemental data values and a set S
delimiting the possible values of ω. S may comprise such conditions as monotonicity
of utilities, coherence of probabilities and normalisation of weights, in addition to
the decision maker’s judgements on the likely ranges of values of the various param-
eters. The questions posed in the above phases are all formulated as constrained
optimisation problems. The classes of mathematical programme requiring solution
vary between phases and depend on the form of the evaluation function, ψj(ω), for
the decision model adopted, the nature of the set S and, in the distance analysis
phase, on the metric chosen. Given an initial estimate, ω0, of ω elicited by the
decision analyst, a current best alternative can be identified. The first three phases
above identify the competitors of this alternative, i.e. alternatives which may be-
come optimal as ω changes away from ω0. The distance analysis phase identifies, for
each metric, the nearest competitor and provides an index of the sensitivity of the
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decision, thus giving a focus to further discussion and elicitation. Suppose p is the
number of alternatives under consideration and assume that the ranking of these
alternatives at ω0 is strict, then, in the worst case, the D phase requires solution of
p(p− 1)/2 problems, the PO and APO phases require solution of (p− 1) problems
and the DA phase requires the solution of p problems for each metric. Each of these
problems is of size proportional to n, the number of judgemental parameters. If the
initial ranking is not strict, additional problems may need to be solved in the D
phase.

The algorithm outlined above is embedded naturally in a cycle of modelling,
optimisation and sensitivity analysis until the model is requisite (Phillips, 1984).
This implies that the mathematical programmes may need to be generated and
solved several times. Thus implementation of the Rios Insua framework requires
care as the computational load is potentially heavy.

2.1 Optimisation Issues

In the linear model, all mathematical programmes are linear (or transformable to
linear) with the exception of the minimum L2 distance problem, which is a convex
quadratic programme, and the maximum L2 and L∞ distance problems, which are
nonconvex. For the bilinear model, the formulations in (Rios Insua, 1990) yield
nonlinear and, in general, nonconvex programmes for all problems except the max-
imum L∞ distance problem which is solvable by linear programming, (Proll and
Salhi, 1994). For the general model, all problems are nonlinear programmes and are
potentially nonconvex. Thus many of the problems which we have to solve may have
multiple local optima. Use of a local optimiser only could convey a false impression
of insensitivity. For example, consider the bicriteria decision problem given in Table
1 the alternatives of which are described by their component utilities.

States of Nature
Alternative θ1 θ2

a1 (1,1) (1,1)
a2 (2,1) (1,0)
a3 (5/2,3/2) (3/2,1/2)
a4 (0,2) (0,0)
a5 (1,1) (2,0)
a6 (71/36,35/36) (35/36,35/36)
a7 (73/72,73/72) (73/72,73/72)

Table 1: A Bicriteria Decision Problem

Let the probability of states θ1, θ2 be p1, p2 respectively and let the weights
assigned to the two criteria be λ1, λ2 respectively. Then we know that:

λ1 + λ2 = 1

p1 + p2 = 1

λi, pi ≥ 0
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Letting

λ1 = λ, λ2 = 1 − λ

p1 = p, p2 = 1 − p

the evaluation of an alternative described by ((a,c),(b,d)) is

pλ(a− c− b+ d) + (c− d)p+ (b− d)λ+ d

Therefore

ψ1(λ, p) = 1
ψ2(λ, p) = λ+ p
ψ3(λ, p) = λ+ p+ 1/2
ψ4(λ, p) = −2pλ+ 2p
ψ5(λ, p) = −2pλ+ p+ 2λ
ψ6(λ, p) = pλ+ 35/36
ψ7(λ, p) = 73/72

Suppose that we have been able to elicit the following judgements from the DM,

a2 � a1

a1 � a3

a4 � a5

Then we deduce that:

ψ2(λ, p) ≤ ψ1(λ, p) =⇒ p+ λ ≤ 1
ψ1(λ, p) ≤ ψ3(λ, p) =⇒ p+ λ ≥ 1/2
ψ4(λ, p) ≤ ψ5(λ, p) =⇒ p ≤ 2λ

To check whether a6 dominates a7, we have to solve:

min pλ− 3/72
s.t. p+ λ ≤ 1

p+ λ ≥ 1/2
p− 2λ ≤ 0
0 ≤ λ, p ≤ 1

This problem has two local optimal solutions at (1/2, 0) and (1/6, 2/6) with
values -3/72 and 1/72 respectively. If the optimisation routine returns the first of
these, we conclude that a6 does not dominate a7; if it returns the second, we conclude
that a6 dominates a7. Clearly the filtering phase may then result in different sets of
alternatives being submitted to the distance analysis phase, and hence to differing
values of the sensitivity index.

Thus to provide reliable sensitivity information we need to provide global opti-
misation routines. It is important also to note that, of necessity, we have to solve
the problems generated by the sensitivity analysis framework unseen. Further, al-
though methods are available for some classes of problem of interest to us, e.g. the
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maximum L2 distance problem which is a concave quadratic programme, (Pardalos
and Rosen, 1987), it is impractical from a software maintenance viewpoint to im-
plement a different algorithm for each of the many classes of problem which arise.
Ideally we need a robust, quick general-purpose method. Stochastic methods for
constrained global optimisation (Schoen, 1991) would appear to offer the best hope.
However, despite the development of many such methods, experimental evidence of
their effectiveness is patchy.

3 Prototype Implementations

3.1 Sequential implementation

Rios Insua (1990) constructed a prototype implementation in Fortran to test the
framework for each of three types of decision model:

1. Linear, in which ψj(ω) is linear and S is defined by linear constraints. Such
models may arise, for example, in multi-attribute value methods when there
is imprecision in the weights.

2. Bilinear, in which ψj(ω) is bilinear and S is defined by linear constraints. Such
models may arise, for example, in multi-attribute value methods when there
is imprecision in both the weights and the scores.

3. General, in which ψj(ω) and S have general form. Such models may arise,
for example, from decision trees, influence diagrams and multiattribute utility
models with imprecision in both utilities and probabilities.

The programme ran on an Amdahl 5860 mainframe and required additional
code for each specific problem instance. Distance analysis was supported in any
Lp metric. All constituent mathematical programmes were formulated in a smooth
manner, (Fletcher, 1987), and were solved using optimisation routines from Chapter
E of the NAG library. Only local optima were sought for the nonconvex programmes.

As an indication of the computational load imposed by sensitivity analysis, Rios
Insua (1990) quotes an instance of a linear model involving 8 alternatives and 10
criteria which required the solution of 54 linear programmes, 4 convex quadratic pro-
grammes, 1 nonconvex quadratic programme and 1 nonconvex nonlinear programme
with distance analysis performed in the L1, L2, and L∞ metrics.

Our development of the prototype implementation addressed the question of
whether the Rios Insua-French framework is viable within the environment of a
decision conference, i.e.

a) can the computational load be reduced sufficiently to allow analysis of models
of realistic size in near real-time on a PC?

b) can software implementing the framework be made sufficiently general that
no on-site coding is required by the decision analyst and that communication with
commercially available decision aiding packages is possible?

c) can sufficiently robust optimisation routines be developed to enable the sen-
sitivity analysis software to be reliable?
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Issues a) and c) are connected and have been approached from a number of
directions including exploitation of parallelism within the framework, choice of lo-
cal and global optimisation algorithms for particular subproblems and alternative
formulations of such subproblems. Issue c) also is important since the sensitivity
analysis algorithm, and hence the optimisation problems underpinning it, appears
as a ‘black box’ to the decision analyst. Issue b) implies the construction of problem
generators for the various subproblems arising in the framework and also depends
on the choice of formulation of such problems.

Our implementation effort has been concentrated on linear and bilinear models
because they are more likely to arise in a decision conference and because they offer
the best hope of successful implementation. For such models, issue b) is readily
answered in the affirmative as all problem data can be expressed in matrix form.
However, much of what is reported here, with the exception of the global optimisa-
tion issue, is applicable to the general model. Distance analysis is restricted to the
L1, L2, and L∞ metrics.

3.2 Parallel implementation

The general algorithm for sensitivity analysis is inherently sequential due to the
precedence relationships between the phases. However, parallelism is present within
each phase as each requires the solution of a set of independent problems, one for
each (or each pair of) alternative. Given the potentially large number of mathemat-
ical programmes to be solved, large grain parallelisation, in which each optimisation
is considered as a single task, seems appropriate. We adopt the processor farm ap-
proach (Fox et al, 1988) on a network of processor nodes. Individual mathematical
programmes arising at the level of each phase are farmed out to individual nodes by
a master process which resides on the root node. The worker process is replicated
on each node of the network. The master process generates the problems, trans-
mits them to the network and collects and displays the results. The worker process
communicates with the master and solves mathematical programmes. Three imple-
mentations of this approach have been constructed on differing platforms, a Meiko
Computing Surface using CSTools, a PC enhanced with a transputer board using
3L Parallel Fortran and a network of Sun workstations using PVM. Fuller details of
the implementations are given in (Proll et al, 1993a, 1993b) and (Salhi et al, 1995).
In all cases, good speedup was achieved within each phase, but the overall speedup
on a 5 node network was approximately 2.5 for linear models and 3 for bilinear mod-
els. Essentially, this is due to the high ratio of communication time to computation
time as the mathematical programmes are small and relatively easy to solve and
also because of the precedence relationships between phases. The parallel approach
may be more fruitful for general models in which the mathematical programmes are
more difficult to solve.
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4 Reducing the Number of Optimisation Prob-

lems

The principal concern in the computational load is the number and difficulty of the
mathematical programmes which need to be solved. In this section, we concentrate
on reducing the number of problems which need to be solved in the D and PO phases
and in one component of the DA phase. In the D phase we pose the question : Does
alternative j dominate alternative k? via the mathematical programme:

min ψj(ω) − ψk(ω) (1)

s.t. ω ∈ S

We need to solve up to p(p − 1)/2 such problems, where p is the number of
alternatives, if the ordering is strict and possibly more if it is not. In all other
phases the number of problems to be solved is linear in p, e.g. in the potential
optimality phase, we solve for each non-dominated alternative j, the mathematical
programme:

min max{ψj(ω) − ψk(ω) : k 6= j} (2)

s.t. ω ∈ S

However we may observe that

• alternative j cannot be dominated by alternative k if there exists ω ∈ S such
that ψj(ω) > ψk(ω);

• alternative j is potentially optimal if there exists ω ∈ S such that j =
argmaxk ψk(ω).

Thus observation of points at which such conditions occur removes the need to
solve the corresponding optimisation problem. How do we generate a set of test
points? Our solution is an opportunistic one, i.e. each time we obtain the optimal
solution to a dominance problem, we test the above conditions at that point for
each (pair of) alternative(s) for which the dominance/potential optimality position
is not yet resolved. Random sampling is an obvious alternative but is not used for
the following reasons:

• generating random points in a convex polytope takes a non-trivial amount of
time, generating random points in a nonconvex set even more so;

• initial tests showed that the sample size required to give similar results to the
opportunistic strategy made random sampling uncompetitive in time;

• dominated and non-potentially optimal alternatives cannot be identified by
observation at a point so the solution of some optimisation problems is still
likely to be required.
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Table 2 below shows the success of this strategy on a set of linear and bilinear
problems; problems 1 - 6 are linear, problems 7 - 11 are bilinear. Problems 1, 2 and
5 arise from decision conferences on radiation protection and computer selection
conducted by Simon French. Problems 3, 8, 10 and 11 are taken from the flood-
plain management, portfolio selection and road selection cases in (Rios Insua, 1990).
Problem 4 is taken from (Phillips, 1988). Problem 7 is taken from (French and Rios
Insua, 1989). Problem 9 arises in the location of power plants (Barda et al, 1990).

Original Version Opportunistic Strategy
Problem D Problems PO Problems D Problems PO Problems

1 3 1 3 0
2 20 4 5 0
3 17 5 8 0
4 5 1 5 0
5 17 5 7 0
6 26 6 10 0
7 3 2 1 1
8 8 3 5 0
9 10 3 5 2
10 21 6 2 4
11 25 6 7 4

Total 153 42 58 11

Table 2: Effect of the Opportunistic Strategy on the Number of Optimisations
Performed

Thus, as Table 2 shows, the opportunistic strategy affords a substantial reduc-
tion in the number of optimisation problems solved. This is achieved at negligible
additional cost, requiring only the evaluation function for each non-dominated al-
ternative to be computed.

Further reduction can be achieved in respect of one of the problems arising in
the distance analysis phase, the maximum L∞ distance problem, i.e.

max max
1≤i≤n

|ωi − ω0

i | (3)

s.t. ω ∈ S

where n is the number of parameters and ω0
i are known constants, the initial esti-

mates of these parameters.
Rios Insua (1990) gives an algorithm for this problem which requires the solu-

tion of 2n subproblems. For linear and bilinear models, these are (small) linear
programmes and are not very costly to solve but, for general models, the subprob-
lems are nonlinear and possibly nonconvex, thus requiring global optimisation. Proll
and Salhi (1994), show empirically, by using simple bounding ideas, that the number
of subproblems needing to be solved can be reduced by 60-95% on a set of test cases.
As, in each maximum L∞ distance problem, the subproblems are all of the same
size and structure, time savings of the same order are realised.
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5 An Alternative Framework

The D phase involves pair-wise comparison of the alternatives and thus may require
the solution of O(p2) optimisation problems. This is the dominant term in the total
number of problems to be solved. Although it is useful to know the set of alternatives
which are nondominated, one can argue that it is those nondominated alternatives
which are immediate contenders for optimality which are of ‘real’ interest to the
analyst. These candidates for optimality can be detected using distance tools, thus
avoiding a systematic check for dominance. This idea is translated into the following
algorithm, on which the alternative framework for sensitivity analysis is based.

Algorithm

1. Rank alternatives according to ψ.(ω
0);

2. Consider the first ranking alternative as current optimum, a∗, if it is nondom-
inated. (Note that the first ranking alternative is non-dominated if it does
not tie with another alternative. If there are several alternatives which tie for
first ranking, at least one will be (strictly) PO, in which case that one can be
chosen, or the DM is indifferent to these alternatives, in which case all but one
of them can be deleted.)

3. Find least changes leading to it being outranked by other alternatives aj. This
can be done through the solution of distance problems of the form:

dj = min d(ω, ω0)

s.t. ψj(ω) − ψ∗(ω) = 0 (4)

ω ∈ S

where d(., .) is some continuous metric;

4. Rank alternatives according to minimum distance;

5. Find first alternative in this ranking which is nondominated. This is the
nearest competitor of a∗.

The above algorithm only checks for dominance the (one or more) ’nearest com-
petitors’ of the current optimal alternative. The price paid for avoiding the opti-
misations associated with the D, PO and APO phases however is an increase in
the number of optimisations in the DA phase. The questions posed in the D, PO
and APO phases can frequently be answered by local optimisation only since they
are fundamentally existence problems rather than inherently optimisation problems.
For instance, suppose we are testing whether alternative j dominates alternative k
and that a local minimum of ψj(ω) − ψk(ω) subject to ω ∈ S has value < 0, then
clearly k cannot be dominated by j and it is unnecessary to find the global min-
imum of ψj(ω) − ψk(ω). Thus our implementation performs a local optimisation
first and only performs global optimisation if necessary in each problem arising in
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the D, PO and APO phases. DA problems however always require global optimisa-
tion and generally are more costly to solve. Thus, in addition to not providing as
much information to the analyst, the alternative algorithm turns out to be worse
computationally than the original one, as evidenced in Table 4 and Table 5.

5.1 Experimental Results with the Alternative Algorithm

A Fortran code for the algorithm has been run on the 5 bilinear models, Problems 7
- 11 of Table 2. Relevant statistics for these problems can be found in Table 3. #D,
#PO, #APO are the number of nondominated, potentially optimal and adjacent
potentially optimal alternatives respectively.

Problem n p #D #PO #APO
7 5 3 3 2 1
8 9 6 4 4 3
9 14 6 4 3 2
10 12 7 7 5 4
11 20 8 7 7 6

Table 3: Bilinear models: statistics

Results are of two types. In Table 4 the code has been run with the option to
consider all optimisation problems as seeking to find a local optima only. In Table
5 it has been run with the option to solve the problems in the global sense. The
difference in the recorded CPU times for the two options is clear.

Problem Original Alternative
7 3.02 4.07
8 7.80 9.07
9 45.27 36.81

10 20.11 26.43
11 175.06 129.73

Table 4: Bilinear models: Local Optimisation Mode

Problem Original Alternative
7 123.75 184.36
8 224.89 358.24
9 1409.56 2335.88

10 589.12 1322.86
11 5245.88 > 7000

Table 5: Bilinear models: Global Optimisation Mode
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6 Global Optimisation and Reformulation

In section 2.1, we remarked that a proper implementation of the framework for all
models requires a robust, yet quick, general purpose method for constrained global
optimisation. It is doubtful if currently available algorithms satisfy this requirement
for problems of the size we need to solve and in the context in which many of our
applications need to be tackled. However we have developed a simulated annealing
method (Salhi et al, 2000) which has successfully solved problems occurring in the
linear and bilinear models. Its success arises from exploiting the structure of the
problem constraints to ensure that random neighbours of the current point are
always feasible. Suppose we are optimising over the set A = {x : aj ∗ x (≤,=
) bj , j = 1, 2, ..., m} we use the following routine:

1. Find a feasible point x ∈ A.

2. Generate a direction vector v with equal probability from one of the n coor-
dinate vectors, i.e. generate a random index k in 1,...,n. Set vk = 1, vj = 0
for j 6= k from one of the n coordinate vectors, i.e. generate a random index
k in 1,...,n. Set vk = 1, vj = 0 for j 6= k

3. If xk has non-zero coefficient in equality constraint i, generate a random index
l, (l 6= k) in 1,...,n such that xl has non-zero coefficient in constraint i.
Set vl = −aik/ail.

4. For each inequality j, compute λj = (bj − aj ∗ x)/(aj ∗ v)

5. If ∃j such that λj = 0 and aj ∗ v > 0, set λ+ = 0 else λ+ = min{λj : λj > 0}
If ∃j such that λj = 0 and aj ∗ v < 0, set λ− = 0 else λ− = max{λj : λj < 0}.

6. Generate u from a uniform distribution on [0,1] and set
y = x + (λ− + u(λ+ − λ−))v.

The scheme above guarantees that y ∈ A provided that any equations present
in the linear constraint set A involve mutually exclusive sets of variables. The set
S delimiting the parameters may involve equations only for the normalisation of
weights and the coherence of probabilities and thus has this structure. For the D,
PO and maximum distance problems (see (1), (2), (3) respectively), A is exactly S.
During other phases of the sensitivity analysis constraints involving the evaluation
functions are added which may destroy this property. This does not cause any
difficulty for the linear model but does so in the APO (5) and minimum distance
problems(4) when the evaluation function is bilinear.

In (Rios Insua, 1990) the APO problem for alternative j is formulated as:

max ψj(w) − ψ∗(w)

s.t. w ∈ S (5)

ψj(w) − ψ∗(w) ≤ 0, ∀i

That is, we try to find a point at which alternatives aj and a∗ are jointly optimal.
We can also do this by solving:
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min ((ψj(w) − ψ∗(w))2,max{ψi(w) − ψ∗(w) : i 6= j})

s.t. w ∈ S

aj is a.p.o. if the optimal value of the mathematical programme is 0. In this
form the APO problem now has the required structure for the simulated annealing
method.

The minimum distance problems do not have the required structure because of
the single nonlinear constraint ψj(ω)− ψ∗(ω) = 0. We deal with this by taking this
constraint into the objective function using an exact penalty function (Fletcher,
1987) of the form:

min d(ω, ω0) − p ∗min(0, ψj(ω) − ψ∗(ω))

where p = d(x, ω∗)/(ψj(x) − ψ∗(x))

and x is a point at which aj is potentially optimal.

7 Conclusions

The improvements to the sensitivity analysis algorithm described in this paper, to-
gether with technological improvements in the computing environment, make anal-
ysis of the linear and bilinear models viable in near real-time. Complete analyses of
each of the problems using all three distance metrics, L1, L2, L∞ can be performed
in less than two minutes on a 233 MHz Pentium II processor. Analysis of gen-
eral models remains much more problematic due both to the difficulty of specifying
the model to a general package and to the need for a suitable global optimisation
method, since the method described here for the linear and bilinear models is not
applicable. Constrained global optimisation is a vibrant research area, which offers
us some hope here. However it is perhaps less likely that such models would arise
in a context which required results in near real-time.
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