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Abstract—Schelling’s model of segregation looks to explain
the way in which particles or agents of two types may come to
arrange themselves spatially into configurations consisting of
large homogeneous clusters, i.e. connected regions consisting
of only one type. As one of the earliest agent based models
studied by economists and perhaps the most famous model of
self-organising behaviour, it also has direct links to areas at the
interface between computer science and statistical mechanics,
such as the Ising model and the study of contagion and
cascading phenomena in networks.

While the model has been extensively studied it has largely
resisted rigorous analysis, prior results from the literature
generally pertaining to variants of the model which are tweaked
so as to be amenable to standard techniques from statistical
mechanics or stochastic evolutionary game theory. In [2],
Brandt, Immorlica, Kamath and Kleinberg provided the first
rigorous analysis of the unperturbed model, for a specific
set of input parameters. Here we provide a rigorous analysis
of the model’s behaviour much more generally and establish
some surprising forms of threshold behaviour, notably the
existence of situations where an increased level of intolerance
for neighbouring agents of opposite type leads almost certainly
to decreased segregation.

Keywords-Schelling segregation, Ising, spin glass, networks,
morphogenesis, algorithmic game theory.

I. INTRODUCTION

While Alan Turing is best known within the mathemati-

cal logic and computer science communities for his work

formalising the algorithmically calculable functions, it is

interesting to note that his most cited work [9] is actually

that relating to morphogenesis. Turing wanted to understand

certain biological processes: the gastrulation phase of em-

bryonic development, the process whereby dappling effects

arise on animal coats, and phyllotaxy, i.e. the arrangement

of leaves on plant stems. One can consider the more general

question, however, as to how morphogenesis occurs – how

structure can arise from an initially random, or near random

configuration. Along these lines, one of the major contribu-

tions of the economist and game theorist Thomas Schelling

was an elegant model of segregation, first described in 1969

[7], which turns out to provide a very simple model of such

a morphogenic process. This model looks to describe how

individuals of different types come to organise themselves

spatially into segregated regions, each of largely one type.

Today it has become perhaps the best known model of self-

organising behaviour, and was one of the reasons cited by the

Nobel prize committee upon awarding Schelling his prize

in 2005. Although the explicit aim was initially to model

the kind of racial segregation observed in large American

cities, Schelling himself pointed out that the analysis is

sufficiently abstract that any situation in which objects

of two types arrange themselves geographically according

to a certain preference not to be of a minority type in

their neighbourhood, could constitute an interpretation. As

described in [10], for example, Schelling’s model can be

seen as a finite difference version of differential equations

describing interparticle forces and applied in modelling

cluster formation. Many authors (see for example [3], [4],

[8]) have pointed out direct links to spin-1 models used

to analyse phase transitions – by introducing noise into

the dynamics of the underlying Markov process one can

arrive at the Boltzmann distribution for the set of possible

configurations, with the ‘energy’ typically corresponding

to some measure of the mixing of types. From there one

can immediately deduce that the modified (now ergodic)

process spends a large proportion of the time in completely

segregated states, with this proportion tending to 1 as the

analogue of the temperature is taken to 0. So had Schelling

been aware of these connections to variants of the Ising

model, he could have based his work on a long history of

physics research.

Our own avenue into these questions, however, came via

the work of computer scientists [2] and the study of cascad-

ing phenomena on networks, a good introduction to which

can be found in [6]. The dynamics of the Schelling process

(as will be clear once it has been formally defined below)

are almost identical to many of those used to model the

flow of information or behaviour on large social or physical

networks such as the internet, the principal differences here

being the initial conditions considered and the use of a much

simpler underlying graph structure. An immediate concern,

given the results of this paper, is as to whether techniques



developed here can be extended and applied to understand

emerging clustering phenomena on the various (normally

more complex) random graph structures studied by those in

the networks community. Along these lines, Henry, Prałat

and Zhang have described a simple but elegant model of

network clustering [5], inspired by the Schelling model.

Their model doesn’t display the kind of involved threshold

behaviour, however, that one might expect to be exhibited

by a direct translation of the Schelling process to random

underlying graph structures.

We concentrate here on the one-dimensional version of

the model, as in [2]. The model works as follows. One

begins with a large number n of nodes (individuals) arranged

in a circle. Each node is initially assigned a type, and

has probability 1

2
of being of type α and probability 1

2

of being of type β (the types of distinct individuals being

independently distributed). We fix a parameter w, which

specifies the ‘neighbourhood’ of each node in the following

way: at each point in time the neighbourhood of the node

u, denoted N (u), is the set containing u and the w-many

closest neighbours on each side – so the neighbourhood

consists of 2w + 1 nodes in total. The second parameter

τ ∈ [0, 1] specifies the proportion of a node’s neighbourhood

which must be of their type for them to be happy. So, at any

given moment in time, we define u to be happy if at least

τ(2w+1) of the nodes in N (u) are of the same type as u.

One then considers a discrete time process, in which, at each

stage, one pair of unhappy individuals of opposite types are

selected uniformly at random and are given the opportunity

to swap locations. We work according to the assumption that

the swap will take place as long as each member of the pair

has at least as many neighbours of the same type at their

new location as at their former one (note that for τ ≤ 1

2

this will automatically be the case). The process ends when

(and if) one reaches a stage at which no further swaps are

possible.

Our contribution

Much of the difficulty in providing a rigorous analysis

stems from the large variety of absorbing states for the

underlying Markov process. Many authors have therefore

worked with variants of the model in which perturbations are

introduced into the dynamics so as to avoid this problem. In

[2], Brandt, Immorlica, Kamath and Kleinberg used an anal-

ysis of locally defined stable configurations, combined with

results of Wormald [11], to provide the first rigorous analysis

of the unperturbed one-dimensional Schelling model, for

the case τ = 1

2
. In this paper we shall consider what

happens more generally for τ ∈ [0, 1] (for the unperturbed

model), and we shall observe, in particular, that some

remarkable threshold behaviour occurs. While some aspects

of the approach from [2] remain, in particular the focus on

locally defined stable configurations which can be used to

understand the global picture, the details of the methods of

their proof (the use of ‘firewall incubators’, and so on) are

entirely specific to the case τ = 1

2
, and so largely speaking

we shall require different techniques here. The picture which

emerges is one in which one observes different behaviour in

five regions. For κ which is the unique solution in [0, 1] to

(1/2− κ)
1−2κ

= (1− κ)
2−2κ

, (1)

(κ ≈ 0.353092313) these regions are: (i) τ < κ, (ii) τ = κ,

(iii) κ < τ < 1

2
, (iv) τ = 1

2
, (v) τ > 1

2
. In fact we shall

not consider the case τ = κ, but the behaviour for all other

values of τ is given by the theorems below. Perhaps the most

surprising fact is that, in some cases, increasing τ almost

certainly leads to decreased segregation. The assumption is

always that we work with n ≫ w, i.e. all results hold for

all n which are sufficiently large compared to w. A run of

length d is a set of d-many consecutive nodes all of the same

type. Complete segregation refers to any configuration in

which there exists a single run to which all α nodes belong.

The first theorem deals with low values of τ , and formally

establishes the (perhaps rather intuitive) idea that very low

levels of intolerance lead to low levels of segregation:

Theorem 1.1: Suppose τ < κ and ǫ > 0. For all

sufficiently large w, if a node u is chosen uniformly at

random, then the probability that any node in N (u) is ever

involved in a swap is < ǫ. Thus there exists a constant d
such that, for sufficiently large w, the probability u belongs

to a run of length > d in the final configuration is < ǫ.
As one increases τ beyond the threshold κ, however, the

dynamics of the process qualitatively change:

Theorem 1.2: Suppose τ ∈
(

κ, 1

2

)

and ǫ > 0. There exists

a constant d such that (for all w and all n such that w ≪
n) the probability that u chosen uniformly at random will

belong to a run of length ≥ ew/d in the final configuration,

is greater than 1− ǫ.
So, to summarise Theorem 1.2 less formally, increasing

τ beyond κ suddenly causes high levels of segregation,

in the form of run-lengths which are exponential in w.

Furthermore, by analysing the proof of Theorem 1.2, we

shall be able to prove (a formalised version of the statement)

that increasing τ in this interval actually decreases run-

lengths, i.e. increasing τ increases the required value of

d. The next case is that dealt with in [2], where one sees

polynomially bounded run-lengths:

Theorem 1.3 ( [2]): Suppose τ = 1

2
. There exists a

constant c < 1 such that for all λ > 0, the probability that u
chosen uniformly at random will belong to a run of length

greater than λw2 in the final configuration, is bounded above

by cλ.

The final case is when τ > 1

2
. Here a combinatorial

argument can be used to argue that complete segregation

will eventually occur. Note that, if 1

2
< τ ≤ w+1

2w+1
, then the

process is identical to that for τ = 1

2
, since in both cases

a node requires w + 1 many nodes of its own type in its

neighbourhood in order to be happy.



Theorem 1.4: Suppose that τ > 1

2
, and that w is suffi-

ciently large that τ > w+1

2w+1
. Then, with probability tending

to 1 as n → ∞, the initial configuration is such that complete

segregation is inevitable.1

Figure 1: Processes for τ = 0.38, τ = 0.5, τ = 0.7.

The outcomes of some simulations are illustrated in

Figure 1. In the processes depicted here the number of nodes

n = 100000, w = 60 and in the diagrams individuals of

type α are coloured light grey and individuals of type β
are coloured black. The inner ring displays the initial mixed

configuration (in fact the configuration is sufficiently mixed

that changes of type are not really visible, so that the inner

ring appears dark grey). The outer ring displays the final con-

figuration. Just immediately exterior to the innermost ring

is another, which displays individuals which are unhappy

in the initial configuration. The process by which the final

configuration is reached is indicated in the space between

the inner rings and the outer ring in the following way: when

an individual changes type this is indicated with a mark, at

a distance from the inner rings which is proportional to the

time at which the change of type takes place. In fact, for the

case τ > 1

2
one has to be a little careful in talking about the

‘final’ configuration – there will, almost certainly, always

be unhappy individuals of both types able to swap, but once

a completely segregated configuration is reached all future

configurations must remain completely segregated.

II. NOTATION AND TERMINOLOGY

In describing the model earlier, we spoke in terms of

nodes or individuals swapping locations at various stages

of the dynamic process. In fact, it is notationally easier to

consider a process whereby one simply has a set of n nodes,

with two unhappy nodes of opposite type selected at each

stage (if such exist), which may then both change type (when

this occurs we shall still refer to the nodes as ‘swapping’,

but now they are swapping type rather than location). Thus

nodes are identified with indices for their locations amongst

the set {0, 1, ..., n−1}, and unless stated otherwise, addition

and subtraction on these indices are performed modulo n. In

the context of discussing a node u1, for example, we might

1Note that, while Theorem 1.4 requires τ > w+1

2w+1
, Theorem 1.2 does

not. Briefly, this is because the choice of d can be made to so as to deal with
finitely many small w anyway, meaning that Theorem 1.2 is essentially a
statement about what happens for large w.

refer to the immediate neighbour on the right as node u1+1.2

As noted before, for any node u, we let N (u) denote the

neighbourhood of u, which is the interval [u − w, u + w].
For any set of nodes I , suppose that x is the number of α
nodes in I , while y = |I| − x. Then Θ(I) := x − y and

is called the bias of I . By the bias of a node we mean the

bias of its neighbourhood. Recall that by a run of length

m + 1 we mean an interval [u, u + m] in which all nodes

are of the same type. We shall be particularly interested in

local configurations which are stable, in the sense that certain

nodes in them can never be caused to change type. Note that

if an interval of length w + 1 contains at least τ(2w + 1)
many α nodes, then each of those α nodes is happy so long

as the others do not change type, meaning that, in fact, no

α nodes in that interval will ever change type. We say that

such an interval of length w + 1 is α-stable (and similarly

for β). An interval of length w + 1 is stable if it is either

α-stable or β-stable. We shall also make use of a particular

kind of stable interval which was used in [2]: a firewall is a

run of length at least w+ 1. We write ‘for 0 ≪ w ≪ n’, to

mean ‘for all sufficiently large w and all n sufficiently large

compared to w’. We define the harmony index corresponding

to any given configuration to be the sum over all nodes of

the number of their own type within their neighbourhood.

For τ ≤ 1

2
, this harmony index is easily seen to strictly

increase whenever an unhappy node changes type, which

combined with the existence of an upper bound n(2w+1),
implies that the process must terminate after finitely many

stages. For τ > 1

2
, we shall argue that with probability

tending to 1 as n → ∞, the initial configuration is such

that complete segregation eventually occurs with probability

1. Once complete segregation has occurred it is easy to see

that all future states must be completely segregated.

III. THE CASE τ < κ

The case τ < κ is the easiest case, and we only sketch the

argument here. The proof in its entirety can be found in the

full version of this paper [1]. The basic idea is that we wish

to find the value of τ at which stable intervals become more

likely than unhappy nodes in the initial configuration. For

such τ , taking w large, we shall have that stable intervals

are much more likely than unhappy nodes in the initial

configuration. If u is selected uniformly at random then we

shall very likely find stable intervals of both types on either

side of u before any unhappy element, meaning that u never

changes type. The following lemma is the first step towards

formalising this idea:

Lemma 3.1: Consider the initial configuration. Let κ be

as specified in 1 and let P be any polynomial. If τ < κ and u
is a node chosen uniformly at random, then for 0 ≪ w ≪ n,

2Since we work modulo n it is worth clarifying some details of the
interval notation: for 0 ≤ b < a < n, we let [a, b] denote the set of nodes
(‘interval’) [a, n− 1] ∪ [0, b] (while [b, a] is, of course, understood in the
standard way).



the probability u belongs to a stable interval is more than

P (w) times the probability that u is unhappy. If τ > κ then

the reverse is true, i.e. the probability u is unhappy is more

than P (w) times the probability that u belongs to a stable

interval.

We need something more than this though. For γ ∈
{α, β}, let γ∗ be the opposite type, i.e. γ∗ = α if γ = β,

and γ∗ = β otherwise.

Lemma 3.2: Suppose τ < κ and consider the initial

configuration. For any ǫ > 0, for 0 ≪ w ≪ n, if u0 is

selected uniformly at random, then with probability > 1−ǫ,
there exist u−2 < u−1 < u0 < u1 < u2 such that:

• There are no unhappy nodes in the interval [u−2, u2].
• For i ∈ [−2, 2]−{0}, ui belongs to a γi-stable interval,

Ii say. Also γ−2 = γ∗
−1 and γ2 = γ∗

1 .

To complete the argument, we now show that the existence

of stable intervals of opposite types on both sides before any

unhappy nodes, suffices to prevent type changes, i.e. that

Lemma 3.2 gives the desired result. So suppose otherwise,

and let v be the first node in the interval [u−2, u2] to become

unhappy. Without loss of generality suppose v is an α node.

In order for v to become unhappy, another α node v′ ∈ N (v)
must change to type β. Since v′ /∈ [u−2, u2], we either have

v′ < u−2 ≤ v, or else v ≤ u2 < v′. Suppose that the first

case holds, the other is similar. Then, together with the fact

that any α-stable interval to which u−2 belongs is of length

w+1, v′ ∈ N (v) implies that v belongs to any stable interval

to which u−2 belongs, and so cannot become unhappy. This

gives the required contradiction.

IV. THE CASE κ < τ < 1

2

In what follows we shall work with some fixed τ in the

interval
(

κ, 1

2

)

, some fixed ǫ > 0, and we shall assume

that n is large compared to w. Again, we shall only sketch

the proof and most of the necessary lemmas will simply be

stated without proof. The full proof can be found in [1]. We

want to show that there exists a constant d such that for all

sufficiently large w the probability that a randomly chosen

node will belong to a run of length ≥ ew/d (in the final

configuration) is greater than 1 − ǫ. Of course, proving the

result for all sufficiently large w suffices to give the result

for all w since one can simply adjust the choice of d to deal

with finitely many small values, but we shall make frequent

use of the fact that we need only work for all sufficiently

large w in what follows and so rephrasing the theorem in

this way is instructive.

A difficulty that arises in this context is that when there

are different numbers of unhappy α and β nodes, it fails to

be the case that every unhappy node is equally likely to be

chosen as part of a swapping pair. If there are more unhappy

α nodes than unhappy β nodes at a given stage, for example,

then unhappy β nodes belong to more unhappy pairs of

opposite type than do their unhappy α counterparts, and so

are more likely to be chosen as part of an unhappy pair.

Applying technology developed by Wormald [11], however,

one can show that the discrete Schelling process can be

sufficiently accurately modelled by a continuous one which

is governed by a system of differential equations. From there

one can demonstrate that the number of unhappy nodes of

each type actually remains very evenly balanced, at least

until a suitably late stage of the process. In what follows

here, we shall subdue mention of such issues and simply

assume that each unhappy node has an equal chance of being

chosen to swap at each stage. We refer the reader who wishes

to see a careful treatment of these complications to the full

version of the paper [1].

Our entire analysis takes place relative to a node u0,

chosen uniformly at random. Roughly, the aim is to establish

that in the final configuration u0 very probably belongs to

a firewall of considerable length. The argument consists of

two main parts: first we consider what can be expected from

the vicinity of u0 in the initial configuration, and then we

consider how events are likely to develop in subsequent

stages.

Before we begin with the technicalities, let us consider

very informally what can be expected from the vicinity of

u0 in the initial configuration. Since κ < τ < 1

2
, for large w

we shall have that unhappy nodes are much more likely than

stable intervals, but that unhappy nodes themselves are few

and far between. Starting at u0 and moving to the left, (since

n is large) we can expect to find a first unhappy node, l1 say,

and it will very likely be the case that [l1, u0] is an interval

of considerable length, containing no stable intervals. To

the left of l1 and inside N (l1), there may be some other

unhappy nodes. If we move now to l1 − (2w+1), however,

and repeat the process (with l1 − (2w+ 1) taking the place

of u0), then so long as w is large enough, we can expect the

same to happen again, i.e. we find a first unhappy node l2
and [l2, l1 − (2w+ 1)] is an interval of considerable length,

containing no stable intervals. In fact, for any fixed k which

does not depend on w, if we repeat this process k many

times, then so long as w is large enough (and how large

we have to take w will depend on k) we can be pretty sure

that the same thing will happen at every one of those k-

many steps. Now let us establish this informal picture more

carefully.

The initial configuration

Recall that for any set of nodes I , Θ(I) is the bias of

I and that by the bias of a node we mean the bias of

its neighbourhood. In general, if x1, ..., xk are independent

random variables with P(xi = 1) = P(xi = −1) = 1

2
when

1 ≤ i ≤ k, then letting X =
∑k

i=1
xi Hoeffding’s inequality

gives, for arbitrary λ > 0 :

P(|X| > λ
√
k) < 2e−λ2/2.

Now we use this to bound the probability that a node u
has bias in the initial configuration which will cause it



to be unhappy, should u be of the minority type in its

neighbourhood. So, we wish to bound the probability that

the number of α nodes in N (u) is > (1 − τ)(2w + 1) or

the number of β nodes in N (u) is > (1− τ)(2w+1). This

corresponds to a bias Θ(N (u)) of > (1 − 2τ)(2w + 1) or

< −(1− 2τ)(2w + 1).
Definition 4.1: When |Θ(N (u))| > (1− 2τ)(2w+1) we

say that u has high bias, denoted Hb(u). If this holds for

the initial configuration, we say that Hb∗(u) holds.

Definition 4.2: For the remainder of this section we de-

fine d = 2/(1− 2τ)2.

The following lemma then follows from a direct applica-

tion of Hoeffding’s inequality.

Lemma 4.3 (Likely happiness): Let u be a node chosen

uniformly at random. For any ǫ′ > 0 and for all sufficiently

large w, the probability that Hb∗(u) holds is < ǫ′e−w/d.

Defining the nodes li and ri. For now, we fix some k0 > 0.

We shall choose a specific value of k0 which is appropriate

later – for now, however, we make the promise that our

choice of k0 will not depend on w.

For 1 ≤ i ≤ k0 we define a node li to the left of u0 and

also a node ri to the right. We let l1 be the first node v to

the left of u0 such that Hb∗(v) holds, so long as this node

is in the interval [u0 − 1

4
n, u0] (otherwise l1 is undefined).

Then, given li for i < k0 we let li+1 be the first node v
to the left of li − (2w + 1) such that Hb∗(v) holds, so long

as no nodes in the interval [li+1, li] are outside the interval

[u0 − 1

4
n, u0] (otherwise li+1 is undefined). We let r1 be

the first node v to the right of u0 such that Hb∗(v) holds,

so long as this node is in the interval [u0, u0 +
1

4
n]. Given

ri for i < k0 we let ri+1 be the first node v to the right of

ri+(2w+1) such that Hb∗(v) holds, so long as no nodes in

the interval [ri, ri+1] are outside the interval [u0, u0 +
1

4
n].

The reason for considering the intervals [u0 − 1

4
n, u0]

and [u0, u0+
1

4
n] in the above, is that we wish to be able to

move left from u0 to lk0
without meeting any of the nodes ri.

u00 l1 l1 r11 lk0
rk00

lk0−1

2 > ew/d
2 > ew/d

Figure 2: Picking out nodes of high bias near u0.

Definition 4.4 (Good spacing): Let d be as in Definition

4.2. It is notationally convenient to let l0 = u0 = r0. We let

Good spacing be the event that for 1 ≤ i ≤ k0:

(i) li and ri are both defined, and;

(ii) |li − li−1| > ew/d and |ri − ri−1| > ew/d.

Note that for any fixed w, as n → ∞ the probability

that any li or ri is undefined (for i ≤ k0) goes to 0. By

Lemma 4.3, and since the probability that any node in an

interval I has high bias in the initial configuration is at

most Σu∈IP(Hb∗(u)), for any ǫ′ > 0 and for any fixed

k0 ≥ 1 we can ensure that P(Good spacing) > 1 − ǫ′ by

taking w sufficiently large (and by taking n sufficiently large

compared to w). Thus, for 0 ≪ w ≪ n, the picture we are

presented with is almost certainly as in Figure 2.

Building the informal picture

Recall that, by a run of length m+1 we mean an interval

[u, u + m] in which all nodes are of the same type, and

that a firewall is a run of length at least w + 1. The basic

observation on which we now wish to build is as follows:

if the interval [u− w, u] is a firewall of type α, then when

u + 1 is of type β, it cannot be happy unless the interval

[u+1, u+w+1] is β-stable. So, since we are dealing with

τ ≤ 1

2
, firewalls will spread until they hit stable intervals of

the opposite type (so long as there exist unhappy nodes of

both types).

With this in mind, let us now consider informally what

can be expected to happen in the neighbourhood of li.
Suppose that li is initially of type β and is unhappy in

the initial configuration. Then with probability close to 1

for sufficiently large w, there will not be any unhappy

nodes of type α in the neighbourhood of li in the initial

configuration. If li changes type, then this will make the bias

in its neighbourhood still more positive, which may cause

further nodes of type β to become unhappy. If these change

to type α then this will further increase the bias, potentially

causing more nodes to become unhappy, and so on. The

following definitions formalise some of the ways in which

this process might play out, and in particular the possibility

that this process might play out without interference from

what happens in other neighbourhoods N (lj) or N (rj).
Definition 4.5: For 0 < i < k0 we say that li completes

at stage s if both:

1) No node in N (li) is unhappy at stage s, and this is not

true for any s′ < s.

2) There exist x0 and x1 with li+1+2w < x0 < li−2w <
li+2w < x1 < li−1−2w, such that by the end of stage

s, no node in [x0 −w, x0] or [x1, x1 +w] has changed

type.

We say that li completes if it completes at some stage. We

also define completion for ri analogously.

Definition 4.6: We say that li (or ri) originates a firewall

if it completes at some stage s and (i) it belongs to firewall

at stage s, and (ii) all type changes in N (li) (or N (ri)) at

stages ≤ s are of the same kind (i.e. all α to β, or all β to

α).

The informal idea, is that we now wish to show that each

li and each ri has some reasonable chance of originating a

firewall (and that this reasonable chance is bounded below

by some value which doesn’t depend on w). Then we can

choose k0 so that the probability none of the li originate

a firewall or none of the ri originate a firewall is ≪ ǫ, i.e.

with probability close to 1 firewalls will originate either side



of u0 within the interval [lk0
, rk0

]. Then, letting i1 be the

least i such that li originates a firewall, and letting i2 be the

least i such that ri originates a firewall, we wish to show

that with probability close to 1 the firewalls originated at

li1 and ri2 will spread until u0 is contained in one of them.

Since these two firewalls have originated at nodes which are

at distance at least ew/d apart, u0 ultimately belongs to a

firewall of at least this length. So to sum up:

The approximate reason Theorem 1.2 holds is that

u0 can be expected to join a firewall which –

precisely because unhappy nodes are rare in the

initial configuration – originated at a long distance

from u0.

In order to make this basic picture work, however, we

need to be careful about the formation of stable intervals

in [lk0
, rk0

]. As noted above, firewalls will spread until they

hit stable intervals of the opposite type. Now suppose that,

with i1 and i2 as above, i1 = i2 = 2 and, for now, suppose

that α-firewalls are originated at both l2 and r2. In order to

show that these two firewalls will spread until they meet each

other, it will be helpful first of all, to be able to assume that

in the initial configuration there are no stable subintervals

of [lk0
, rk0

]. This will follow quite easily for large w, from

our previous analysis of the ratio between the probability of

unhappy nodes and stable intervals. A further danger that

we have to be able to avoid, however, is that, while l1 and

r1 do not originate firewalls, they do get as far as creating

β-stable intervals.

Definition 4.7: Given i with 0 < i < k0, let u = li or

u = ri. Let u1 = u− (2w+1) and u2 = u+ (2w+1). We

say that u subsides if it completes at some stage s, and:

• There are no nodes in [u1, u2] belonging to stable

intervals at stage s;

• No nodes in N (u1) or N (u2) have been unhappy at

any stage ≤ s.

So we need to be able to show, in fact, that with probability

close to 1 each li and ri either originates a firewall or

subsides. To do this clearly involves a careful analysis what

is likely to happen in each of the neighbourhoods N (li)
and N (ri). First of all, the large distances between these

nodes mean that, for fixed k0 and sufficiently large w, we

can expect all of the li and ri (for 0 < i < k0) to complete,

so that one can understand the early stages of the process

for each of these neighbourhoods by considering each in

isolation. We then wish to show:

The required dichotomy: in the neighbourhood of

each li and ri, either a small number of type

changes will occur before completion, or else a

large number of type changes will occur before

completion and a firewall will be created.

Now, if we strengthen our original requirement that there

are no stable subintervals of [lk0
, rk0

] in the initial configu-

ration, to a requirement that there are no subintervals which

are ‘close’ to being stable in the initial configuration (where

‘close’ is to be made precise in such a way as to ensure

that when a small number of type changes occur in the

neighbourhood of li before completion, these are not enough

to create any stable intervals), then we shall have that with

probability close to 1 each li and each ri either originates a

firewall or else completes without creating stable intervals.

Once all this is in place, there is then one further hurdle.

In the above, we assumed that the firewalls originating at l2
and r2 are both α-firewalls. If they are firewalls of opposite

type, however, we still have some work to do in order to

prove that u0 will almost certainly end up belonging to one

of these two firewalls.

Figure 3: An example of the developing process with n =
105, w = 75, τ = 0.37, at stages 5 · 103, 15 · 103 and 24986.

Formalising the intuitive picture

Thus far we have defined an event, Good spacing, which

depends upon the value k0. We are yet to specify k0, but

have promised that this choice will not depend on w. For

any ǫ′ > 0 and for any fixed k0 ≥ 1 we can ensure that

P(Good spacing) > 1 − ǫ′ by taking w sufficiently large

(and by taking n sufficiently large compared to w).

In order to specify how the type changing process can

be expected to develop in the vicinity of u0, we shall now

proceed to define a finite number of other events of this kind.

This finite set of events (having Good spacing as a member)

we call shall call Π. Our aim is to show that, for any ǫ′ > 0,

the probability that all the events in Π occur is greater than

1 − ǫ′ for all sufficiently large w (and for n sufficiently

large compared to w). Suppose that this is established for

some Π′ ⊂ Π. To establish the result for Π′ ∪ {Q} with

Q ∈ Π − Π′, it then suffices to prove for each ǫ′ > 0 and

all sufficiently large w, that the probability of Q given P
is greater than 1− ǫ′, where P is any conjunction (possibly

empty) of the events in Π′. Of course, we choose that P
which is most convenient to work with.

In discussing the ‘required dichotomy’ above, a require-

ment was suggested, that there should be no subintervals

of [lk0
, rk0

] which are ‘close’ to being stable in the initial

configuration. In fact an appropriate formalisation of this

idea is easy to describe, and we now do so.



Definition 4.8: For any τ ′ ∈ (0, 1), we say that an interval

of length w+1 is τ ′-stable, if it contains τ ′(2w+1) many

α-nodes or τ ′(2w + 1) many β nodes.

Definition 4.9 (Stable clear): Once and for all, fix some

τ0 with κ < τ0 < τ . Let Stable clear ∈ Π be the event

that li and ri are defined for all 1 ≤ i ≤ k0, and there do

not exist any τ0-stable subintervals of [lk0
, rk0

] in the initial

configuration.

Lemma 4.10: For fixed k0 and ǫ′ > 0, P(Stable clear) >
1− ǫ′ for all w sufficiently large (and all n sufficiently large

compared to w).

Now, in order to establish the required dichotomy, we

need to build up a clear picture of what the neighbourhoods

N (li) and N (ri) can be expected to look like. The distri-

butions for these intervals in the initial configuration are a

little difficult to attack directly, however, due to the nature

of their definition. In choosing l1 we move left until we find

the first node which has high bias – this gives an asymmetry

to the given information concerning the neighbourhood.

Roughly, we might expect something like a hypergeometric

distribution, but how good is this as an approximation? What

we shall do, in fact, is first of all to understand what can be

expected from the neighbourhood of a node which is chosen

uniformly at random from among those with borderline bias:

Definition 4.11: Let us say that a node u has borderline

bias, denoted Bb(u), if:

|Θ(N (u))| = Min{θ ∈ 2N+ 1 : θ > (1− 2τ)(2w + 1)},

i.e., u has high bias but decreasing the modulus of the bias

by the minimum possible amount of 2 would cause it not to

have high bias. We say that Bb∗(u) holds if u has borderline

bias in the initial configuration. Note that each of the nodes

li and ri (0 < i ≤ k0) has borderline bias.

In what follows it is often convenient to work with some

fixed k ≥ 1 and to divide an interval I = [a, b] into k parts

of equal length. This occasions the minor inconvenience

that the length of the interval might not be a multiple of

k, motivating the following definition:

Definition 4.12: Let I = [a, b] and suppose

k ≥ 1. We define the subintervals: I(1 : k) :=
[a, a+ ⌊(b− a)/k⌋] := [I(1 : k)1, I(1 : k)2] and I(j :
k) := [a+ ⌊(j − 1)(b− a)/k⌋+ 1, a+ ⌊j(b− a)/k⌋] :=
[I(j : k)1, I(j : k)2] for 2 ≤ j ≤ k.

In Definition 4.12 the intervals are counted from left to

right, but it is also useful to work from right to left:

Definition 4.13: Let I = [a, b] and suppose k ≥ 1. For

1 ≤ j ≤ k we define I(j : k)− = I(k − j + 1 : k), I(j :
k)−1 = I(k− j +1 : k)1 and I(j : k)−2 = I(k− j +1 : k)2.

Lemma 4.14 (Smoothness Lemma): Suppose u is such

that the proportion of α nodes in I := N (u) is θ, and

that u is selected uniformly at random from nodes with

this property. Then for any fixed k ≥ 1 and ǫ′ > 0, for

all sufficiently large w the following holds with probability

> 1 − ǫ′: for every j with 1 ≤ j ≤ k, the proportion of

the nodes in I(j : k) which are α nodes, lies in the interval

[θ − ǫ′, θ + ǫ′].
Lemma 4.14 basically tells us that if we choose a node u

with borderline bias uniformly at random, then for large w
we can expect the bias to move towards 0 fairly smoothly

as we move to u + (2w + 1) or u − (2w + 1). In order to

see roughly why this is true, suppose that |Θ(N (u))| = ρ
and let θ be the proportion of the nodes in N (u) which

are of type α. Let I = [u, u + (2w + 1)] and, for some k,

consider the sequence of evenly spaced nodes vj = I(j, k)2.

Now in forming the neighbourhood of vj , we lose an

interval of length (almost exactly) ⌊j(2w + 1)/k⌋ from the

neighbourhood of u, which by Lemma 4.14 we can expect to

have a proportion of α nodes very close to θ. We also gain

an interval of the same length from outside N (u), which

we can expect to have a proportion of α nodes very close

to 1

2
. This means a bias for vj close to ρk−j

k . The following

definition allows us to express this more formally:

Definition 4.15: Suppose that Hb
∗(u) holds. Let I1 =

[u−(2w+1), u] and I2 = [u, u+(2w+1)]. Let |Θ(N (u))| =
ρ and let θ be the proportion of the nodes in N (u) which

are of type α. Suppose that k ≥ 1 is even and ǫ′ > 0. For

1 ≤ j ≤ k let vj = I2(j : k)2 and let v−j = I1(j : k)
−
1 . We

say that Smoothk,ǫ′(u) holds if both:

• For every j, 1 ≤ |j| ≤ k, |Θ(N (vj))− ρk−j
k |/w < ǫ′.

• For every j with 1 ≤ j ≤ k/2 the proportion of the

nodes in I1(j : k)− which are of type α lies in the

interval [θ − ǫ′, θ + ǫ′], and similarly for I2(j, k).

We say that Smooth∗k,ǫ′(u) holds if Smoothk,ǫ′(u) holds in

the initial configuration.

Corollary 4.16 (Smoothness Corollary): Suppose u is se-

lected uniformly at random among those nodes such that

Bb
∗(u) holds. For all k ≥ 1 and ǫ′ > 0, and for all

sufficiently large w, Smooth∗k,ǫ′(u) holds with probability

> 1− ǫ′.
While Smoothness Corollary 4.16 tells us what can be ex-

pected from the neighbourhood of a node chosen uniformly

at random from among those with borderline bias, this does

not immediately allow us to infer anything about what can

be expected from the neighbourhood of each li and ri. What

we need is that, if we choose a node u uniformly at random

and then move left (or right) until we find a first node v with

high bias, then with probability close to 1 Smooth
∗
k,ǫ′(v)

holds. With some work we can establish the following:

Lemma 4.17 (Smoothness for li and ri): For any node u,

let xu be the first node to the left of u which has high bias

in the initial configuration. For any ǫ′ > 0 and k ≥ 1, if

0 ≪ w ≪ n and u is chosen uniformly at random, then xu is

defined and Smooth
∗
k,ǫ′(xu) holds with probability > 1− ǫ′.

An analogous result holds when ‘left’ is replaced by ‘right’.

In order to see that Lemma 4.17 suffices to establish

probable smoothness for all of the li and ri, note first that

k0 is fixed while we take w large. At step i of the iteration

which defines the sequence l1, l2, .., the fact that li has



borderline bias tells us nothing about the neighbourhood of

li − (2w+1) or the nodes to the left of this neighbourhood

(but at a distance small compared to n).

We are now ready to define the third event in Π:

Definition 4.18 (Smooth): Let τ0 be as in Definition 4.9.

Once and for all, choose k1 such that 1

k1

≪ τ − τ0, and

choose k2 and ǫ0 such that k1 ≪ k2 ≪ 1

ǫ0
and k2 is a

multiple of k1. We define Smooth to be the event that all

the li and ri are defined for 1 ≤ i ≤ k0, and that when

u = li or u = ri, Smooth
∗
k2,ǫ0

(u) holds.

By Lemma 4.17, when k0 ≪ w the probability that

Smooth does not occur is ≪ ǫ.

The process to completion

Having established a clearer picture of what can be

expected from the initial configuration, we now look to

understand what will happen in the early stages, in the

neighbourhood of each li or ri. First of all, we can establish

that these nodes can be expected to complete:

Lemma 4.19 (li and ri complete): For any ǫ′ > 0, if 0 ≪
w ≪ n then for all i ∈ [1, k0), li and ri will (be defined

and will) complete with probability > 1− ǫ′.
Definition 4.20 (Completion): We define Completion (∈

Π) to be the event that all the li and ri (for 1 ≤ i < k0) are

defined and complete.

We are now ready to prove the required dichotomy.

Lemma 4.21 (The required dichotomy): Suppose that w
is large and that Good spacing, Stable clear, Smooth and

Completion all hold. Then for i < k0, li and ri will each

either subside or originate a firewall.

Proof: We prove the result for li, and the proof for ri
is essentially identical.

Note first that the choice of k1 in Definition 4.18 means, in

particular, that 10w/k1 type changes in any given neighbour-

hood cannot create stable intervals, given that Stable clear

holds (the numbers here are fairly arbitrary). Note also, that

satisfaction of Smooth suffices to ensure that there are not

unhappy nodes of both types in the neighbourhood of li in

the initial configuration. Now suppose that li completes at

stage s and has positive bias in the initial configuration (the

case for negative bias is essentially identical).

It is useful at this point to establish names for a number

of relevant intervals. We let u1 = li − (2w + 1) and u2 =
li + (2w + 1). Then we define:

• J = N (u1) ∪N (li) ∪N (u2).
• I = [u1, u2].
• I1 = [u1, li], I2 = [li, u2].
• K1

j = I1(j : k1)
− ∪ I2(j : k1).

• K2
j = I1(j : k2)

− ∪ I2(j : k2).

In Definition 4.18 we assumed that k2 is a multiple of k1,

so we may let m be such that k2 = mk1. It is convenient

to assume that k2 is even. Now we divide into two cases.

li subsides. First of all, suppose that at stage s, there is a

β-node u in the interval K1
1 . Then u must be happy at stage

s. The fact that Smooth is satisfied, together with the fact

that li completes at stage s, means that prior to stage s, the

only type changes in the interval J are from type β to type

α, so that u must be happy at every stage ≤ s. Now, since

k1 ≪ k2 ≪ 1

ǫ0
and Smooth

∗
k2,ǫ0

(li) holds, any nodes in

I−(K1
1 ∪K1

2 ) have lower bias than u, and hence are happy,

in the initial configuration. It then follows by induction on

the stages ≤ s that no node in J − (K1
1 ∪K1

2 ) changes type

prior to stage s. In order to see this suppose that it holds

prior to stage s′ ≤ s. Then at stage s′, if v ∈ I−(K1
1 ∪K1

2 ),
it still has lower bias than u and so cannot change type from

β to α, since u is happy so v must be. If v ∈ J − I , then v
changing type would contradict the fact that li completes.

We therefore get at most |(K1
1 ∪ K1

2 )| < 10w/k1 many

type changes in the interval J prior to completion. As

observed above, this means that no stable intervals are

created and li subsides, as required.

li originates a firewall. So suppose instead that, at stage s,

all nodes in the interval K1
1 are of type α. Given m as above,

another way of putting this, is that all nodes in
⋃

j≤m K2
j are

of type α at stage s. We now show by induction on r ≥ m
that, when r ≤ k2/2, any nodes in K2

r must be of type α
at stage s – i.e. that all nodes in N (li) are α nodes at stage

s. So suppose that m ≤ r < k2/2 and that the hypothesis

holds for all r′ ≤ r. Consider u ∈ K2
r+1. Let ρ be the bias

of li in the initial configuration. First let us form a lower

bound for the bias of u in the initial configuration. The fact

that Smooth holds means that the leftmost and rightmost

nodes in K2
r have bias at least ρ− r

k2

ρ− ǫ0w. Then, since

the bias can change by at most 2 if we move left or right

one node, we conclude that u has bias

ρ1 ≥ ρ−

(

r

k2
ρ+ ǫ0w +

2(2w + 1)

k2

)

in the initial configuration. Now we have to take into account

all of the β nodes in
⋃

j≤r K
2
r which have changed type. In

fact, so that we can be sure that each change of type affects

the bias of u, we shall consider just those which lie between

li and u. Let θ be the proportion of the nodes in N (li) which

are α nodes in the initial configuration (recalling that li has

borderline bias at that point) – so that ρ = (2θ − 1)(2w +
1). Then the number of β nodes in

⋃

j≤r K
2
j in the initial

configuration, which lie between li and u, is at least:

(1− θ − ǫ0)(2w + 1)r/k2.

Each change of type for one of these nodes means an

increase of 2 in the bias of u, so that at stage s, u has

bias ρ2 which is at least

ρ−

(

r

k2
ρ+ ǫ0w +

2(2w + 1)

k2

)

+
2(1− θ − ǫ0)(2w + 1)r

k2
.

So we have ρ2 ≥ ρ+ (2w + 1) ·A, where

A :=
(1− θ)2r

k2
−

ǫ0w

2w + 1
−

2

k2
−

r

k2
(2θ − 1)−

ǫ02r

k2
.



We are left to compare the terms

(1− θ)2r

k2
,

ǫ0w

2w + 1
,

2

k2
,

r

k2
(2θ − 1) and

ǫ02r

k2
.

Since 1/k2 ≫ ǫ0, the second term is much smaller than

the third. Since θ ∈ (0.5, 0.65), r/k2 ≥ 1/k1 and k1 ≪
k2, the first term is much larger than the third (to see that

θ ∈ (0.5, 0.65) recall that li has borderline bias in the initial

configuration and τ > κ > 0.35). Since ǫ0 is small, the first

term is also much larger than the last. The result then follows

for large w, since 2− 2θ is always more than double 2θ− 1
for θ ∈ (0.5, 0.65), meaning that the first term is more than

double the fourth term, and thus ρ2 ≥ ρ, meaning that if u
is a β node, it will be unhappy.

The following lemma is proved via approximation to a

biased random walk:

Lemma 4.22 (Reasonable chance of firewall): Suppose

that Good spacing holds. There exists δ > 0 which does

not depend on w, such that if 1 ≤ i < k0, then li originates

a firewall with probability > δ (and similarly for ri).
Then the following definition gives our final event in Π

and also specifies k0.

Definition 4.23 (Defining Firewall and choosing k0):

We let Firewall be the event that one of the li i < k0 is

defined and originates a firewall, and that the same holds

for some rj , j < k0. According to Lemma 4.22, given

ǫ > 0 we can choose k0 once and for all, which is large

enough such that the probability Firewall does not occur is

≪ ǫ for 0 ≪ w ≪ n.

Finally, Lemma 4.24 completes the proof of Theorem 1.2.

Lemma 4.24 (u0 ultimately joins a firewall): Suppose

that all events in Π hold. Let i be the least such that li is

defined and originates a firewall, and let j be least such

that rj is defined and originates a firewall. For any ǫ′ > 0,

for all sufficiently large w, with probability > 1 − ǫ′, u0

will eventually be contained in one of the two firewalls

originated at li and rj .

Increasing τ in the interval [κ, 1

2
] decreases run-lengths

Let us fix ǫ > 0 and τ1 and τ2 such that κ < τ1 <
τ2 < 1

2
. For some large w and n ≫ w suppose that we

run two version of the process, one for τ1 and the other for

τ2, and then let ℓ1 and ℓ2 be the corresponding run-lengths

to which u0 (chosen uniformly at random) belongs in the

final configuration. Our aim in this subsection is to observe

that, so long as w is sufficiently large, the probability that

ℓ1 > ℓ2 is greater than 1− ǫ.
In order to see this we may reason as follows. In the

proof of Theorem 1.2, we chose k0 in such a way we

could be almost certain at least one of the li and at least

one of the ri would originate firewalls. We could equally

well have chosen k0 so that the following fails to occur

with probability ≪ ǫ: two of the li originate firewalls of

opposite type, and similarly two of the ri originate firewalls

Figure 4: The creation of a firewall (from simulation).

of opposite type. Our previous analysis then suffices to show

that the following fails to occur with probability ≪ ǫ for

sufficiently large w; u0 ultimately belongs to a firewall of

length > min{|u0− l1|, |u0−r1|} and of length < [lk0
, rk0

].
So it suffices to show that with probability > 1 − ǫ, the

length of the interval [lk0
, rk0

] for the process with τ2 is less

than the value min{|u0− l1|, |u0− r1|} for the process with

τ1. This then follows for sufficiently large w, by applying

Lemma 3.3 of [1] to the events Pu, that u is τ2-unhappy,

and Qu that u is τ1-unhappy.

V. THE CASE τ > 0.5

Note that if 1

2
< τ ≤ w+1

2w+1
then the process is identical

to that for τ = 1

2
. We therefore assume in what follows

that w is sufficiently large to ensure τ > w+1

2w+1
, which is

equivalent to the condition that adjacent nodes of opposite

types cannot both be happy. Note that once a completely

segregated configuration is reached, all future states are

completely segregated. Let x be the number of α nodes in

the initial configuration, and let xp = x/n. Our task is to

show that for sufficiently large n it is possible to reach a

completely segregated configuration from any other, so long

as xp is close to 1

2
. To prove this, however, one must be

able to ensure the existence of unhappy individuals of both

types at each step along the way. The following lemma is

perhaps surprisingly tricky to prove:

Lemma 5.1: With probability tending to 1 as n → ∞, x
satisfies the property that there are unhappy α nodes (in fact,

unhappy α nodes outside any interval of length 4w + 1) in

any configuration on a ring of size n with x many α nodes.

A similar result holds for β.

To complete the argument, we then build a list of con-

figurations from which it is possible to reach complete

segregation. Consider first any configuration which is not



completely segregated, but which has a run of length at

least 2w. Without loss of generality, suppose that this is

a run of α nodes occupying the interval [a, b], where this

interval is chosen to be of maximum possible length. If the

nodes a and b are both happy then the length of the interval

ensures that all nodes in the run are happy – this follows by

induction on the distance from the edge of the interval. In

this case let u be an unhappy α node and let c ∈ {a, b} be

distance at least w+1 from u. Then u and the β neighbour

of c may legally be swapped, increasing the length of the

run by at least 1. So suppose instead that at least one of

the individuals a and b is not happy, and without loss of

generality suppose that a has bias less than or equal to b.
Then a and b+ 1 may legally be swapped. Performing this

swap causes position b + 1 to have at least the same bias

as b did before the swap, and causes a+ 1 to have at most

the same bias as a did before the swap. Thus, the swap has

the effect of shifting the run one position to the right and

may be repeated until the length of the run is increased by

at least 1, i.e. for successive i ≥ 0 we can swap the nodes

a + i and b + i + 1, so long as the latter is of type β. The

first stage at which the latter is of type α the length of the

run has been increased. Putting these observations together,

we conclude that from any configuration which has a run of

length at least 2w it is possible to reach full segregation.

Next consider a configuration in which the longest run

[a, b] is of length at least w, but strictly less than 2w. We

shall suppose that [a, b] contains α nodes, the case for β
nodes is similar. Let c be the first α node strictly to the

left of a. If c is unhappy, then we may legally swap c and

a − 1, strictly increasing the length of the longest run. If

c is happy then the distance between c and a is at most

w and we may successively swap unhappy α nodes from

outside the interval [c−w, a+2w] with the nodes c+ i for

1 ≤ i < a− c (starting with i = 1 and proceeding in order),

in order to strictly increase the length of the longest run.

This follows because as each node c+ i performs the swap,

it will become happy.

It remains to show that we can always move to a config-

uration with a run of length at least w. The proof appears

in [1].
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