This is a repository copy of *Cognitive and neuroanatomical correlates of neuropsychiatric symptoms in Parkinson’s disease: A systematic review.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/90259/

Version: Accepted Version

Article:

https://doi.org/10.1016/j.jns.2015.06.037

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Cognitive and Neuroanatomical Correlates of Neuropsychiatric symptoms in Parkinson’s Disease: A review

Hamad Alzahrani *b, Annalena Venneri *c *

a. Department of Neuroscience, Faculty of Medicine, University of Sheffield, UK
b. National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
c. IRCCS Fondazione Ospedale San Camillo, Venice, Italy

Keywords: depression; apathy; psychosis; visual hallucinations; impulse control disorders; anxiety; neuroimaging; cognition;

Address for correspondence:
Professor Annalena Venneri
Department of Neuroscience
Medical School
Beech Hill Road
Sheffield S10 2RX
E-mail: a.venneri@sheffield.ac.uk
Tel. +44 114 2713430
Abstract

Introduction: Neuropsychiatric symptoms are one of the most common non-motor symptoms in Parkinson’s Disease (PD). These symptoms have a negative impact on daily living activities and cognitive abilities. This review will be centred on published articles which focused on clarifying the cognitive and neuroanatomical features associated with the appearance of specific neuropsychiatric symptoms in this disease.

Methods: All articles indexed in the Web of Science and PubMed databases were reviewed for potential inclusion in October 2014. In the first stage of the review, we identified 41 articles that investigated neuropsychiatric symptoms and cognitive impairments in PD. In the second stage, there were 26 published articles on the neural bases of neuropsychiatric symptoms in PD.

Results: The main findings revealed that executive dysfunctions were common in patients with depression, apathy, Visual Hallucinations (VH), Impulse Control Disorders (ICDs) and anxiety. Whereas, memory deficits were associated mainly with depression and VH. Imaging studies have shown that frontal lobe atrophy was frequently observed in patients with depression, apathy, VH and ICDs.

Conclusion: This review gives a snapshot of those cognitive and neural correlates of neuropsychiatric symptoms in PD. Methodological shortcoming in the available studies were identified, however, of which the most critical appeared neglecting the presence of multiple neuropsychiatric symptoms in some of the patients included in studies of specific individual symptoms. Additionally, in most studies only patients in the moderate to severe stages were included which limits possible inferences to the early stage of the disease.
Highlights

- Neuropsychiatric symptoms are the most common non-motor symptoms in Parkinson’s Disease (PD)

- The most common neuropsychiatric symptoms in PD are depression, hallucination, anxiety and apathy

- Neuropsychiatric symptoms in PD are associated with deficits in executive functions and working memory

- Frontal atrophy or dysfunction are the most frequently detected neural correlates of neuropsychiatric symptoms in PD
Introduction

Neuropsychiatric symptoms are common in patients with Parkinson’s disease (PD). A recent published study reported that 89% of PD patients with dementia presented with at least one neuropsychiatric symptom [1]. These symptoms cause impairments in daily living activities equal to or more than the limitations that result from motor deficits, and may lead patients to earlier admission to residential care [2-4]. Neuropsychiatric symptoms also occur even in the early stages of the disease. Prior research has suggested that these symptoms frequently go unrecognised by clinicians and remain untreated [5].

It has been reported that neuropsychiatric symptoms have a negative impact on cognitive abilities in PD patients. However, the link between the presence of specific neuropsychiatric symptoms and specific cognitive impairments needs to be reviewed as well as gaining a thorough understanding of the neural bases of specific symptoms, since prior studies used different methodologies and consequently produced inconsistent findings. Existing review articles on this topic focused mainly on a few neuropsychiatric symptoms and reviewed only either the neuropsychological or the neural correlates of those symptoms in PD, but did not cover the range of possible symptoms that can be observed in this disease and did not look for a parallel between brain atrophy or dysfunction and cognitive deficits within the same sample of patients [6-12].

The present review will cover the most common psychiatric manifestations observable in PD, and will also attempt a comprehensive overview of their cognitive and neural aspects. More specifically, the review will cover depression, apathy, psychosis, Impulse Control Disorders (ICDs) and anxiety [13]. In detail the review addresses some important issues including how specific neuropsychiatric symptoms may affect cognitive abilities in patients with PD; and what specific regional brain atrophy or dysfunction may underlie a specific symptom in PD. The review will highlight any limitations in the literature which might be helpful to suggest directions for future work.

Method

Articles were identified by carrying out a comprehensive review of published research papers that have investigated the cognitive and neural correlates of neuropsychiatric symptoms in PD. The present online literature search of the Web of Science and PubMed databases was carried out in October 2014. This search was completed in two stages; the time span for the first stage of search was from 1986 to 2014, whereas for the second stage was from 1994 to 2014. Firstly, a search for published papers about neuropsychiatric symptoms and cognitive impairments in PD was carried out using the following keywords: Parkinson’s disease, neuropsychiatric symptoms, depression, apathy, psychosis, hallucinations, impulse control disorders, anxiety, cognitive impairments and cognitive decline. The initial search identified 1275 titles and abstracts. Then we excluded 217 duplicate publications. The abstracts and full reports were reviewed to eliminate articles according to the
following exclusion criteria: (1) studies that did not focus on cognitive abilities, for instance some studies were focused on other aspects such as prevalence, clinical correlates and managements, (2) review articles, (3) papers that did not include patients with a diagnosis of PD, (4) the investigation of other non-motor symptoms or other neuropsychiatric symptoms that were not specified in this review, (5) non-peer reviewed articles and (6) articles which were not written in the English language. In total, 41 articles met our inclusion criteria (See figure 1 and tables 1, 2 and 3).

- Insert Figure 1 and Tables 1, 2 and 3 about here -

The second stage was to look for published articles on the neural bases of neuropsychiatric symptoms in PD using the same key words except for the words cognitive impairments and cognitive decline but including Magnetic Resonance Imaging (MRI), Voxel-Based Morphometry (VBM), Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) instead. We identified 338 titles and abstracts, and then we excluded 43 duplicate articles. Almost the same exclusion criteria for the first stage were used for the second stage of the review. Specifically, criteria 2 to 6 were used, but also articles that did not use any neuroimaging techniques had to be excluded. After applying these exclusion criteria there were 26 studies that met criteria (See figure 2 and table 4).

- Insert Figure 2 and Table 4 about here -

Results

According to Aarsland et al. [14] the overall prevalence of neuropsychiatric symptoms in PD patients is 61%. The most common symptoms are depression (38%), hallucinations (27%), anxiety (20%) and apathy (16.5%). The less common symptoms are euphoria (7.0%) and disinhibition (6.5%). A more recent study [15] found that the prevalence of neuropsychiatric symptoms in early untreated PD patients was 56%. The most common symptoms reported in this study were depression (37%), apathy (27%), sleep disturbance (18%) and anxiety (17%), whereas, psychotic symptoms were found to be very rare among untreated PD patients [15]. In PD patients with dementia the prevalence of neuropsychiatric symptoms was found to be higher. In the Aarsland et al study, 50 out of 139 patients were demented [14] and in a further study, Leroi et al [16] reported that 96% of PD patients with dementia presented with at least one neuropsychiatric symptom. Another study demonstrated an
association between the total Neuropsychiatric Inventory (NPI) score (as measured by the Hospital Anxiety and Depression Scale) in non-demented PD patients. Also, the presence of neuropsychiatric symptoms was independently predicted by a longer disease duration and more severe stage of PD.

1. COGNITIVE CORRELATES OF NEUROPSYCHIATRIC SYMPTOMS IN PD

1.1 DEPRESSION

Depression is the most common neuropsychiatric symptom in PD patients. It has been indicated that the prevalence rate of depression in this disease is approximately 40%. Several studies have demonstrated an association between depression and cognitive impairments in PD patients. There are, however, a few other studies that did not detect a significant association between depression and variance in cognitive deficit in PD (See table 1). In this disease, cognitive deficits may occur as a form of global cognitive decline or as an impairment of specific cognitive domains. For example, some researchers have found that higher depression scores negatively correlated with lower scores on the Mini Mental State Examination (MMSE) and the Dementia Rating Scale (In the third of these studies patients had mild to moderate disease stages with an average disease duration of 11.3 years, patients also were taking Levodopa medication), and the Wechsler Adult Intelligence Scale (In this study patients had mild to moderate disease stages). However, these findings are not in line with other studies that found no relationship between depression and overall cognitive skills in PD (In both these latter studies patients had mild to moderate disease stages).

Deficits of specific cognitive domains in depressed PD patients mainly involved the impairment of executive functions, attention and memory. In terms of executive dysfunction, several studies have reported that patients with depression performed significantly lower than non-depressed patients on tests of executive function including the Wisconsin Card Sort Test (WCST), Controlled Word Association Test-FAS, Trail Making Test (TMT) (A and B), Verbal Fluency, Abstract Reasoning, Design Fluency Test (Free condition) and the Symbol Digit Modalities. Other studies have also demonstrated that depressed PD patients had lower scores relative to non-depressed PD patients using a variety of executive tasks e.g. Letter Fluency, Abstract Reasoning and Card Sorting Test, Category Fluency Test and TMT, set-shifting and response inhibition. Frontal Assessment Battery and Stroop test. As for deficits in other cognitive domains, earlier studies have reported an association between depression and poorer scores on tasks of attention (assessed by a subtest of the Dementia Rating Scale and Digit Span Forward), short-term memory (measured by Digit Span Forward and Backward), and
memory which was assessed by the Word-list recall and recognition test \[22\], Hopkins Verbal Learning Test \[24, 41\], a subtest of the Dementia Rating Scale \[26\] and the Pattern Recognition Memory Task \[29\]. In addition, another study indicated a relationship between depression and poorer performance on a range of cognitive tasks including those testing executive function (Trail Making Test), memory (Rey Auditory Verbal Learning Test) and visuospatial skills (Rey-Osterreith Complex Figure Test) \[42\].

Despite the amount of research which has examined the association between depression and cognitive functions in PD, various shortcomings in these studies limit the validity of their conclusions. These limiting factors include failing to exclude patients who presented with multiple neuropsychiatric symptoms, a small number of participants in some studies and the use of screening instruments that measure limited cognitive functions. Furthermore, prior work did not focus on the early stages of the disease, most of the studies recruited patients with heterogeneous levels of severity ranging from mild to severe stages.

1.2 APATHY

In the literature, it has been demonstrated that apathy is associated with cognitive dysfunction \[15, 41, 43-53\] (See table 2), depression \[44-46, 50, 51, 53-56\] and anxiety \[57\]. Although apathy and depression can co-exist in PD, several studies have found that apathy may occur in isolation in the absence of depression \[15, 45, 46, 51, 53, 56, 58-60\].

Apathy in PD patients has been found to be associated mainly with executive dysfunction \[15, 41, 44, 45, 49, 52, 53, 57\]. For instance, Aarsland et al. \[14\] examined cognitive functions in PD patients with and without dementia. Apathy was found to be significantly associated with dementia and an executive function task, i.e. the Stroop test \[14\]. Other studies found that apathy was significantly associated with executive dysfunctions, evaluated with the Executive Interview \[61\] and category and letter fluency \[45\] (In this study patients were treated with Levodopa and their average disease duration was 4.3 years). Dujardin and colleagues \[44\] evaluated cognitive functions in non-demented PD patients (Average disease duration was 9.4 years and they were treated with Levodopa). They concluded that after an 18 month follow-up, apathetic PD patients had more cognitive deficits, mainly executive dysfunction (measured by the Stroop test) and were more likely to meet the criteria for dementia compared with non-apathetic PD patients \[44\]. Memory deficits have also been observed in apathetic PD patients without dementia. These were detected with tasks of immediate free recall, short and long delay free recall, long delayed cued recall, delayed recognition (evaluated by the California Verbal Learning Test) \[62\], and digit span backward \[52\] (In this study patients had mild to severe disease stages, their average disease duration was 5.9 years and they were treated with Levodopa). A recently published study showed that patients with akinetic-rigid type PD who manifested apathy performed significantly worse on tasks of frontal lobe function e.g. the FAB \[63\].
letter fluency 64 and interference error on the Stroop test 65 compared with patients with tremor-dominant type PD 47.

A further study reported that in patients with PD with left-side onset (Patients had mild to moderate disease stages, their average disease duration was 8.4 years and they were treated with Levodopa), apathy scores significantly correlated with scores on non-verbal tasks of e.g. executive function, assessed by the TMT (part B) and attention, measured by the Visual Symbol Search Test 57. Robert and others 66 reported that apathy scores were negatively correlated with emotional facial recognition scores in patients with PD. However, Robert et al 67 found that apathy did not correlate with executive functions (assessed by the Wisconsin Card Sorting Test, TMT, category and letter fluency tests and the Stroop test) in non-demented PD patients. Other studies have reported an association between apathy and global cognitive impairment (measured by the MMSE and the Cambridge Examination for Mental Disorders of the Elderly part B) in PD patients 46,50. More recently published papers have found that apathetic PD patients had lower scores on tasks of frontal functions (evaluated by the Frontal Systems Behaviour Scale and the Stroop test) 68,69 and visuospatial functions (assessed by the Constructional Apraxia Task and the Benton Judgment of Lines Orientation Task) 69 when compared to non-apathetic PD patients.

In the literature, studies of apathy and cognitive abilities in PD patients did not take PD severity into account. In other words, previous studies have not explored the association between apathy and cognitive skills in the early stages of PD, but they have taken a broad definition of the disease and included patients at different severity levels. Further, earlier studies have used a limited number of participants or used general cognitive measurements which do not assess a broader range of cognitive domains. In patients with PD, the development of NPS has been frequently linked to the use of antiparkinsonian treatments but not to dementia 70,71. There are several pieces of evidence which support the hypothesis that cognitive impairments and dementia are a consequence of the development of NPS in general and apathy in particular 14,41,43-45,47-53,72. For instance, a recent study 16 explored the frequency of NPS in three groups of patients with PD; patients without cognitive impairment (PD-NC, n = 54), patients with mild cognitive impairment (PD-MCI, n = 48) and patients with dementia (PDD, n = 25). Patients who showed at least one NPS were 39 (72.2%) in the PD-NC group, 38 (79.2%) in the PD-MCI group and 24 (96%) in the PDD group. Apathy was more frequent in the PD-MCI and PDD groups than the PD-NC group. In this study, apathy was also significantly correlated with factors such as advanced stage of disease and dopamine agonist load and all cognitive measures used in that study (e.g. Trail Making Test, Verbal Fluency Task, Wisconsin Card Sorting Test, 5-minute recall of 3 words and MMSE) 16.
1.3 PSYCHOSIS

The most common psychotic symptom in PD is Visual Hallucination (VH)73. Several studies have observed cognitive decline in patients with PD who have VH73-78 (See table 3). For example, a study examined the presence of cognitive impairment in non-demented PD patients with VH (Mild to moderate disease stages, average disease duration was 6.79 years, average years of PD onset was 60.21 and all patients treated with Lovadopa). Patients with VH had significantly lower scores relative to patients without VH in global cognitive abilities assessed by the short test of mental status79, frontal functions, evaluated by the Stroop test65, category fluency task64, the clock drawing test80 and nonverbal memory assessed by the Visual reproduction subtest of the Wechsler memory scale81. However, there were no significant differences between the two PD subgroups in visual perceptive functions measured by the Benton face recognition test82, the Judgement of Line Orientation test83 and one of the frontal functions test which was the Wisconsin Card Sorting Test84. These results suggest that PD patients with VH might have deterioration in frontal and memory functions76. Moreover, a further study reported that PD patients with VH had cognitive impairment in visual memory tasks (evaluated by the Warrington Recognition Memory for Faces), visuoperceptive and visuospatial functions (assessed by the Benton Facial Recognition Test and the standard drawing and multiple-choice versions of the Benton Visual Form Discrimination Test respectively) compared with PD patients without VH77 (In this study patients had mild to moderate disease stages and treated with Levodopa). A recently published study examined cognitive decline in non-demented PD patients with and without VH (Patients were treated with Levodopa, Dopamine agonist and Anticholinergic medications). Results revealed that patients with VH performed significantly lower than patients without this symptom on tasks of executive function (measured by the Stroop test) and delayed recall which was evaluated by the Rey Complex Figure Test78.
1.4 IMPULSE CONTROL DISORDERS

Few studies have examined cognitive functioning in PD patients with ICDs. The cognitive domain that appears to be mostly impaired in PD patients with ICDs is executive functioning. Biundo and others [85] reported executive dysfunction in PD patients with ICDs (Average disease duration was 8.81 years, age at onset was 53.18 and all patients treated with dopamine agonist). This cognitive impairment specifically was found in general frontal lobe function (detected by the TMT part B) and in shifting abilities as measured by the TMT part B minus part A score. Furthermore, other studies have reported memory impairment in PD patients with ICDs, particularly, in spatial working memory tasks assessed by the Cambridge Automated Neuropsychological Test Battery [89] (In this study the average age at PD onset was 53.49 and patients were treated with Levodopa and a dopamine agonist), short-term memory and working memory as measured by digit span forward and backward.

1.5 ANXIETY

Only two studies have investigated the relationship between anxiety and cognitive functions in PD patients [57, 90] (See table 3). The first study reported that left-lateralized PD patients with anxiety performed significantly worse than right-lateralized PD patients with anxiety on working memory tasks, i.e. the digit span backward subtest of the Wechsler memory scale [90]. The second study reported that in PD patients with right-side onset, anxiety scores were significantly correlated with verbal deficits including verbal fluency (assessed by the Controlled Word association Test-FAS), language and memory (evaluated by the Boston Naming Test and California Verbal Learning Test respectively) [57].

2. NEUROANATOMICAL CORRELATES OF NEUROPSYCHIATRIC SYMPTOMS IN PD

2.1 DEPRESSION

We found 11 imaging studies that have explored the neural bases of PD patients with and without depression using different imaging techniques [91-101] (See table 4). Among these studies, there is only one study that found no differences in brain regions between PD patients with and without depression [97] (In this study patients had mild to severe disease stages, average disease duration was 4.9 years and age at onset was 62.6). However, other articles reported brain changes in depressed PD patients. For instance, a recently published PET study reported that in patients with PD, depression scores (as assessed by the Beck Depression Inventory) correlated with increased brain metabolism in the amygdala [93]. Other studies have emphasised the important role of the dorsomedial prefrontal cortex in a similar group of patients [99]. A PET study found that PD patients with depression had decreased cerebral blood flow in the frontal cortex and in the anterior cingulate cortex when compared with PD patients without depression and controls [99]. Two VBM studies
reported that depressed PD patients had lower grey matter density in the frontal, temporal cortex \[92\] (In this study patients had moderate disease stage, their average disease duration was 9.9 years and they were treated with Levodopa), in the posterior cingulate cortex and the hippocampus \[94\] (This study included patients with mild to moderate disease stages, average disease duration was 6 years and they were treated with Levodopa). Sheng et al. \[100\] found that functional connectivity was decreased within the prefrontal-limbic system and increased in the prefrontal cortex and lingual gyrus in PD patients with depression.

A limited number of studies have investigated white matter volume in PD patients with depression. These studies revealed that PD patients with depression had white matter reductions in the right anterior cingulate bundle, inferior orbitofrontal regions and in the left inferior parietal lobe \[94\], the frontal lobe bilaterally, possibly representing dysfunction in bilateral anterior cingulate bundles \[96\], and the mediodorsal nucleus of the thalamus bilaterally \[95\].

In summary, two VBM studies have explored the neural correlates of depression in PD patients \[92, 94\], but these studies have various limitations. For instance, in the Feldmann et al. study, PD patients were in the moderate stage of the disease (Hoehn- Yahr, 1967). The exploration of depression in patients with early stage of PD may allow for more effective diagnosis and intervention. In addition, the earlier studies did not covariate for total intracranial volume, which might have contributed to the results of grey matter reduction. Furthermore, the authors relied on reports of previous episodes of other neuropsychiatric symptoms in order to exclude patients who had these symptoms. Finally, the Kostic et al. study included PD patients in the mild to moderate stages, a very small sample size and included 8 patients who were treated with antidepressants \[94\]. It has been reported that antidepressant medications activate specific brain regions which may influence the results of neuroimaging studies that investigate depressive symptoms \[102\]. For instance, a meta-analysis \[103\] of fMRI and PET studies has shown that antidepressants in major depression increase the activation of dorsolateral, dorsomedial and ventrolateral prefrontal cortices, whereas the activation was decreased in the amygdala, hippocampus, parahippocampal, areas, ventral anterior cingulate cortex and orbitofrontal cortex. Therefore, it seems that the exclusion of patients who take antidepressants is highly recommended in functional neuroimaging studies in order to have more precise results.

2.2 Apathy

Despite the fact that apathy is probably the most frequently observed neuropsychiatric symptom in PD patients, the neural bases of apathy in PD patients remain unclear. We found 7 studies that have investigated the underlying mechanism of apathy in PD using a variety of imaging techniques \[45, 50, 66, 67, 93, 101, 104\] (See table 4). A PET study investigated apathy in non-demented PD patients (Average disease duration at surgery was 11.2 years) after deep brain
stimulation of the subthalamic nucleus using the Apathy Evaluation Scale [105]. In this study, positive correlations were identified between apathy scores and glucose metabolism in the frontal lobe; whereas, apathy scores were negatively correlated with glucose metabolism in the posterior cingulate gyrus and the frontal lobe [104]. A VBM study has shown evidence that in PD low grey matter density in many cortical brain region within the frontal, parietal, cingulate cortex correlated with high apathy scores [50]. An fMRI study investigated the specific characteristics of apathy, depression, and motor progression in the resting state of PD patients using the Amplitude of the Low Frequency Fluctuation (ALFF). Higher apathy scores were associated with increased normalized ALFF signal in the frontal and in the cingulate cortex bilaterally. Conversely, higher apathy scores were correlated with decreased activity in the supplementary motor region, the parietal lobule and the fusiform gyrus. Severity of depression was correlated with increased normalized ALFF signal in the cingulate, the cuneus, the lateral geniculate and the mesial frontal gyrus [101].

The involvement of the frontal and cingulate cortex has been constantly observed in PD patients with apathy. More recent PET studies have supported this view, for instance, Report et al. (2012) found that apathy scores correlated positively with cerebral metabolism in the inferior/middle frontal gyrus, cuneus and the insula. Negative correlations were identified between apathy scores and cerebral metabolism in the bilateral cerebellum, particularly the inferior semilunar lobule [67]. A more recent PET study in PD patients showed that apathy scores correlated with increased metabolism in the anterior cingulate and orbitofrontal lobe bilaterally [93]. Robert et al. [66] also reported increased metabolism within the posterior cingulate cortex in apathetic patients with PD. However, a different study did not identify any specific measure of frontotemporal atrophy correlating with the presence or severity of apathy [45].

To our knowledge, none of the earlier studies has investigated white matter changes in patients with PD who have apathy. However, in other neurological disorders such as Alzheimer’s disease this point has been studied with one study reporting that apathetic AD patients had a significantly greater amount of frontal white matter hyperintensities than non-apathetic AD patients [106].

It can be noticed from the above review that the association between apathy and white matter volume in PD has not yet been explored. In addition, only one VBM study has investigated grey matter volume in PD with apathy but this study had various limitations such as the inclusion of patients with only mild apathy scores and the use of only a correlational analysis design. Indeed, there is evidence that apathy is associated with atrophy of the frontal and cingulate cortex in PD [50, 104].

2.3 PSYCHOSIS

Most of the earlier imaging studies that attempted to explore psychosis in patients with PD focused on the study of visual hallucination [78, 107-113] (See table 4). Previous reports suggest that
VH in PD patients can be correlated either with cortical or subcortical atrophy [113]. Specifically, VH was associated with dysfunction of frontal lobe [78, 109, 111-113], temporal lobe [78, 110], cingulate cortex [112, 113], hippocampus [112], parahippocampal, primary and secondary visual cortex [113], thalamus [78], precuneus and cerebellum [111]. A VBM study investigated grey and white matter alterations in PD patients with VH (Patients had mild to moderate disease stages, average disease duration was 10 years, average age at PD onset 53.6 and they were treated with Levodopa) [113]. This study reported grey matter reduction in the prefrontal cortex, cingulate cortex and visual association areas in PD patients with VH. The same group of patients showed white matter reduction in the parahippocampal gyrus, posterior cingulate gyrus, lingual gyrus and middle occipital gyrus when compared with PD patients without VH. However, this study included small number of patients. A further study has reported grey matter reduction in the left frontal areas in patients with PD who have developed VH when compared with those patients without VH [107] (In this study the average disease duration for patients was 5.3 years and average age at PD onset was 63.1).

2.4 IMPULSE CONTROL DISORDERS

We found only two imaging studies that have investigated ICDs in PD patients [85, 114] (See table 4). The first study reported decreases in the binding potential of a dopaminergic tracer in the ventral striatum in PD patients with pathological gambling [114] (This study included patients with mild to moderate disease stages and their average disease duration was 7.4 years). Additionally, a VBM study examined brain volume changes in PD patients with and without ICDs and healthy controls. The Minnesota Impulsive Disorders Interview was used to assess ICDs. When compared with controls, PD patients (with and without ICDs), had a significantly lower grey matter volume in frontal lobe [85].

2.5 ANXIETY

Only one recent imaging study has examined the association between anxiety and brain metabolism changes in patients with PD (See table 4). Huang et al. (2013) studied the correlation between anxiety scores (as assessed by the Beck Anxiety Inventory) [115] and brain metabolism in non-demented patients with PD. This study used a Region of Interest (ROI) technique to explore PD-related regions e.g. the motor cortex, cingulate cortex, occipital lobe, frontal cortex, cerebellum, limbic system and temporoparietal association cortex. The anxiety scores correlated with decreased metabolism in the caudate nucleus bilaterally [93].

Discussion

Most of the prior studies reported differences in cognitive abilities between patients with and without neuropsychiatric symptoms; these findings suggest that the presence of neuropsychiatric symptoms can affect cognitive skills in this patient population. Particularly, significant differences were detected on tests that mainly assess executive functioning (e.g. inhibitory control and working
memory), which fit the cognitive profile of patients with frontal lobe dysfunction. Moreover, the association between neuropsychiatric symptoms and executive dysfunction has been reported in non-demented PD patients, \([19,116]\), again, adding to the conclusion that neuropsychiatric symptoms in PD may be associated with specific regional frontal lobe dysfunction and might not necessarily be a consequence of overall cognitive impairment.

In general, there are three core types of executive functions which seem to be repeatedly involved and these are inhibitory control, working memory and cognitive flexibility \([117]\). Thus perhaps, the inability to perform well on the tasks that assess executive functions in PD routes from poor working memory and a lack of control over the stimuli presented to them in the context of prefrontal cortex damage. Furthermore, the atrophy observed within the frontal circuits contributes to the manifestation of neuropsychiatric symptoms in PD, leading to poor self-control and a weak attention span (including both behavioural and cognitive abnormalities).

In line with the above, there have been similar patterns of association observed in neurodegeneration related to AD type pathology in experiments in which patients with MCI with neuropsychiatric symptoms have also been studied with a comprehensive battery of neuropsychological tests. For instance, Rosenberg and colleagues \([118]\) found that the presence of executive dysfunction in MCI was associated with greater severity of neuropsychiatric symptoms as assessed by the NPI, specifically depression, anxiety, agitation, apathy, disinhibition, irritability, and sleep disturbance. This finding is also supported by another study by Ellison et al \([119]\) who reported that the most frequent symptoms were depression/dysphoria, apathy, anxiety, irritability/lability and nighttime abnormal behaviour in MCI. Another study \([120]\) showed that MCI patients with a high number of neuropsychiatric symptoms (four or more) are more likely than patients with fewer symptoms (up to three) to have the amnestic form of MCI, which most likely reflects the presence of neurodegeneration leading to AD dementia. Amnestic MCI patients with more neuropsychiatric symptoms had a greater risk of developing dementia than those with fewer symptoms.

A systematic review study of MCI patients indicated that the prevalence of neuropsychiatric symptoms ranged from 35% to 75% with the most common being depression, apathy, anxiety and irritability \([120-122]\). These studies also reported that MCI patients with behavioural disturbances are more likely to develop AD than patients without these features. Furthermore, Trivedi et al. \([123]\) reported that neuropsychiatric symptoms (as measured by the NPI) were significantly more severe and frequent in patients with MCI than in healthy participants, and demented patients had significantly more neuropsychiatric problems than MCI and healthy groups. Other studies have shown that there was a negative association between frequency of neuropsychiatric symptoms and MMSE scores in patients with MCI \([120,122]\).
In view of the findings of the current review and the MCI studies, it can be said that the
development of neuropsychiatric symptoms goes in parallel with cognitive decline and should be
thoroughly assessed in patients with cognitive impairment (independently of the underlying
neurodegenerative aetiology, i.e. whether due to PD or AD). These findings also raise the question of
whether treatment of neuropsychiatric symptoms in PD or MCI (due to AD) might prevent or delay
progression to dementia. Further investigations are required to address this point.

Despite the cognitive investigations were done independently from the imaging studies, a
speculative attempt can be made to integrate some of the findings from both types of study. For
instance, Starkstein et al [28] found that depressed PD patients had executive dysfunction which was
detected by the TMT. This result may reflect less brain activation in the middle frontal gyrus, a
finding that was reported in the Sheng et al [100] study. This speculation is also supported by an fMRI
study that found brain activation in the middle frontal gyrus in healthy participants while performing
the TMT [124]. In addition, the low scores on the letter fluency test found in depressed PD patients in
the cognitive studies [31, 33] could be explained by brain atrophy in the anterior cingulate gyrus [79,
80]. The letter fluency task requires the participant to initiate extensive searches for suitable words.
Also for this task, evidence from fMRI studies is helpful as an association between the anterior
cingulate cortex and letter fluency performance has been repeatedly reported in healthy participants
[125-127].

This review of the literature illustrates studies that have investigated the association between
cognitive abilities and neuropsychiatric symptoms in patients with PD. However, these studies did not
control for the presence of other neuropsychiatric symptoms when they investigated a specific
symptom in patients with this disease. Prior research has provided evidence that neuropsychiatric
symptoms in Parkinson’s disease can manifest either as independent isolated symptoms or as multiple
co-occurring symptoms. In addition, there are some methodological issues that have been raised
following studies that examined specific neuropsychiatric symptoms. For instance, when examining
cognitive decline within a group of patients with a particular neuropsychiatric symptom, it is very
important to exclude patients who experience multiple symptoms. This approach will allow a better
understanding of the possible cognitive correlates when breaking down the results for each specific
symptom. However, most previous work did not take this issue into account. Another point is that
certain studies assess only global cognitive abilities or limited cognitive domains. Additionally, prior
investigations did not focus on the early stages of PD when examining these variables. Similar
methodological issues have been found in some published studies that have explored the brain regions
that may correlate with specific neuropsychiatric symptoms.

Future studies should take all the limitations highlighted above into account and especially
study neuropsychiatric symptoms in patients at a much earlier stage of the disease. It would also be
an advance if the presence of symptoms were ascertained by using an instrument which can detect
also the presence of other concomitant neuropsychiatric symptoms. An instrument such as the Neuropsychiatric Inventory \cite{128} for example (or others with similar structure) would allow the exclusion of other co-occurring symptoms when exploring a particular feature. In addition, in most of the available studies a limited range of cognitive abilities was assessed. The use of an extensive neuropsychological battery to explore multiple cognitive domains could provide a clearer picture of the cognitive skills which might have deteriorated in non-demented PD patients who develop a specific neuropsychiatric symptom or a given set of symptoms. Furthermore, cognitive and neuroimaging studies of anxiety in patients with PD are limited. Only two studies have examined the cognitive correlates of anxiety in PD \cite{57,90} but neither of them compared patients with anxiety versus patients without any neuropsychiatric symptoms or healthy controls. The underlying neurobiological mechanisms of anxiety in PD, therefore, have yet to be explored, which is something that could add a further dimension to the investigation and clarification of the causes of neuropsychiatric symptoms in PD.

The overall underlying mechanisms of neuropsychiatric symptoms in PD are still unclear. Although there are several published studies which have investigated the neural correlates of neuropsychiatric symptoms using different approaches, little is known about the structural brain areas that may associate with these symptoms. It has been reported that a VBM approach offers a suitable way to explore grey and white matter volume changes as it has been championed for its powerful unbiased hypothesis testing approach across the whole brain \cite{129}. Finally, a combination of both neuropsychological and more advanced imaging techniques (i.e. diffusion tensor imaging and resting state fMRI) in exploring neuropsychiatric symptoms in the same cohort of patients with PD might provide a better understanding of both the cognitive and the neural breakdowns associated with the genesis of neuropsychiatric symptoms in the early stages of PD.

Acknowledgements: King Fahad Medical City, Riyadh, Saudi Arabia for funding this project.

References

Cognitive and Neuroanatomical Correlates of Neuropsychiatric symptoms in Parkinson’s Disease: A review

List of tables

<table>
<thead>
<tr>
<th>Authors</th>
<th>NPSS</th>
<th>Number of participants</th>
<th>NPSS Assessments</th>
<th>Cognitive domain targeted</th>
<th>Cognitive tests</th>
<th>Impaired cognitive performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor et al. (1986) [32]</td>
<td>Depression</td>
<td>15 PD with depression 15 PD without depression</td>
<td>Beck Depression Inventory (BDI) DSM-III</td>
<td>Short-term memory</td>
<td>Digit span</td>
<td>No differences</td>
</tr>
<tr>
<td>Starkstein et al. (1989) [28]</td>
<td>Depression</td>
<td>15 PD with major depression 19 PD with minor depression 44 PD without depression</td>
<td>Hamilton Rating Scale for Depression (HRSD) DSM-III BDI</td>
<td>Global cognitive ability Executive function Attention</td>
<td>MMSE WCST TMT Digit span</td>
<td>All cognitive domains</td>
</tr>
<tr>
<td>Troster et al. (1995) [34]</td>
<td>Depression</td>
<td>45 PD with depressed 45 PD patients without depression</td>
<td>BDI</td>
<td>Conceptualisation Initiation Construction Memory</td>
<td>Subtests of Dementia Rating Scale</td>
<td>No differences</td>
</tr>
<tr>
<td>Troster et al. (1995) [33]</td>
<td>Depression</td>
<td>44 PD with depressed 44 PD patients without depression</td>
<td>BDI</td>
<td>Executive function Attention Memory Immediate and delayed recall</td>
<td>WCST Digit span Logical Memory Test part of WAIS Boston Naming Test COWAT-FAS Digit span RPM</td>
<td>No differences</td>
</tr>
<tr>
<td>Kuzis et al. (1997) [25]</td>
<td>Depression</td>
<td>19 PD with depression 31 PD without depression 27 with depression only</td>
<td>HRSD</td>
<td>Executive function Attention Abstract reasoning</td>
<td>Verbal fluency Attention Abstract reasoning</td>
<td></td>
</tr>
<tr>
<td>Cubo et al. (2000) [23]</td>
<td>Depression</td>
<td>88 PD</td>
<td>HRSD</td>
<td>Global cognitive ability</td>
<td>MMSE</td>
<td>Global cognitive ability</td>
</tr>
<tr>
<td>Norman et al. (2002) [26]</td>
<td>Depression</td>
<td>35 PD</td>
<td>BDI</td>
<td>Global cognitive ability</td>
<td>DRS</td>
<td>Global cognitive ability</td>
</tr>
<tr>
<td>Uekermann et al. (2003) [30]</td>
<td>Depression</td>
<td>12 PD with depression 16 PD without depression 14 with depression only</td>
<td>BDI</td>
<td>Executive function Memory General intellectual functioning</td>
<td>Letter Fluency Test Digit span WAIS</td>
<td>Executive dysfunction Short-term memory Concept formation</td>
</tr>
<tr>
<td>Costa et al. (2006) [22]</td>
<td>Depression</td>
<td>18 PD with major depression 21 PD with minor depression 32 PD without depression</td>
<td>DSM-IV BDI</td>
<td>Global cognitive ability Memory Executive functions Abstract reasoning Visual-spatial Language</td>
<td>MMSE Word-list recall and recognition Letter Fluency Test RPM Coping Rey’s figure form Sentence Construction Test WAIS</td>
<td>Global cognitive ability Long-term verbal episodic memory Abstract Reasoning</td>
</tr>
<tr>
<td>Stefanova</td>
<td>Depression</td>
<td>16 PD with major depression</td>
<td>DSM-IV</td>
<td>Global cognitive</td>
<td>Verbal fluency Global</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Depression Level</td>
<td>Cognitive Tests/ Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>et al. (2006)</td>
<td>Depression</td>
<td>Cognitive ability, Memory, Executive abilities, Language, Visual organisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 PD with minor depression</td>
<td>RAVLT, TMT, Letter and Category, Fluency Tests, Boston Naming Test, Spatial Working Memory Test, Pattern Recognition Memory Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54 PD without depression</td>
<td>COWAT, Face Recognition Test, Judgment of Line Orientation Test, DRS, Digit span, HVLT, TMT, DRVS, RPM, WAIS, COWAT, RPM, WAIS, COWAT, RPM, WAIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 PD with depression</td>
<td>Stroop Test, Set-shifting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 PD without depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santangelo et al. (2009)</td>
<td>Depression</td>
<td>Cognitive ability, Set-shifting, Inhibitory control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65 PD with depression</td>
<td>Stroop Test, FAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 PD without depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fernandez et al. (2009)</td>
<td>Depression</td>
<td>Cognitive ability, Word-list delayed recall, Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>82 PD</td>
<td>MMSE, DRS, Digit span, HVLT, TMT, Judgment of Line Orientation Test, Face Recognition Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of articles included in the review (Cognitive performance in PD with apathy)

<table>
<thead>
<tr>
<th>Authors</th>
<th>NPSS</th>
<th>Number of participants</th>
<th>NPSS Assessments</th>
<th>Cognitive domain targeted</th>
<th>Cognitive tests</th>
<th>Impaired cognitive performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starkstein et al. (1992) [51]</td>
<td>Apathy</td>
<td>45 PD</td>
<td>AES</td>
<td>Executive functions</td>
<td>COWAT-FAS</td>
<td>Verbal fluency</td>
</tr>
<tr>
<td>Aarsland et al. (1999) [15]</td>
<td>Apathy</td>
<td>139 PD</td>
<td>NPI</td>
<td>Global cognitive ability</td>
<td>MMSE</td>
<td>Global cognitive ability</td>
</tr>
<tr>
<td>Zgaljardic et al. (2007) [53]</td>
<td>Apathy</td>
<td>32 PD</td>
<td>AES</td>
<td>Executive functions</td>
<td>Letter and Category Fluency Tests</td>
<td>Verbal fluency</td>
</tr>
<tr>
<td>Dujardin et al. (2009) [44]</td>
<td>Apathy</td>
<td>20 PD with apathy 21 PD without apathy</td>
<td>LARS</td>
<td>Executive functions</td>
<td>Stroop Test</td>
<td>Response inhibition</td>
</tr>
<tr>
<td>Reijniders et al. (2010) [50]</td>
<td>Apathy</td>
<td>55 PD</td>
<td>AES</td>
<td>Global cognitive ability</td>
<td>MMSE</td>
<td>No correlation</td>
</tr>
<tr>
<td>Butterfield et al. (2010) [41]</td>
<td>Apathy</td>
<td>68 PD</td>
<td>AES</td>
<td>Executive functions</td>
<td>WCST</td>
<td>Problem-solving</td>
</tr>
<tr>
<td>Varanese et al. (2011) [52]</td>
<td>Apathy</td>
<td>23 PD with apathy 25 PD without apathy</td>
<td>AES</td>
<td>Executive functions</td>
<td>WCST</td>
<td>Word-list delayed recall</td>
</tr>
<tr>
<td>Moretti et al. (2012) [47]</td>
<td>Apathy</td>
<td>103 PD</td>
<td>NPI and AES</td>
<td>Executive functions</td>
<td>Letter Fluency Test</td>
<td>Set-shifting</td>
</tr>
<tr>
<td>Robert et al. (2012) [26]</td>
<td>Apathy</td>
<td>45 PD</td>
<td>AES</td>
<td>Executive functions</td>
<td>WCST</td>
<td>No correlation</td>
</tr>
<tr>
<td>Robert et al. (2014) [66]</td>
<td>Apathy</td>
<td>36 PD</td>
<td>AES</td>
<td>Emotional facial recognition Memory</td>
<td>EFR Task</td>
<td>Emotional facial recognition</td>
</tr>
<tr>
<td>Santangelo et al. Apathy 62 PD</td>
<td>AES</td>
<td></td>
<td></td>
<td></td>
<td>Rey’s 15-word word</td>
<td></td>
</tr>
</tbody>
</table>

30
<table>
<thead>
<tr>
<th>Study</th>
<th>Condition</th>
<th>Sample Size</th>
<th>Frontal Functions</th>
<th>Visuospatial</th>
<th>Test</th>
<th>Apraxia Task</th>
<th>BJLOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>al. (2014) [69]</td>
<td></td>
<td></td>
<td>Frontal functions</td>
<td>Visuospatial</td>
<td>Test</td>
<td>Apraxia Task</td>
<td>BJLOT</td>
</tr>
<tr>
<td>Buelow et al. (2014) [68]</td>
<td>Apathy</td>
<td>24 PD</td>
<td>Frontal Systems</td>
<td>Decision</td>
<td>Iowa Gambling</td>
<td>Decision</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Summary of articles included in the review (Cognitive performance in PD with Hallucinations, ICDs and anxiety)

<table>
<thead>
<tr>
<th>Authors</th>
<th>NPSS</th>
<th>Number of participants</th>
<th>NPSS Assessments</th>
<th>Cognitive domain targeted</th>
<th>Cognitive Tests</th>
<th>Impaired cognitive performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grossi et al. (2005)</td>
<td>Hallucinations</td>
<td>9 PD with VH</td>
<td>DSM-IV</td>
<td>Executive functions</td>
<td>Letter and Category Fluency Tests, Rey’s 15-word test, RCPM</td>
<td>Verbal fluency, Word-list immediate recall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 PD with Auditory hallucination</td>
<td></td>
<td>Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 PD with both types of hallucinations</td>
<td></td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34 PD without hallucinations</td>
<td></td>
<td>Abstract Thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Spatial functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Immediate recall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramirez-Ruiz et al. (2007)</td>
<td>VH</td>
<td>20 PD with VH</td>
<td>DSM-IV</td>
<td>Global cognitive ability</td>
<td>MMSE, WRMF, BFRT, BVFDT</td>
<td>Visual memory, Visuospatial, -visuospatial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 PD without VH</td>
<td>DSM-IV</td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Spatial functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Visuospatial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Attention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozer et al. (2007)</td>
<td>VH</td>
<td>33 PD with VH</td>
<td>Unified Parkinson’s disease Rating Scale</td>
<td>Global cognitive ability</td>
<td>Short test of Mental Status, Stroop Test, Category Fluency Test, Clock Drawing Test, WCST, BJLOT, BFRT</td>
<td>Global cognitive ability, Verbal fluency, Set-shifting, Response inhibition, Verbal memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 PD without VH</td>
<td>Unified Parkinson’s disease Rating Scale</td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Spatial functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Visuospatial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Attention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronnick et al. (2011)</td>
<td>VH</td>
<td>86 PD with dementia</td>
<td>NPI</td>
<td>Executive functions</td>
<td>D-KEFS, Serial’s task from MMSE, Visual Construction Task subtest of ADAS-Cog Go/no-go test, Stroop Test, Rey Complex, Figure Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NPI</td>
<td>Working Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NPI</td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NPI</td>
<td>Visuospatial Attention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shin et al. (2012)</td>
<td>VH</td>
<td>46 PD with VH</td>
<td>NPI</td>
<td>Executive functions</td>
<td>Set-shifting, Response inhibition, Delayed recall, Visuo-motor speed, Immediate recall</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 PD without VH</td>
<td>NPI</td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Visuospatial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Attention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepp et al. (2013)</td>
<td>VH</td>
<td>31 PD with VH</td>
<td>Scales for Outcome in Parkinson Disease</td>
<td>Executive functions</td>
<td>TMT, Rey 15-word test, Rey Complex, WCST, Rey Complex, Figure Test, RCPM, WCST, TMT, WCST</td>
<td>Set-shifting, Response inhibition, Delayed recall, Spatial planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31 PD without VH</td>
<td>Scales for Outcome in Parkinson Disease</td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Visuospatial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSM-IV</td>
<td>Attention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santangelo et al. (2009)</td>
<td>ICDs</td>
<td>15 PD with ICDs</td>
<td>FAB</td>
<td>Frontal functions</td>
<td>FAB, TMT, Letter and Category Fluency Tests, WCST, Rey Complex, Figure Test, RCPM, WCST</td>
<td>Cognitive flexibility, Set-shifting, Abstract thinking, Delayed recall, Spatial planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 PD without ICDs</td>
<td>TMT</td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMT</td>
<td>Visuospatial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMT</td>
<td>Attention</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMT</td>
<td>Associative Learning Task</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMT</td>
<td>Working memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Djamshidian et al. (2010)</td>
<td>ICDs</td>
<td>18 PD with ICDs</td>
<td>Memory</td>
<td>Digit span</td>
<td>Digit span, Associative Learning Task, Working memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 PD without ICDs</td>
<td>Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitale et al. (2011)</td>
<td>ICDs</td>
<td>45 PD with ICDs</td>
<td>Minnesota Impulsive Disorders Interview</td>
<td>Frontal and executive functions</td>
<td>TMT, WCST, Stroop Test, Rey Complex, WCST, Stroop Test, Rey Complex, Figure-Copying Task, Rey 15-word test</td>
<td>Spatial planning, Set-shifting, Cognitive flexibility, Inhibitory control, Immediate and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45 PD without ICDs</td>
<td>Frontal and executive functions</td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frontal and executive functions</td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frontal and executive functions</td>
<td>Immediate recall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Group 1</td>
<td>Group 2</td>
<td>Test Measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biundo et al. (2011) [85]</td>
<td>33 PD with ICDs</td>
<td>24 PD without ICDs</td>
<td>Minnesota Impulsive Disorders Interview</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Global cognitive abilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>visuospatial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abstract reasoning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>attention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>visuospatial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abstract reasoning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>attention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rey Complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Figure Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Similarities Task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RCPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digit span</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voon et al. (2010) [89]</td>
<td>14 PD with ICDs</td>
<td>14 PD without ICDs</td>
<td>DSM-IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spatial working memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Set-shifting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foster et al. (2010) [90]</td>
<td>Anxiety</td>
<td>59 PD</td>
<td>State-trait Anxiety Inventory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digit span</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Working memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogdanova & Cronin-Golomb (2012) [57]</td>
<td>Anxiety</td>
<td>22 PD</td>
<td>Beck Anxiety Inventory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Executive functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Visuospatial Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COWAT-FAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digit span</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RCPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Boston Naming Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CVLT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Summary of articles included in the review (Neuroanatomical of PD with neuropsychiatric symptoms)

<table>
<thead>
<tr>
<th>Authors</th>
<th>NPSS</th>
<th>Number of participants</th>
<th>Imaging technique</th>
<th>Affected brain area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring et al. (1994) [99]</td>
<td>Depression</td>
<td>10 PD with depression</td>
<td>PET</td>
<td>Bilateral medial frontal cortex and anterior cingulate cortex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 PD without depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remy et al. (2005) [98]</td>
<td>Depression</td>
<td>20 PD</td>
<td>PET</td>
<td>Bilateral locus coeruleus and limbic system</td>
</tr>
<tr>
<td>Matsu et al. (2007) [96]</td>
<td>Depression</td>
<td>23 PD with depression</td>
<td>diffusion tensor MRI (ROI)</td>
<td>Bilateral anterior cingulate bundle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27 PD without depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feldmann et al. (2008) [92]</td>
<td>Depression</td>
<td>23 PD with depression</td>
<td>VBM</td>
<td>Left inferior orbito-frontal gyrus, bilateral rectal gyrus and right superior temporal pole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27 PD without depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardoso et al. (2009) [91]</td>
<td>Depression</td>
<td>20 PD with depression</td>
<td>fMRI ROI</td>
<td>Left mediodorsal nucleus of the thalamus and medial prefrontal cortex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 PD without depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kostic et al. (2010) [94]</td>
<td>Depression</td>
<td>16 PD with depression</td>
<td>VBM</td>
<td>Right posterior cingulate cortex, right inferior temporal gyrus and right hippocampus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 PD without depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. (2010) [95]</td>
<td>Depression</td>
<td>14 PD with depression</td>
<td>diffusion tensor MRI (ROI)</td>
<td>Bilateral mediodorsal thalamus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 PD without depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrovic et al. (2012) [97]</td>
<td>Depression</td>
<td>34 PD with depression</td>
<td>MRI (White matter hyperintesities)</td>
<td>No differences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 PD without depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al. (2013) [93]</td>
<td>Depression, Apathy</td>
<td>26 PD</td>
<td>PET (ROI)</td>
<td>Bilateral amygdala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bilateral anterior cingulate and orbitofrontal lobe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bilateral caudate nucleus</td>
</tr>
<tr>
<td>Sheng et al. (2014) [100]</td>
<td>Depression, Anxiety</td>
<td>20 PD with depression</td>
<td>Resting-state fMRI</td>
<td>Left middle frontal gyrus and right inferior frontal gyrus, bilateral amygdala and lingual gyrus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 PD without depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isella et al. (2002) [45]</td>
<td>Apathy</td>
<td>30 PD</td>
<td>Morphometric MRI</td>
<td>No correlation</td>
</tr>
<tr>
<td>Le Jeune et al. (2009) [104]</td>
<td>Apathy</td>
<td>12 PD</td>
<td>PET</td>
<td>Right middle/inferior frontal gyrus and bilateral posterior cingulate gyrus</td>
</tr>
<tr>
<td>Reijnders et al. (2010) [50]</td>
<td>Apathy</td>
<td>55 PD</td>
<td>VBM</td>
<td>Left precentral gyrus, bilateral inferior parietal gyrus, inferior frontal gyrus,insula and right posterior cingulate gyrus</td>
</tr>
<tr>
<td>Skidmore et al. (2011) [101]</td>
<td>Apathy</td>
<td>22 PD</td>
<td>fMRI</td>
<td>Right middle orbital-frontal gyrus, bilateral subgenual cingulate, left supplementary motor regions, left inferior parietal lobule and fusiform gyrus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Right subgenual cingulate, bilateral cuneus, right geniculate and mesial frontal gyrus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Left posterior cingulate</td>
</tr>
<tr>
<td>Robert et al. (2012) [67]</td>
<td>Apathy</td>
<td>45 PD</td>
<td>PET</td>
<td>Right inferior/middle frontal gyrus, cuneus, insula and bilateral cerebellum</td>
</tr>
<tr>
<td>Robert et al. (2014) [66]</td>
<td>Apathy</td>
<td>36 PD</td>
<td>PET</td>
<td>Left posterior cingulate</td>
</tr>
<tr>
<td>Nagano-Saito et al. (2004) [109]</td>
<td>VH</td>
<td>11 PD with VH</td>
<td>PET</td>
<td>Left superior frontal gyrus</td>
</tr>
<tr>
<td>Oishi et al. (2005) [110]</td>
<td>VH</td>
<td>8 PD without VH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 PD with VH</td>
<td>SPECT</td>
<td>Right superior/middle temporal gyri and fusiform gyrus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41 PD without VH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Age with Condition</td>
<td>Imaging</td>
<td>Findings</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>---------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Ramirez-Ruiz et al. (2008)</td>
<td>VH</td>
<td>10 PD with VH</td>
<td>fMRI</td>
<td>Right inferior/middle/superior frontal and anterior cingulate gyrus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 PD without VH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibarretxe-Bilbao et al. (2008)</td>
<td>VH</td>
<td>44 PD</td>
<td>VBM (ROI)</td>
<td>Hippocampus (Anterior regions)</td>
</tr>
<tr>
<td>Shin et al. (2012)</td>
<td>VH</td>
<td>46 PD with VH</td>
<td>VBM</td>
<td>Right orbitofrontal, left temporal and thalamic areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 PD without VH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watanabe et al. (2013)</td>
<td>VH</td>
<td>13 PD with VH</td>
<td>VBM</td>
<td>Bilateral dorsolateral prefrontal cortex, left rostral prefrontal cortex, left cingulate cortex, bilateral primary and secondary visual cortex and parahippocampal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 PD without VH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pagonabarraga et al. (2013)</td>
<td>VH</td>
<td>17 PD with VH</td>
<td>VBM</td>
<td>Bilateral inferior frontal cortex precuneus, cerebellum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 PD without VH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gama et al. (2014)</td>
<td>VH</td>
<td>39 PD</td>
<td>VBM</td>
<td>Left opercula frontal gyrus</td>
</tr>
<tr>
<td>Steeves et al. (2009)</td>
<td>ICDs</td>
<td>7 PD with ICDs</td>
<td>PET</td>
<td>Left superior frontal gyrus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 PD without ICDs</td>
<td></td>
<td>Ventral striatum</td>
</tr>
<tr>
<td>Biundo et al. (2011)</td>
<td>ICDs</td>
<td>33 PD with ICDs</td>
<td>VBM</td>
<td>Bilateral middle/superior frontal gyrus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 PD without ICDs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Flow chart of study selection process (Cognitive correlates of neuropsychiatric symptoms in PD)

Titles and abstracts identified and screened N= 1275

Excluded N= 217 (Duplicate publications)

Excluded N= 742 Not focused on cognitive abilities

Full copies retrieved and assessed for eligibility N= 316

Excluded N= 275 Foreign language/not evaluating specific neuropsychiatric symptoms

Publications meeting inclusion criteria N= 41
Depression N= 13
Apathy N= 15
Hallucinations N= 6
ICDs N= 5
Anxiety N=1
Anxiety and apathy N= 1
Fig. 2 Flow chart of study selection process (Neural correlates of neuropsychiatric symptoms in PD)

Titles and abstracts identified and screened N= 338

Excluded N= 43 (Duplicate publications)

Not focused on neuroimaging in PD with neuropsychiatric symptoms

Excluded N= 217

Full copies retrieved and assessed for eligibility N= 78

Excluded N= 52
Foreign language/not evaluating specific neuropsychiatric symptoms

Publications meeting inclusion criteria N= 26
Depression N= 8
Apathy N= 5
Hallucinations N= 8
ICDs N= 2
Anxiety and depression N= 1
Depression and apathy N= 2