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Abstract

A magnetic bag is an abelian approximation to a large number of coincident SU(2)
BPS monopoles. In this paper we consider magnetic bags in hyperbolic space and derive
their Nahm transform from the large charge limit of the discrete Nahm equation for
hyperbolic monopoles. An advantage of studying magnetic bags in hyperbolic space,
rather than Euclidean space, is that a range of exact charge N hyperbolic monopoles
can be constructed, for arbitrarily large values of N , and compared with the magnetic
bag approximation. We show that a particular magnetic bag (the magnetic disc)
provides a good description of the axially symmetric N -monopole. However, an abelian
magnetic bag is not a good approximation to a roughly spherical N -monopole that has
more than N zeros of the Higgs field. We introduce an extension of the magnetic bag
that does provide a good approximation to such monopoles and involves a spherical
non-abelian interior for the bag, in addition to the conventional abelian exterior.
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1 Introduction

In three-dimensional Euclidean space there is a 4N -dimensional moduli space of SU(2)
charge N BPS magnetic monopole solutions of the Bogomolny equation. If the N monopoles
are coincident, it has been proposed that in the large N limit there is an abelian description,
known as a magnetic bag [1]. This is a solution of the abelian Bogomolny equation for a
real scalar field, that approximates the length of the Higgs field, and a U(1) gauge field
that models the component of the non-abelian gauge field in the Higgs direction. The bag
is defined by a surface in R

3 and the abelian fields are taken to vanish in the interior of
the bag. Direct evidence for the magnetic bag description, in terms of a comparison with
the non-abelian fields of a monopole, is limited to low charge [1, 2], where a few axial and
platonic monopole examples are available [3]. In particular, it has been observed that the
magnetic bag provides a reasonable prediction for the size of these monopoles [4]. There is
also a monopole wall [5], with infinite magnetic charge, that resembles a local patch of the
surface of a large magnetic bag. Supporting evidence for the magnetic bag idea comes from
the fact that the Nahm transform [6] for monopoles becomes a transform for magnetic bags
in the large N limit [7]. Rigorous results relating to the size of a magnetic bag have recently
been obtained [8], and attempts have been made to numerically compute non-abelian field
configurations with large values of N , with similar properties to a magnetic bag, by gluing
together cones of unit charge [9].

The low charge platonic monopoles may be divided into two types, by the structure of
the zeros of the Higgs field [10]. The N = 4 cubic monopole and the N = 7 dodecahedral
monopole have a single zero of the Higgs field, with multiplicity1 N , at their centre. This
property is shared by the axially symmetric N -monopole, for all N > 1. Turning to the
platonic solids with triangular faces, the tetrahedral, octahedral and icosahedral monopoles,
with charges N = 3, 5, 11, have N + 1 zeros of the Higgs field on the vertices of the platonic
solid and at their centre there is an additional zero with multiplicity −1 (an anti-zero).
This led Lee and Weinberg [2] to propose that these low charge monopoles are embryonic
versions of large charge monopoles that can be described by two extreme types of monopole
bag, which they named non-abelian and abelian bags respectively. The first type models a
monopole with a single zero of the Higgs field (with multiplicity N) at the centre of the bag.
The second type describes a monopole that has most of the Higgs zeros (in fact N+1 of them)
distributed on the surface of the bag. In this paper we shall have something to say about
both types of monopole bag, but the terms non-abelian and abelian are potentially confusing
given our later analysis. We therefore prefer to use the terms cherry and strawberry flavour,
to distinguish monopoles that have a large (in terms of multiplicity) zero of the Higgs field
at their centre from those that have most of the Higgs zeros distributed on a surface. The
nomenclature is chosen because the distribution of the Higgs zeros mirrors the distribution
of the seeds in a cherry or a strawberry.

BPS monopoles in Euclidean space have a natural generalization to hyperbolic space,

1The multiplicity is the winding number of the normalized Higgs field on a small sphere surrounding the
Higgs zero.
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although a Nahm transform is known only if there is a discrete relationship between the
curvature of hyperbolic space and the asymptotic length of the Higgs field. In this case
hyperbolic monopoles correspond to circle-invariant Yang-Mills instantons in R

4 [11] and are
related to solutions of a discrete Nahm equation [12]. In this paper we study magnetic bags
in hyperbolic space and investigate their properties. We describe a transform that maps
hyperbolic magnetic bags to solutions of a u(∞) Nahm equation and show how to derive
this equation as the large N limit of the discrete Nahm equation. If the asymptotic length
of the Higgs field is suitably tuned then exact charge N hyperbolic monopole solutions can
be obtained in terms of free data specifying N + 1 points on the sphere (together with a set
of positive weights) [13]. By taking large values of N (we shall consider values of several
hundred) this provides large charge hyperbolic monopoles that can be used for comparison
with the magnetic bag approximation. This is a significant advantage over the Euclidean
situation.

Taking the points to be at the vertices of a regular (N + 1)-gon, in an equatorial circle
on the sphere, yields the axially symmetric charge N hyperbolic monopole. This monopole
is cherry flavour, having a single zero of the Higgs field of multiplicity N at its centre. In
the large N limit the associated magnetic bag is squashed into a circular disc – a magnetic
disc. We compute an exact solution for the magnetic disc and show that it provides a good
approximation to the axial N -monopole in the large N limit. If the N + 1 points are suf-
ficiently distributed over the sphere, at the vertices of a deltahedron, then the hyperbolic
monopole is roughly spherical. This monopole is strawberry flavour, with N + 1 zeros of
the Higgs field on the vertices of the deltahedron and an anti-zero at the origin. This is the
large N generalization of the tetrahedral, octahedral and icosahedral hyperbolic monopoles
that arise from this construction with N = 3, 5, 11 [13]. However, we find that the spherical
abelian magnetic bag is not a good approximation to such hyperbolic N -monopoles, because
the Higgs field does not remain small inside the bag and also has a significant spatial struc-
ture. We introduce an extension of the magnetic bag that applies when there are extra zeros
of the Higgs field and show that this new bag does provide a good approximation to these
large charge exact hyperbolic monopole solutions. This sheds new light on the mysterious
nature of monopole anti-zeros.

2 Hyperbolic monopoles and magnetic bags

In this section, we consider SU(2) magnetic monopoles and bags on three-dimensional
hyperbolic space, H

3
κ, with constant curvature −κ2. The discussion is a straightforward

generalization of the Euclidean case H
3
0 = R

3, and includes this flat space limit. We denote
the metric on H

3
κ by

ds2(H3
κ) = gijdx

idxj, (2.1)

and its boundary by ∂H3
κ.
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The static energy of the SU(2) Yang-Mills-Higgs theory is

E =

∫

H3
κ

(
−1

8
Tr

(
FijF

ij
)
− 1

4
Tr

(
DiΦD

iΦ
))√

g d3x, (2.2)

where Φ, Ai, are the su(2)-valued Higgs field and the components of the gauge potential,
with Fij = ∂iAj − ∂jAi + [Ai, Aj] and DiΦ = ∂iΦ + [Ai,Φ], for i = 1, 2, 3.

The boundary condition on the Higgs field is that it has constant positive magnitude v
at spatial infinity, that is

|Φ|2 = −1

2
Tr(Φ2) = v2 on ∂H3

κ. (2.3)

The monopole charge, N ∈ Z, is given by the magnetic flux through the boundary at infinity

N = − 1

4πv

∫

∂H3
κ

Tr(FΦ), (2.4)

where F is the field stength two-form F = 1
2
Fij dx

i ∧ dxj. To simplify the presentation, we
shall restrict to the case N > 0. A standard Bogomolny argument yields the energy bound

E ≥ 2πvN, (2.5)

which is attained by solutions of the first order Bogomolny equation

Fij =
√
gεijkD

kΦ. (2.6)

As in flat space, there is a 4N -dimensional moduli space of solutions to (2.6), corresponding
to arbitrary positions and U(1) phases for each of the N individual monopoles.

For monopoles in hyperbolic space there are two length scales, namely, the curvature
scale of hyperbolic space 1/κ, and the core size 1/v of a single monopole. The relevant
quantity is the ratio of these length scales, v/κ. As first pointed out by Atiyah [11], if
2v/κ ∈ Z then a charge N hyperbolic monopole is equivalent to a circle-invariant self-
dual Yang-Mills instanton in R

4, with instanton number 2Nv/κ. As a result, the study of
hyperbolic monopoles simplifies for discrete values of the asymptotic length of the Higgs
field, relative to the curvature of hyperbolic space. As only the ratio is important, without
loss of generality we may choose to fix either κ or v. We shall choose to fix the former, by
setting κ = 1 from now on, which means that the flat space limit is equivalent to the limit
v → ∞ and the special tuned values for the length scale are given by 2v ∈ Z. For notational
convenience we denote H

3
1 by H

3.
A magnetic bag [1] is an abelian approximation to a monopole solution in the large N

limit, where all N monopoles are coincident. It involves a real scalar field φ and a U(1)
gauge field fij = ∂iaj − ∂jai, that are to be interpreted as approximations to the length of
the Higgs field and the projection of the non-abelian gauge field onto the Higgs direction
respectively

φ ≈ |Φ| and fij ≈ −Tr(FijΦ)

2|Φ| . (2.7)
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These abelian fields are required to satisfy the abelian Bogomolny equation

fij =
√
gεijk∂

kφ, (2.8)

which implies that φ satisfies the Laplace-Beltrami equation

∂i(
√
ggij∂jφ) = 0. (2.9)

The magnetic bag is defined by specifying the surface of the bag Σ, that divides H3 into an
interior and exterior part. In the interior of the bag the abelian fields φ and fij are taken
to vanish. The scalar field is required to vanish on the surface of the bag and to have the
correct asymptotic value at spatial infinity

φ = 0 on Σ and φ = v on ∂H3. (2.10)

Finally, the magnetic charge is identified with the abelian magnetic flux through the surface
of the bag

N =
1

2π

∫

Σ

f, (2.11)

where f = 1
2
fij dx

i ∧ dxj is the abelian two-form field strength.
The idea is that the magnetic bag approximation improves with increasingN and becomes

exact in the limit N → ∞, if accompanied by the limit v → ∞, with N/v non-zero and
finite. This double scaling limit is required to keep the size of the bag (and the hyperbolic
N -monopole) finite as N → ∞. Note that this limit does not correspond to the Euclidean
limit, which is v → ∞ with N/v → 0.

The freedom in choosing the surface Σ reflects the fact that the dimension of the N -
monopole moduli space tends to infinity as N → ∞. The simplest example is the spherical
bag, as follows. We work with the ball model of hyperbolic space, given by the metric

ds2(H3) =
4

(1−R2)2
(
(dX1)2 + (dX2)2 + (dX3)2

)
, (2.12)

with radial coordinate R =
√
(X1)2 + (X2)2 + (X3)2 < 1. For a spherical bag, φ(R), the

Laplace-Beltrami equation (2.9) reduces to

∂R

(
R2

1−R2
∂Rφ

)
= 0. (2.13)

Denoting the radius of the bag by R⋆, then φ(R) = 0 for 0 ≤ R < R⋆ and for R ≥ R⋆ we
require the solution of (2.13) that satisfies the boundary conditions φ(R⋆) = 0 and φ(1) = v.
This solution is easily found to be

φ =
v

(1−R⋆)2

(
R2

⋆ + 1− R⋆

R
(R2 + 1)

)
. (2.14)
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Substituting this solution into the abelian Bogomolny equation (2.8) yields the abelian field
strength, from which the magnetic charge N can be calculated using (2.11). This provides
the following relation between the radius of the bag and the magnetic charge

N

v
=

4R⋆

(1−R⋆)2
. (2.15)

This relation can be used to rewrite (2.14) as

φ = v − N

4R
(1−R)2. (2.16)

This explicit example, and in particular the formula (2.15), illustrates the above discussion
regarding the double scaling limit, required to keep the size of the bag finite as N → ∞.

It is helpful to rewrite the bag radius formula (2.15) in terms of the geodesic distance
from the origin ρ = 2 tanh−1R, to give

ρ⋆ =
1

2
log

(
N

v
+ 1

)
. (2.17)

From this we see that if the radius of the bag is much smaller than the curvature length scale,
ρ⋆ ≪ 1, then we recover the flat space result ρ⋆ ≈ N/(2v), that the bag radius grows linearly
with the magnetic charge. In contrast, for large bags ρ⋆ ≫ 1, the radius has a logarithmic
growth with the magnetic charge.

For later use, we note that in terms of the geodesic distance from the origin, the expression
(2.16) for the scalar field of the spherical magnetic bag is

φ = v(N + 1−N coth ρ). (2.18)

A hyperbolic monopole is determined by the fields on ∂H3 [12], in contrast to Euclidean
monopoles, where the fields on the sphere at infinity only fix the charge N. This distinction
is also reflected in the magnetic bag description, because the surface of the bag Σ is encoded
in the abelian field strength on the boundary. To show this property, introduce spherical
coordinates R, θ, χ in the ball model of H3,

X1 = R sin θ cosχ, X2 = R sin θ sinχ, X3 = R cos θ. (2.19)

As the scalar field φ of a magnetic bag is a harmonic function, it can be written as an
expansion in terms of spherical harmonics Yl,m(θ, χ) as

φ = v − N

4R
(1−R)2 +

∞∑

l=1

ψl(R)
l∑

m=−l

cl,mYl,m(θ, χ), (2.20)

where ψl(R) is the solution of the ordinary differential equation

∂R

(
R2

1−R2
∂Rψl

)
− l(l + 1)

1−R2
ψl = 0, (2.21)
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satisfying the boundary condition

ψl(R)

(1−R)2
→ 1 as R → 1. (2.22)

ψl can be expressed in terms of an associated Legendre function of the first kind

ψl(R) =
(−1)l

(l + 1)!

√
π(1−R2)

R
P

l+ 1

2

1

2

(
1 +R2

1−R2

)
, (2.23)

but we shall not need this explicit representation.
It is clear from (2.20) that all the expansion coefficients cl,m contribute to the computation

of the surface of the bag Σ, given by φ = 0. Substituting the expansion (2.20) into the abelian
Bogomolny equation (2.8) and taking the limit R → 1 yields the abelian field strength on
the boundary sphere

f =

(
N

2
− 2

∞∑

l=1

l∑

m=−l

cl,mYl,m(θ, χ)

)
sin θ dθ ∧ dχ. (2.24)

This shows that all the expansion coefficients cl,m contribute to the abelian field strength on
∂H3 and hence this contains the information required to reconstruct Σ. Note that all the
coefficients cl,m vanish for a spherical bag, hence these coefficients provide a measure of the
deviation of the bag from a spherical shape.

3 The hyperbolic u(∞) Nahm equation

In Euclidean space there is a Nahm transform that relates magnetic bags to solutions
of a u(∞) Nahm equation [7]. In this section, we describe a natural generalization of this
transform to hyperbolic space.

u(∞) is the Lie algebra of smooth real functions on S2, with Lie bracket given by the
Poisson bracket, and it may be regarded as the large N limit of the Lie algebra u(N) of
hermitian N × N matrices [14]. To be explicit, consider S2 as the unit sphere in R

3 with
cartesian coordinates u = (u1, u2, u3). The standard area two-form on the sphere is given by
ω = 1

2
εijku

i duj ∧ duk and the associated Poisson bracket is

{P,Q} = εijku
i ∂P

∂uj
∂Q

∂uk
(3.1)

for functions P (u), Q(u) on S2. The algebra of functions on S2 is generated by the cartesian
coordinates, which clearly satisfy

[ui, uj] = 0 and (u1)2 + (u2)2 + (u3)2 = 1, (3.2)

together with the Poisson bracket relation

{ui, uj} = εijku
k. (3.3)
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To reveal the connection to the large N limit of u(N), let J1, J2, J3 denote the generators
of the N -dimensional irreducible representation of su(2), satisfying [J i, J j] = εijkJ

k. The
algebra of hermitian N ×N matrices is generated by U j = 2i

N
J j, satisfying

[U i, U j] =
2i

N
εijkU

k and (U1)2 + (U2)2 + (U3)2 = 1− 1

N2
. (3.4)

The relations (3.4) converge to the relations (3.2) in the limit as N → ∞, if we make the
identification U j → uj. Furthermore, in this limit the Poisson bracket relation (3.3) gives

N [U i, U j] = 2iεijkU
k → 2iεijku

k = 2i{ui, uj}, (3.5)

providing the prescription for replacing commutators by Poisson brackets.
To define the hyperbolic u(∞) Nahm equation, let x = (x1, x2, x3) be coordinates in H

3

with metric (2.1) and consider the mapping

x : S2 × [0, v) 7→ H
3, (3.6)

defined by a solution of the equation

dxi

ds
=

√
g

N
gilεjkl{xj, xk}, (3.7)

where s is the independent variable in the interval [0, v). The boundary condition is that x
is a coordinate on ∂H3 as s→ v.

The Nahm transform for magnetic bags is simply an exchange of the independent and
dependent variables in (3.7). The scalar field φ is identified with the variable s and the
abelian two-form f is proportional to the area two-form ω on S2,

φ = s, f =
N

2
ω. (3.8)

In particular, this identification means that x evaluated at s = 0 is a coordinate on Σ, the
surface of the bag.

In the Euclidean case, the proof that the u(∞) Nahm equation is equivalent to the
abelian Bogomolny equation can be found in [7]. As (3.7) is simply the covariant version of
the Euclidean equation, the proof follows from a simple covariant version of the Euclidean
proof. The main step is to multiply (3.7) by ω ∧ ds and to use the property of the Poisson
bracket {xj, xk}ω ∧ ds = dxj ∧ dxk ∧ ds to see that N

2
ω = ∗ds, where ∗ denotes the Hodge

dual on H
3. This is the abelian Bogomolny equation (2.8), given the identification (3.8).

As the Nahm transform linearizes the hyperbolic u(∞) Nahm equation (3.7), then we
expect this to be an integrable system with an infinite number of conserved quantities. In
fact it is easy to show that ∫

{φ=s}

Ψf, (3.9)
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is independent of s, for any harmonic function Ψ on H
3 with no singularities. The proof is

a simple application of Stokes’ theorem, as follows,
∫

{φ=s2}

Ψf −
∫

{φ=s1}

Ψf =

∫

{s1≤φ≤s2}

dΨ ∧ f =

∫

{s1≤φ≤s2}

dΨ ∧ ∗dφ

=

∫

{s1≤φ≤s2}

dφ ∧ ∗dΨ =

∫

{φ=s2}

φ ∗ dΨ −
∫

{φ=s1}

φ ∗ dΨ (3.10)

= s2

∫

{0≤φ≤s2}

d ∗ dΨ − s1

∫

{0≤φ≤s1}

d ∗ dΨ = 0.

In terms of spherical coordinates (2.19), we may take Ψ = ψ̃l(R)Yl,m(θ, χ), where

ψ̃l(R) =
(l + 1)!

2

√
π(1−R2)

R
P

−l− 1

2

1

2

(
1 +R2

1−R2

)
(3.11)

solves the radial equation (2.21) and is normalized so that ψ̃l(1) = 1. The conserved quantities
(3.9) are then proportional to the constants cl.m that appear in the expansion (2.20) of φ.

To illustrate the Nahm transform for hyperbolic magnetic bags, we consider the example
of the spherical bag, introduced in the previous section. Using the ball model metric (2.12)
the hyperbolic u(∞) Nahm equation (3.7) becomes

dX i

ds
=

2

N(1−R2)
εijk{Xj, Xk}. (3.12)

In terms of the cartesian coordinates ui on S2, the spherically symmetric ansatz is given by

X i = uiR(s). (3.13)

Using the Poisson bracket relation (3.3) reduces (3.12) to the ordinary differential equation

dR

ds
=

4R2

N(1−R2)
. (3.14)

The solution satisfying the required boundary condition, R(v) = 1, is

R(s) = 1− 2
√
v − s√

v − s+
√
N + v − s

. (3.15)

Setting s = φ in (3.15) indeed reproduces the spherical bag solution (2.16), in inverse function
form. The bag radius is

R⋆ = R(0) = 1− 2

1 +
√

1 +N/v
, (3.16)

which agrees with (2.15).
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4 The large N limit of the discrete Nahm equation

In Euclidean space, the u(∞) Nahm equation can be derived as a large N limit of the
Nahm equation for N ×N matrices [7]. This approach is not an option in hyperbolic space,
as there is no known Nahm transform for generic values of v. However, for the tuned values
2v ∈ Z, there is a transform between hyperbolic monopoles and solutions of a discrete Nahm
equation [12]. This lattice system is obtained by identifying hyperbolic monopoles with
circle invariant instantons and imposing circle symmetry within the ADHM construction [15].
The lattice is indexed by the weight under the circle action and the construction yields a
hyperbolic monopole within the upper half space model of H3, with metric

ds2(H3) =
(dy1)2 + (dy2)2 + (dy3)2

(y3)2
, (4.1)

where y3 > 0. The relation between the upper half space coordinates and the ball coordinates
is

y3 =
1−R2

1 +R2 − 2X3
, y1 + iy2 =

2(X1 + iX2)

1 +R2 − 2X3
, (4.2)

with the plane y3 = 0 mapping to the boundary of hyperbolic space, R = 1.
As a brief aside, note this is the most convenient coordinate system in which to write

down an abelian magnetic wall, namely a solution of the abelian Bogomolny equation that
has translational symmetry in a plane. Take (y1, y2) to be the symmetry plane of the wall,
located at the position y3 = y3⋆. The abelian fields vanish above the wall (y3 > y3⋆), whereas
below the wall (0 < y3 ≤ y3⋆) they are given by

φ = v − v

(
y3

y3⋆

)2

, f =
2v

(y3⋆)
2
dy2 ∧ dy1. (4.3)

We see that the magnetic flux is constant, hence the total magnetic flux through the wall
is infinite, as expected from the translational symmetry. However, a finite piece of this wall
provides a good description of a local patch of the surface of a large magnetic bag.

We now derive the hyperbolic u(∞) Nahm equation from the large N limit of the discrete
Nahm equation. This discrete system is defined on a one-dimensional lattice consisting of
2v lattice points, k = 0, . . . , 2v − 1 with complex N × N matrices B2j and W2j+1 defined
on even and odd lattice sites respectively. For ease of presentation, we assume that 2v is an
odd integer. The matrices are propagated along the lattice by applying the relations [12]

B2j+2 = W−1
2j+1B2jW2j+1 and W2j+1W

†
2j+1 = W2j−1W

†
2j−1 + [B†

2j, B2j]. (4.4)

Boundary conditions are introduced by extending the lattice to negative values and defining
B−2j = Bt

2j and W−(2j+1) = W t
2j+1, plus adding an extra lattice site and demanding that

W2v has rank one, so that W2vW
†
2v = LtL† for some N -component row vector L.
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The Nahm equation is obtained in the Euclidean flat space limit, v → ∞, as follows [12].
Define the scaled lattice variable σ = k/(2v) and write

B2j = −iT 1(σ)− T 2(σ) and W2j+1 = v + T 3(σ +
1

2
v−1). (4.5)

There is a gauge symmetry of this system that allowsW2j+1 to be be chosen to be hermitian.
σ becomes a continuous variable in the limit as v → ∞ and the lattice system (4.4) becomes
the Nahm equation [6]

dT i

dσ
= − i

2
εijk[T

j, T k], (4.6)

for the triplet of hermitian matrices T 1, T 2, T 3.
The starting point to derive the large N limit of the discrete Nahm equation is similar to

the above. We introduce the same scaled lattice variable σ but we modify (4.5) by dropping
the explicit v dependent term proportional to the identity matrix, to give

B2j = −iT 1(σ)− T 2(σ) and W2j+1 = T 3(σ +
1

2
v−1). (4.7)

Substituting this form into the discrete Nahm equation (4.4), taking the large v continuum
limit and neglecting terms of order v−1 yields

2
dT 1

dσ
T 3 −

[
dT 1

dσ
, T 3

]
+ iv

[
2T 2 +

1

v

dT 2

dσ
, T 3 +

1

2v

dT 3

dσ

]
= 0 (4.8)

2
dT 2

dσ
T 3 −

[
dT 2

dσ
, T 3

]
− iv

[
2T 1 +

1

v

dT 1

dσ
, T 3 +

1

2v

dT 3

dσ

]
= 0 (4.9)

2
dT 3

dσ
T 3 −

[
dT 3

dσ
, T 3

]
+ 2iv

[
T 1, T 2

]
= 0. (4.10)

Apply the large N limit by replacing matrices by functions on the sphere T j(σ) → yj(σ,u),
and using (3.5) to replace commutators by Poisson brackets, [T i, T j] → 2i

N
{yi, yj}. This gives

dy1

dσ
y3 − i

N

{
dy1

dσ
, y3

}
− v

N

{
2y2 +

1

v

dy2

dσ
, y3 +

1

2v

dy3

dσ

}
= 0 (4.11)

dy2

dσ
y3 − i

N

{
dy2

dσ
, y3

}
+

v

N

{
2y1 +

1

v

dy1

dσ
, y3 +

1

2v

dy3

dσ

}
= 0 (4.12)

dy3

dσ
y3 − i

N

{
dy3

dσ
, y3

}
− 2v

N

{
y1, y2

}
= 0. (4.13)

Finally, we take the limit v → ∞ and N → ∞ with v/N finite, to get

dyi

dσ
y3 =

v

N
εijk{yj, yk}, (4.14)

where σ ∈ [0, 1).
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To apply (4.14) in the large N limit, with N and v finite, we introduce the independent
variable s = vσ ∈ [0, v) to get the final form

dyi

ds
=

1

Ny3
εijk{yj, yk}. (4.15)

This is the hyperbolic u(∞) Nahm equation (3.7) in upper half space coordinates with the
metric (4.1). The boundary condition on the discrete Nahm equation, that the rank of Wk

drops by a factor 1/N when k = 2v, translates to the boundary condition that as s→ v then
y3 → 0, which is indeed the boundary of hyperbolic space, in upper half space coordinates.

5 Exact hyperbolic monopoles with large charge

By restricting to the simplest tuned value, v = 1
2
, explicit exact charge N hyperbolic

monopole solutions can be obtained from free data specifying N + 1 points on the sphere
(together with a positive weight for each point) [13]. At the heart of this construction is the
identification of a hyperbolic N -monopole with a circle-invariant N -instanton in R

4 obtained
using the JNR ansatz [16] for instantons, with JNR poles restricted to the fixed point set of
the circle action. An alternative view of the same solution is via the discrete Nahm equation
discussed in the previous section, where the restriction v = 1

2
reduces the lattice to a single

point. All that remains of the discrete Nahm equation is then a boundary condition for the
complex N × N symmetric matrix B0 and the complex row vector L that gives W1. The
solution associated with the free data is essentially obtained by taking B0 to be diagonal,
with the remaining data providing the components of L in a simple way that automatically
satisfies the boundary condition [17].

An explicit formula for the Higgs field is most naturally written using the upper half space
coordinates (4.1), no matter whether the JNR or discrete Nahm route is taken to obtain the
solution. To present this formula, let {γj ∈ CP

1, j = 0, . . . , N} be a set of N + 1 distinct
points on the Riemann sphere and use these points to define the following real function

Ξ =
N∑

j=0

1 + |γ2j |
|y1 + iy2 − γj|2 + (y3)2

. (5.1)

The square of the length of the Higgs field is then given by [13,17]

|Φ|2 =
(
y3

2Ξ

)2((
∂Ξ

∂y1

)2

+

(
∂Ξ

∂y2

)2

+

(
Ξ

y3
+
∂Ξ

∂y3

)2)
. (5.2)

Although this formula for the Higgs field is most readily obtained in upper half space coordi-
nates, the symmetry of the solution is most apparent by converting to the ball model using
the relations (4.2) between the two coordinate systems. This reveals that the points γj on
the Riemann sphere should be regarded as points on the sphere R = 1, that is the boundary
of H3 in the ball model. Furthermore, the monopole inherits the symmetry of this set of
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Figure 1: Energy density isosurfaces, in the ball model of H3, for hyperbolic monopoles with
N = 371. The hyperbolic monopole in the left image has axial symmetry and is cherry
flavour, whereas the one in the right image has icosahedral symmetry and is strawberry
flavour. The blue sphere represents the boundary of hyperbolic space.

points on the sphere, due to the choice of weights in (5.1). Replacing the weights 1 + |γj|2
in (5.1) with arbitrary real and positive weights also yields a hyperbolic monopole solution,
but generally this will not share the symmetry of the set of points on the sphere.

The axially symmetric hyperbolic N -monopole (positioned at the origin, with X3 the
axis of symmetry) is obtained in this formalism by the choice γj = e2πij/(N+1). Naively, it
might be expected that placing N + 1 points on the vertices of a regular (N + 1)-gon in an
equatorial circle would produce a monopole with a discrete cyclic symmetry, but the fact that
all the points lie on a circle enhances the cyclic symmetry to an axial symmetry. For later
reference, in the plane X3 = 0 the length of the Higgs field has the simple expression [18]

|Φ| = (N + 1)RN(1−R2)

2(1−R2N+2)
. (5.3)

From this formula we see that the axial N -monopole indeed has a zero of the Higgs field at
the origin, with multiplicity N . This means that the axial N -monopole is cherry flavour.

The energy density of a monopole solution can be obtained directly from the length of
the Higgs field by acting with the Laplace-Beltrami operator on |Φ|2. In the left image in
Figure 1 we display an energy density isosurface, using the ball model of H3, for the axial
monopole with N = 371 (the reason for this particular choice of N will be revealed shortly).
The blue sphere in this image represents the boundary of hyperbolic space, R = 1. We see
that, for a large value of N , the energy density isosurface of the axial N -monopole takes the
form of a thin disc. In the next section we study the magnetic bag approximation to this
type of solution, namely the magnetic disc, and show that it provides a good description.

Applying the above construction with N = 3, 5, 11 and placing the N + 1 points on the
sphere at the vertices of a tetrahedron, octahedron and icosahedron, respectively, yields a
tetrahedral 3-monopole, an octahedral 5-monopole and an icosahedral 11-monopole [13]. All
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these monopoles are strawberry flavor, with an anti-zero at the origin and N + 1 zeros of
the Higgs field on the vertices of a platonic solid. We can continue this family to large N ,
by placing the N + 1 points on the vertices of a suitable deltahedron, so that the points are
in some sense evenly distributed. Although there are no spherically symmetric monopoles
with N > 1, within the moduli space of monopoles obtained from the free data of points on
a sphere, this family generates an N -monopole that is the best candidate to have a spherical
abelian bag description.

To generate N + 1 evenly distributed points on the sphere we turn to the following
well-known physical problem. Given a positive integer M , the Thomson problem is to
find the positions of M unit charge point particles on the sphere that attain the global
minimum of their total electrostatic Coulomb energy (for a review see [19]). ForM = 4, 6, 12
the solution of the Thomson problem is to place the point particles at the vertices of a
tetrahedron, octahedron and icosahedron respectively. By taking our points on the sphere
to be the positions of the particles that solve the Thomson problem we can generate a family
of hyperbolic monopoles with charge N = M − 1 that includes and extends our platonic
strawberry flavour examples.

Computing solutions of the Thomson problem for large M is a difficult computational
task, due to the large number of local minima that exist. However, this is a well-studied
optimization problem, that is often used to benchmark new algorithms, so there is a wealth
of data available. In particular, magic numbers have been found at which icosahedrally sym-
metric local energy minima have been obtained that are believed to be the global minima.
Icosahedral symmetry is the best approximation to spherical symmetry that can be obtained
with a finite number of points, hence this is the closest that we can come to a spherical con-
figuration. As an example, it is believed that M = 372 is a magic number with icosahedral
symmetry [20]. Taking this configuration of points yields the icosahedrally symmetric hy-
perbolic monopole with charge 371 displayed in the right image in Figure 1. This explains
our earlier non-obvious choice of N = 371 for the axial monopole, as we want to display the
energy density isosurfaces of the two different kinds of monopole with the same charge, to
aid the comparison.

An examination of the Higgs field of the icosahedrally symmetric 371-monopole displayed
in the right image in Figure 1 confirms that this is indeed strawberry flavour, with an anti-
zero at the origin and 372 zeros on a shell. In section 7 we shall discuss the Higgs field of
this monopole in detail and explain why an abelian magnetic bag is not a good description.
We then introduce a new magnetic bag with a non-abelian interior that does provide a good
approximation to strawberry flavour monopoles.

Finally in this section, we stress that we expect there to be a family of charge N cherry
flavour hyperbolic monopoles that approach the spherical abelian magnetic bag in the largeN
limit. This is a family that extends the cubic 4-monopole and the dodecahedral 7-monopole,
obtained by imposing constraints on the ADHM construction that ensures a circle symmetry
of the instanton [13]. These examples are not within the scheme of specifying free data as
points on a sphere and hence we are currently unable to extend the family to large values of
N because of the technical difficulty in imposing the required constraints.
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6 The magnetic disc

A magnetic disc is the degenerate limit in which the surface Σ of the magnetic bag
becomes a disc. Therefore, to obtain a magnetic disc we require a harmonic function that
vanishes on a disc. It is possible to obtain the required solution explicitly by introducing
an appropriate coordinate system, in terms of Jacobi elliptic functions, with the property
that the Laplace-Beltrami equation has solutions that can be obtained via a separation of
variables [21].

Consider the disc, DS, of geodesic radius S, given in ball coordinates by X3 = 0 and√
(X1)2 + (X2)2 ≤ tanh(S/2). Let sn denote the Jacobi elliptic function with elliptic mod-

ulus tanhS and s̃n the Jacobi elliptic function with elliptic modulus sechS. We extend the
same notation to the other Jacobi elliptic functions and to the complete elliptic integral of
the first kind, so that K denotes this elliptic integral with elliptic modulus tanhS and K̃ is
the complete elliptic integral of the first kind with elliptic modulus sechS.

We introduce the coordinates r,Θ, χ on H
3, where 0 ≤ r < K̃ and the angular coordinates

have the ranges −K < Θ < K and 0 ≤ χ ≤ 2π. The relation to the ball coordinates is given
by

X1 =
sinhS ñc(r) cn(Θ) cosχ

1 + coshS d̃c(r) dn(Θ)
, (6.1)

X2 =
sinhS ñc(r) cn(Θ) sinχ

1 + coshS d̃c(r) dn(Θ)
, (6.2)

X3 =
tanhS s̃c(r) sn(Θ)

1 + coshS d̃c(r) dn(Θ)
, (6.3)

and yields the metric

ds2(H3) =
(
d̃c

2
(r)− dn2(Θ)

)
(dr2 + dΘ2) + sinh2S ñc2(r) cn2(Θ)dχ2. (6.4)

The first reason for using this coordinate system is that the disc DS is simply given by
r = 0. The second reason is that this allows a separable solution of the Laplace-Beltrami
equation (2.9) with φ a function of r only. The ansatz φ(r) reduces (2.9) to the ordinary
differential equation

d

dr

(
ñc(r)

dφ

dr

)
= 0. (6.5)

We require the solution that vanishes on the disc DS, hence φ(0) = 0, and has the correct

asymptotic value, φ(r) → v as r → K̃. As we wish to compare the magnetic disc with the
axial exact solution in the previous section we take v = 1

2
, so the required solution is

φ(r) =
cos−1(d̃n(r))

2 cos−1(tanhS)
(6.6)
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Figure 2: The red curves display the length of the Higgs field |Φ| as a function of geodesic
distance from the origin ρ, along an axis that is perpendicular to the symmetry axis of the
axial hyperbolic N -monopole with N = 100 and N = 10000. The blue curves show the
corresponding magnetic disc approximation.

The relation between the magnetic charge and the geodesic radius of the disc is given by

N =
1

2π

∫

Σr

∗dφ =
sin−1(tanhS)

cos−1(tanhS)
, (6.7)

where Σr is any surface of constant r. Inverting this formula provides the geodesic radius of
the disc

S = tanh−1

(
sin

(
πN

2(N + 1)

))
= logN + log

(
4

π

)
+O

(
1

N

)
. (6.8)

Along the positive X1 axis, in the exterior of the disc, the relation between X1 = R and the
coordinate r is

R =
sinhS ñc(r)

1 + coshS d̃c(r)
. (6.9)

Using this formula, in Figure 2 we plot the solution (6.6) as a function of the geodesic
distance from the origin ρ = 2 tanh−1R, for the charges N = 100 and N = 10000 (blue
curves). For comparison, the red curves in Figure 2 display the corresponding exact solution
(5.3) along the same axis, again as a function of ρ. We see that the magnetic disc provides
a reasonable approximation to the exact axial monopole and that the error appears to have
very little dependence on N for these large values. As we now explain, this is exactly the
result expected of a magnetic bag approximation.

To compare the disc radius (6.8) with the exact axial monopole solution, we use (5.3) to

define the value R̂ at which the Higgs field attains half the asymptotic value, |Φ| = 1
4
. This

provides a sufficient definition of the size of the axial monopole. The geodesic radius of the
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axial monopole is then given by

Ŝ = 2 tanh−1(R̂) = logN + log

(
2√
3

)
+O

(
1

N

)
. (6.10)

Comparing (6.8) and (6.10) shows that the two agree up to terms that are O(1). Recall that
the magnetic bag is expected to become exact in the limit N → ∞ and v → ∞ with N/v
finite. The v → ∞ limit is required to keep the size of the magnetic bag finite. However,
our exact solutions are only available for v = 1

2
, so we are unable to take the v → ∞ limit

to keep the size finite as N → ∞. An alternative is to measure geodesic distance in units of
logN , so that, by (6.8), the magnetic disc has geodesic radius one in these units as N → ∞.
In these units, terms that are O(1) tend to zero as N → ∞, and hence the exact axial
monopole converges to the magnetic disc.

Note that (2.17) shows that in the large N limit, with v = 1
2
, the leading order term

for the geodesic radius of the spherical bag is log
√
N , in comparison to the geodesic radius

of the magnetic disc, logN . Thus the spherical bag is a substantially more compact object
than the magnetic disc.

7 A magnetic bag for strawberry flavour monopoles

In the previous section we considered a particular type of cherry flavour monopole, the
axial monopole, and demonstrated that the abelian magnetic bag indeed provides a good
description in the large charge limit. In this section we turn our attention to strawberry
flavour monopoles and find that the abelian magnetic bag is no longer a good approximation.

A typical example of a large charge strawberry flavour hyperbolic monopole is the icosa-
hedrally symmetric charge 371 monopole displayed in the right image in Figure 1. This has
an anti-zero at the origin and 372 zeros of the Higgs field on the vertices of a polyhedron with
icosahedral symmetry. A more detailed picture of the Higgs field is provided in Figure 3,
where we plot the length of the Higgs field |Φ| as a function of geodesic distance from the
origin ρ along a radial half-line that passes through a vertex of the polyhedron (black curve)
and a face centre of the polyhedron (yellow curve). The blue curve is the spherical average
of |Φ|, obtained by integrating over the angular coordinates.

It is immediately clear from Figure 3 that an abelian magnetic bag does not provide a
good description of this large charge hyperbolic monopole, because the length of the Higgs
field does not remain close to zero in a region that could be associated with the interior of an
abelian bag. Furthermore, suggested generalizations [2, 4], in which the length of the Higgs
field is assumed to be a non-zero constant in the interior of the bag, are also not appropriate
here, as |Φ| has a significant ρ dependence.

Figure 3 reveals that the best that any spherical bag description could hope to achieve
is an approximation to the spherical average of |Φ|. This is because there is a substantial
angular variation of |Φ| on the sphere that contains most of the zeros of the Higgs field. As
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Figure 3: The length of the Higgs field, |Φ|, for an icosahedrally symmetric strawberry flavour
monopole with charge N = 371. The plot shows |Φ| as a function of geodesic distance from
the origin ρ along a radial half-line that passes through a vertex (black curve) and a face
centre (yellow curve) of the associated polyhedron. The blue curve is the spherical average of
|Φ|, obtained by integrating over the angular coordinates. The red curve is the new magnetic
bag approximation.

v = 1
2
, the spherical abelian magnetic bag (2.18) is given by

φ =
1

2
(N + 1−N coth ρ). (7.1)

As we shall see, this does provide a good description of the spherical average of |Φ| in the
exterior of a suitable bag, but clearly it fails in the interior.

A key observation from Figure 3 is that the monopole appears to be spherically symmetric
in a large region around the origin, that we identify as the interior of our new bag. Although
a spherical abelian description is not valid in the interior, it turns out that a spherical
non-abelian solution of the Bogomolny equation is an excellent approximation in this region.

Let θ, χ be the usual angular coordinates on the sphere, as in (2.19). The standard
spherical hedgehog ansatz, in radial gauge Aρ = 0, is given by

Φ = ih(sin θ(τ1 cosχ+ τ2 sinχ) + τ3 cos θ), (7.2)

Aθ =
i

2
(k − 1)(τ1 sinχ− τ2 cosχ), (7.3)

Aχ =
i

2
(k − 1) sin θ((τ1 cosχ+ τ2 sinχ) cos θ − τ3 sin θ), (7.4)

where τi are the Pauli matrices and h, k are radial profile functions that depend only on ρ.
Substituting this hedgehog ansatz into the Bogomolny equation (2.6) yields the following
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ordinary differential equations for h(ρ) and k(ρ)

dh

dρ
=

1− k2

2 sinh2ρ
,

dk

dρ
= −2hk. (7.5)

Regularity at the origin imposes the boundary conditions h(0) = 0 and k(0) = 1. Requiring
the correct asymptotic value for the length of the Higgs field imposes the condition

|Φ| = |h| → v =
1

2
as ρ→ ∞. (7.6)

The standard 1-monopole solution of (7.5) is given by

h = coth(2ρ)− 1

2
cothρ, k = sechρ. (7.7)

This solution has the small ρ expansion h = ρ
2
+O(ρ3), and the fact that the coefficient of the

linear term is positive corresponds to a zero of the Higgs field at the origin with multiplicity
+1. Note that k → 0 as ρ→ ∞, which is a finite energy requirement.

There is another solution of (7.5) that satisfies the regularity conditions at the origin and
the boundary condition (7.6). It is given by

h =
1

2ρ
− 1

2
cothρ, k =

sinhρ

ρ
. (7.8)

This solution does not have a finite charge N because k 6→ 0 as ρ→ ∞, but rather it grows
without bound. However, it is a perfectly regular solution for any finite value of ρ. The small
ρ expansion of this solution gives h = −ρ

6
+ O(ρ3) and hence there is an anti-zero of the

Higgs field at the origin, because the coefficient of the linear term is negative.
The scalar field φ, that approximates the spherical average of |Φ|, is obtained for our

new magnetic bag by taking the non-abelian solution (7.8) in the interior of the bag and the
abelian solution (7.1) in the exterior of the bag. Explicitly,

φ =

{
1
2
cothρ− 1

2ρ
for 0 ≤ ρ ≤ ρ⋆

1
2
(N + 1−Ncothρ) for ρ > ρ⋆,

(7.9)

where the bag radius ρ⋆ is determined in terms of the magnetic charge N by requiring that
φ is continuous at ρ = ρ⋆. The result is

N =
e2ρ⋆ − 2ρ⋆ − 1

2ρ⋆
. (7.10)

For N = 371 this gives ρ⋆ ≈ 4 and the associated new magnetic bag (7.9) is shown as the red
curve in Figure 3. This plot demonstrates that the new magnetic bag provides an excellent
approximation to the spherical average of this hyperbolic monopole.

We have performed a similar comparison for a range of large charge strawberry flavour
hyperbolic monopoles obtained from solutions of the Thomson problem, with the result that
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the same level of excellent agreement is found. Not only does this demonstrate the success
of our new magnetic bag approximation, but it elucidates the nature of monopole anti-zeros.
Until now, this has been somewhat of a mysterious issue, but now we see that a monopole
with an anti-zero is simply making use of a previously overlooked spherically symmetric
solution of the Bogomolny equation. There is a similar spherically symmetric solution of
the Bogomolny equation in R

3, satisfying the regularity conditions at the origin but not the
finite energy condition at infinity, so this new understanding of monopole anti-zeros extends
to the Euclidean setting too.

The observant reader may wonder why we chose to impose the ρ→ ∞ boundary condition
(7.6) on the solution used for the interior of the bag, given that the bag approximation (7.9)
only utilises this solution in the finite range [0, ρ∗]. Our justification is that the solution (7.8)
fits the exact monopole fields. We note however that the system (7.5) has many solutions
with an anti-zero at ρ = 0 other than (7.8); the fact that the particular solution (7.8) fits
all available strawberry flavour monopoles may be a consequence of working within the JNR
ansatz.

8 Conclusion

The abelian magnetic bag, describing a large number of coincident non-abelian BPS
monopoles, has been extended to hyperbolic space and its properties investigated in detail.
In particular, we have made comparisons with exact solutions of the Bogomolny equation
containing hundreds of monopoles. This is the main reason for moving to the hyperbolic
setting, as such exact solutions are not available for comparison in Euclidean space. Our
results show a good agreement for charge N monopoles with a single zero of the Higgs
field (of multiplicity N) and we have derived a Nahm transform for the associated abelian
magnetic bag from the large N limit of the discrete Nahm equation for hyperbolic monopoles.
However, for monopoles with more than N zeros of the Higgs field we find that the abelian
magnetic bag is not a good description, but must be supplemented by a non-abelian interior
for the bag, which we are able to describe in detail. This provides a new understanding of
the structure of monopole anti-zeros.
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