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Abstract 

People often struggle when making Bayesian probabilistic estimates on the basis of 

competing sources of statistical evidence. Recently, Krynski and Tenenbaum (2007) 

proposed that a causal Bayesian framework accounts for peoples’ errors in Bayesian 

reasoning, and showed that by clarifying the causal relations amongst the pieces of evidence, 

judgements on a classic statistical reasoning problem could be significantly improved. We 

aimed to understand whose statistical reasoning is facilitated by the causal structure 

intervention. In Experiment 1, although we observed causal facilitation effects overall, the 

effect was confined to participants high in numeracy. We did not find an overall facilitation 

effect in Experiment 2 but did replicate the earlier interaction between numerical ability and 

the presence or absence of causal content. This effect held when we controlled for general 

cognitive ability and thinking disposition. Our results suggest that clarifying causal structure 

facilitates Bayesian judgements, but only for participants with sufficient understanding of 

basic concepts in probability and statistics. 

 

Keywords: Bayesian judgement, causal reasoning, base rate neglect, numeracy
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Statistical reasoning is fundamental to a range of decisions about our health, our finances and 

our education. However, research consistently shows that many people struggle to 

appropriately interpret and integrate competing sources of probabilistic evidence when 

making statistical judgements (for a review see Barbey & Sloman, 2007). Interventions 

designed to remedy shortcomings in our statistical reasoning are, therefore, extremely 

important. More recently, interventions where the causal structure of the reasoning problem is 

made clearer have been found to lead to an increase in normatively correct statistical 

reasoning (Krynski & Tenenbaum, 2007). In this paper we will examine who is capable of 

Bayesian reasoning, and whose reasoning is helped the most by causal structure 

interventions. Knowing the answer to these questions will help us to evaluate theories of 

statistical reasoning and to target interventions designed to help people reason better about 

statistics. 

Bayesian reasoning and causal structure 

Normatively, probabilistic judgements should be calculated using Bayes Theorem, presented 

below. 

 ܲሺܪȁܧሻ ൌ ୔ሺୌሻ ୶ ୔ሺ୉ȁୌሻ୔ሺୌሻ ୶ ୔ሺ୉ȁୌሻା ୔ሺ൓ୌሻ ୶ ୔ሺ୉ȁ൓ୌሻ              Equation 1 

 

In Equation 1, Pሺܪȁܧሻ represents the probability that an hypothesis H is true given the 

evidence E. To compute this, reasoners must integrate the prior probability of the hypothesis, 

P(H), with the likelihood that the evidence will be observed if the hypothesis is true, Pሺܧȁܪሻ. 

Reasoners must also consider the chances that the hypothesis is not true, P(¬H), and the 

likelihood that the evidence will still be observed even if the hypothesis is false, Pሺܧȁ൓ܪሻ. 
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When asked to compute Pሺܪȁܧሻ many people neglect the prior probabilities or base rates, 

P(H) and P(¬H). 

Initial hypotheses explaining the error centred on compelling heuristics biasing 

reasoning (Kahneman & Tversky, 1972), with subsequent proposals focussing more on the 

numerical and linguistic formulation of traditional statistical reasoning problems (e.g. 

Gigerenzer & Hoffrage, 1995; Macchi; 2000; Sloman, Over, Slovak & Stibel, 2003). More 

recently, Krynski and Tenenbaum (2007) proposed a causal Bayesian framework, arguing 

that when reasoning statistically people begin by constructing a transient causal model of the 

relationships between the evidence, which is used to direct how the available data should be 

integrated in Bayesian terms. Thus, rather than simply extracting the statistical data and 

mechanically applying Bayes’ Theorem, probabilistic reasoning is said to occur in a three 

stage process: construction of a qualitative causal model; parameterisation of the model with 

available statistical data; and finally calculation in accordance with Bayesian prescriptions. 

According to Krynski and Tenenbaum, errors such as base rate neglect occur when reasoners 

cannot intuitively construct the correct causal model representation of the evidence. Attempts 

to parameterise incorrect or incomplete causal models typically result in an incorrect 

integration of the given statistical data. 

Evidence for base rate neglect comes from experiments on the mammography 

problem (Eddy, 1982) which asks for estimates of the likelihood of breast cancer in someone 

with a positive mammogram given information about the base rate and about hits and false 

positives for the test. Gigerenzer and Hoffrage (1995), for example, found that the vast 

majority of participants gave over-estimates between 70% and 90%, as a result of neglecting 

the 1% base rate. Krynski and Tenenbaum (2007) argue that the failure of the problem to 

specify what causes false positive tests interferes with reasoners’ intuitive attempts to 

construct a causal model representation. In two experiments Krynski and Tenenbaum 
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increased rates of Bayesian responding from as low as 15% on a simplified version of the 

mammography problem, to 45% on their causal problem. The causal problem explained that 

positive mammographies could also be caused by the presence of a dense but harmless cyst, 

but remained otherwise identical to the standard version. These, and more recent experiments 

(see Hayes, Newell & Hawkins, 2013; McNair & Feeney, in press), provide initial support for 

the idea that causal structure interventions might be a means to remedy compelling errors in 

statistical reasoning. 

Population and individual differences in Bayesian reasoning  

Although making the causal structure of the problem more transparent may offer a means of 

improving statistical reasoning, it is not clear whose reasoning such a manipulation will 

improve. Krynski and Tenenbaum found that 45% of responses to their causal problems were 

Bayesian, whilst more recent experiments (McNair and Feeney, in press) consistently showed 

that no more than 25% of responses to various causal problems are Bayesian and sometimes 

failed to obtain a significant facilitation effect owing to this low rate of Bayesian responding. 

Owing to the fact that Krynski and Tenenbaum’s samples comprised MIT students, and based 

on the finding that participants in top-tier Universities neglect the base rate less than 

participants in other Universities (Brase, Fiddick & Harries, 2006), the inconsistency between 

studies may be tentatively interpreted as being due to differences between the populations 

sampled.   

Even if the conjecture about population differences is correct, the underlying factors 

are unclear. One potentially relevant factor is general cognitive capacity, and there is 

somewhat mixed evidence about its relation to Bayesian reasoning. For example, although 

Stanovich & West (1998) reported no differences due to general cognitive ability in people's 

tendency to recognise the importance of base rates, positive associations between cognitive 

ability and Bayesian reasoning have recently been reported (see Lesage, Navarrete and De 
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Neys, 2013; Sirota, Juanchich & Hagmayer, 2013). Another more specific factor is 

numeracy, which is known to play a role in statistical reasoning errors (see Reyna, Nelson, 

Han & Dieckmann, 2009). Because the role of numeracy in Bayesian reasoning has not yet 

been systematically investigated, the first aim of the experiments to be described here was to 

investigate whether numeracy is related to performance on the mammography problem. Our 

second aim was to examine whether numeracy mediates the facilitating effects of causal 

structure interventions.  

Questions about population and individual differences in the effects of causal 

structure interventions on statistical reasoning have considerable theoretical bite as they relate 

to the generality of the causal Bayesian framework (Krynski and Tenenbaum, 2007) as an 

explanation of statistical reasoning. Some studies have shown an almost complete absence of 

Bayesian reasoning on typical, percentage-based problems (e.g. Brase et al., 2006) and it is 

possible that misunderstanding of the causal structure of the problem may be the underlying 

determinant of very poor statistical reasoning. Arguably, for the causal Bayesian framework 

to work as a general theory of statistical reasoning, this should be the case. Alternatively, 

poor statistical reasoners may suffer from more basic problems in thinking about statistics, 

which high numerates may not experience. According to this view the causal structure 

manipulation might have a bigger effect on the reasoning of high numerates.  

 

Experiment 1 

Method 

Participants: 144 (26 males, mean age 20 years) undergraduate psychology students from 

Queen’s University Belfast participated. Participants were expected to be of mixed 

mathematical ability, given that high numeracy is not a specific course requirement.  

Materials, Design and Procedure: In a between subjects design we presented participants 
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with the same Standard and Causal mammography problems used by Krynski and 

Tenenbaum (2007, Experiment 1). The difference between the problems is highlighted by the 

italicised text in the causal problem, presented below. Participants first completed Lipkus, 

Samsa and Rimer’s (2001) 11-item numeracy scale, which assesses the ability to perform 

basic mathematical operations based on frequency and percentage data. All materials were 

distributed on paper during class. Participants were asked not to use calculators, and were 

given 15 minutes to complete all materials. 

 

Causal Mammography Problem 

Suppose the following statistics are known about women at age 60 who 

participate in a routine mammogram screening, an X-ray of the breast tissue 

that detects tumours: 

2% have breast cancer at the time of the screening. Most of those with 

breast cancer will receive a positive mammogram. About 6% of those 

without cancer have a dense but harmless cyst which looks like a cancerous 

tumour on the X-ray and thereby results in a positive mammogram. 

Of those that receive positive mammographies, what % would you expect to 

have cancer? 

 

In the standard problem the italicised text was replaced with the following 

sentence: There is a 6% chance that a woman without cancer will receive a 

positive mammogram. 

 

Results 

Data coding: Data were coded somewhat differently from Krynski and Tenenbaum (2007), 
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who coded only exactly correct answers of 25% as Bayesian, any estimate greater than 80% 

as base rate neglect, and remaining answers as “Other”. Instead, to ensure that small 

calculation errors did not prevent us from identifying good reasoners, we coded answers 

within 5% of the relevant response as Bayesian or Base Rate Neglect (e.g. answers from 20% 

- 30% were coded as Bayesian). For brevity, our analyses focus primarily on Bayesian 

responses. As is common with short tests, reliability for the numeracy scale was relatively 

low,  = .55. For some of the analyses involving numeracy, we carried out a median split by 

performance on the numeracy scale. The high levels of performance on the scale meant that 

we categorised participants who answered 10 (the median value) or more items correct as 

High numerates. 

Analyses: Response frequencies broken down by problem and numeracy are to be found in 

Table 1. Participants who attempted causal problems were more likely to give a Bayesian 

response (13/71) than were participants who attempted the Standard problem (5/73): 2 (1, N 

= 144) = 4.32, p < .04, ĳc = .17. Separately, a greater number of High numerates gave 

Bayesian responses (16/79) than did lower numerates (2/65): 2 (1, N = 144) = 9.62, p < .01, 

ĳc = .25.  

 

**Table 1 here** 

 

To investigate the relative influence of each variable on Bayesian responding we 

conducted a binary logistic regression treating standardised numeracy scores as a continuous 

predictor variable alongside problem type. Given the unequal gender split in our sample, we 

controlled for gender. The model was statistically significant (2 [4, N = 144] = 23.14, p < 

.001), explaining between 14.8% (Cox & Snell R2) and 28.1% (Nagelkerke R2) of the 

variance, and correctly classified 87.5% of cases. Table 2 summarises the relative 
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contribution of each predictor in the model. Importantly, the Problem Type x Numeracy 

interaction accounts for a statistically significant portion of the variance in Bayesian 

responding.  

 

**Table 2 here** 

 

To follow up on the statistically significant interaction, we analysed separately the 

performance of High and Low numerates, finding that Problem Type was significantly 

associated with Bayesian responding in the High numerate sample (2 [1, N = 79] = 6.39, p < 

.02, ĳc = .28) but not the Low numerate sample. 

Discussion 

Our results show that the majority of Bayesian responses occurred when reasoners 

were relatively high in numeracy and attempted a causal problem. Crucially, the interaction 

between problem type and numeracy was a better predictor of Bayesian responding than 

either variable alone. Participants who were low in numeracy produced almost no Bayesian 

responses on either problem version thus highlighting the apparent difficulty these reasoners 

experienced, and further supporting the hypothesis that causal facilitation is contingent upon 

numerical ability.  However, given recent work indicating strong positive relationships 

between general cognitive ability and Bayesian reasoning (Lesage et al., 2013; Sirota et al., 

2013), the possibility remained that any relationship between numeracy and Bayesian 

reasoning on the causal problem might be due to general effects of cognitive ability rather 

than to the specific effects of numeracy. We investigated this possibility in Experiment 2. 

Experiment 2 

The first aim of Experiment 2 was to replicate the association between numeracy and 

problem type that we observed in Experiment 1.  However, because associations between 
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certain forms of base rate neglect and both general cognitive ability (Lesage et al., 2013; 

Sirota et al., 2013) and thinking dispositions (Sirota et al., 2013) have recently been 

demonstrated, an important second aim of Experiment 2 was to examine whether the 

association with numeracy holds up once these other variables are controlled for. Previous 

demonstrations of unique effects of numeracy on judgements (Peters, Västfjäll, Slovic, 

Mertz, Mazzocco & Dickert, 2006), suggest that the association will hold up. 

Method 

Participants: 179 (26 males; mean age = 21 years) undergraduate psychology students from 

Queen’s University Belfast participated.  

Materials, Design, and Procedure: In a between subjects design we presented participants 

with the same causal and standard mammography problems used in Experiment 1. Owing to 

the high level of performance on the Lipkus et al. numeracy scale in Experiment 1, we 

assessed numerical ability using the 7-item form of the Berlin Numeracy Test (BNT), a scale 

shown to afford more discrimination than the measure we used in Experiment 1 (Cokely, 

Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012). We also measured participants’ general 

cognitive ability using a 9-item short form test of Raven’s Standard Progressive Matrices 

(Bilker, Hansen, Brensinger, Richard, Gur & Gur, 2012), and their thinking dispositions 

using Pacini and Epstein’s (1999) Rational-Experiental Inventory (REI). The REI has four 

sub-scales, each with 10 items, which measure rational ability, rational engagement, 

experiential ability and experiential engagement.  All materials were presented on paper and 

were distributed during undergraduate lab classes. Participants were not permitted to use 

calculators. 

Results 

Data coding: Mammography problem responses were coded as in Experiment 1. Owing to a 
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printing error, item 7 of the BNT had to be dropped from analyses so that numeracy was 

taken as a score out of 6. Once again, reliability of the short scales used in this experiment 

was somewhat low: Berlin Numeracy Test, Ș = .47; Raven’s, Ș = .52. However, the 

subscales of the REI yielded higher reliability estimates: rational ability, Ș= .8; rational 

engagement, Ș=.86; experiential ability Ș=.81, experiential engagement, Ș = .67. For 

some of the analyses involving numeracy, we carried out a median split by performance on 

the numeracy scale. We categorised participants who answered 5 (the median value) or more 

items correct as High numerates. This resulted in a group of 50 High numerates and 129 Low 

numerates.  

Analyses: Table 3 presents a breakdown of response frequencies by problem type and 

numeracy level. There were more Bayesian responses to causal problems (17%) than to 

standard problems (11%), but the association between response and problem type was not 

significant, 2 (1, N = 179) = 1.37, p = .28, ĳc = .09. Although this finding indicates that we 

have not replicated the causal facilitation effect overall, it is in line with previous findings 

that the effect is weaker than initially thought and is sometimes not observed (see McNair & 

Feeney, in press). The association between numeracy and Bayesian responses was 

significant: 2 (1, N = 179) = 5.81, p < .02 ĳc = .25. As may be seen from Table 3, 

proportionally more Bayesian responses were given by High numerates than by Low 

numerates. 

 

**Table 3 here** 

 

 To investigate whether the causal facilitation effect is associated with numeracy we 

conducted a binary logistic regression with Bayesian responses as the criterion, treating 

standardised numeracy, Raven’s, and REI scores as continuous predictors and problem type 
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as a categorical predictor. As previously, we also controlled for gender. The model was 

significant (2= 37.78 [14, N = 179], p < .01), correctly classifying 89% of cases and 

explaining between 18% (Cox & Snell R2) and 33% (Nagelkerke R2) of the variance. Table 4 

summarises the relative contribution of each predictor in the model.  

 

**Table 4 here** 

 

 Results in Table 4 replicate those observed in Experiment 1, indicating that 

controlling for cognitive ability and thinking dispositions, a significant portion of the 

variance in Bayesian responding was uniquely predicted by an interaction between numeracy 

and problem type. In addition, collapsing across problem type, the tendency to give a 

Bayesian response was associated with higher cognitive ability. 

 We followed up the significant interaction between numeracy and problem type by 

testing for causal facilitation effects in High and Low numerates separately; analysis again 

indicated that although we did not observe a causal facilitation effect overall, the effect did 

appear in High numerates, 2 (1, N = 50) = 7.06, p < .01, ĳc = .37, but not in Low numerates, 

replicating the key finding from Experiment 1.  

Discussion 

The results of this study replicate our finding that whether information about causal structure 

facilitates reasoning is dependent on the numerical ability of the sample: a facilitation effect 

is observed in High but not in Low numerates. Importantly, this effect holds even when 

general cognitive ability and thinking dispositions have been controlled for. It is also 

noteworthy that we did not find a causal facilitation effect overall. These results support 

previous suggestions (McNair & Feeney, in press) that the causal facilitation effect is not as 

strong as originally thought, and show for the first time that relatively high levels of 



11 

 

numeracy are required for the effect to be observed.  Furthermore, results were also in line 

with recent findings (Lesage et al., 2013; Sirota et al., 2013) indicating a unique predictive 

role for general intelligence in Bayesian reasoning. 

 

General Discussion 

Our aims at the outset were to investigate the role of numeracy in (a) Bayesian statistical 

reasoning and (b) the causal facilitation effect. Although participants in Experiment 1 who 

were more numerate were more likely to give Bayesian answers, this pattern did not hold in 

Experiment 2 when general ability and thinking dispositions were controlled for. Instead, 

general cognitive ability was uniquely associated with reasoning performance. However, in 

both experiments a causal facilitation effect was observed only in High numerates, and this 

effect held even when we controlled for the other variables. Thus, relatively high numeracy 

appears to be a pre-requisite for a facilitating effect of causal information on statistical 

reasoning. 

The significant interaction we have observed between the presence or absence of 

additional causal information and numeracy suggests that misunderstanding the causal 

structure of the problem is only one of several causes of non-Bayesian statistical reasoning. 

For example, only 13 out of the 21 High numerates in the causal condition of Experiment 2 

correctly solved the problem, and almost none of the Low numerates in either experiment 

solved the problem correctly, even when given information about causal structure. Thus, 

provision of additional information about causal structure is not a universal cure by which the 

statistical reasoning of the majority can be improved. This observation has theoretical and 

practical implications. 

That general cognitive ability, but not numeracy, was uniquely associated with overall 

Bayesian responding suggests that the more general measure may be sensitive to a variety of 
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factors, such as misunderstanding of statistics, failure to consider the alternative hypothesis, 

inability to integrate the statistics, and calculation errors, which prevent a Bayesian response. 

The interaction between numeracy and problem type, on the other hand, suggests that the 

efficacy of the causal structure intervention, which helps participants construct an integrated 

representation of the data, is dependent on more basic understanding of numerical and 

statistical concepts (for additional evidence of experimental manipulations that differentially 

affect low and high numerates, see Johnson & Tubau, 2013). Because a causal structure 

intervention cannot remedy basic misunderstandings, causal model accounts are thus unlikely 

to suffice as general explanations for people’s problems with statistical reasoning. 

Whilst some people appear to give a non-Bayesian answer because, as the causal 

Bayesian framework (Krynski & Tenenbaum, 2007) suggests, they cannot construct an 

accurate causal model based on the statistics presented in the problem, others commit errors 

for some other, perhaps more basic, reason. Basic difficulties are to be seen in the results on 

the numeracy scale employed in Experiment 1. For example, the majority of people 

incorrectly answered item 10 in the Lipkus et al. (2001) numeracy scale, which asks how 

many out of 10,000 people would contract a viral infection if the chance of getting it is .0005. 

Post hoc analysis revealed that amongst those who answered this item correctly there was a 

causal facilitation effect, 2 (1, N = 62) = 5.36, p < .03, whereas those who answered the 

question incorrectly did not show the effect, 2 (1, N = 82) = .21. Failure to answer this 

question correctly, which is associated with absence of the causal facilitation effect, reveals 

an inability to reason about very basic concepts in probability.  

From a practical perspective, one important goal of all interventions designed to 

reduce base rate neglect is helping people make better statistical judgements (see Sedlmeier, 

1999). Facilitation effects with statistical format manipulations (see Cosmides & Tooby, 

1996) have recently been shown to also be contingent upon numerical ability (e.g. Chapman 
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& Liu, 2009; Sirota & Juanchich, 2011). That work, alongside our own, demonstrates how 

important it is to determine exactly whose reasoning is facilitated by particular interventions, 

and suggests that there is a pressing need for the development of techniques designed 

primarily to help people understand the statistics in the problem. Only when we are confident 

that reasoners understand the statistics with which they have been presented is it likely to be 

useful to consider their understanding of how those statistics should be integrated. In the 

meantime, our results suggest that causal structure interventions have positive implications 

for statistical reasoning but that on their own, such interventions are best targeted at 

individuals and populations who are relatively numerate. 
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Tables 

Table 1 

Overall frequencies of Response Types across Problem Type according to Numeracy for 

Experiment 1 

   

Numeracy Problem Bayesian BRN Other Total 

Higher Causal 12 5 20 37 

 Standard 4 15 23 42 

 Total 16 20 43 79 

Lower Causal 1 5 28 34 

 Standard 1 9 21 31 

 Total 2 14 49 65 

    Note: BRN = base rate neglect 

 

Table 2 

Binary Logistic Regression predicting likelihood of Bayesian responding in Experiment 1 

    95% CI 

 B S.E. Wald DF P Exp(B) Low Up 

Gender .54 .86 .39 1 .54 1.71 .32 9.26 

Problem .05 .8 .01 1 .95 .95 .2 4.54 

Numeracy .31 .51 .36 1 .55 .73 .27 2.01 

Problem*Numeracy 2.06 .91 5.08 1 .02 .13 .02 .76 
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Table 3 

Overall frequencies of Response Types across Problem Type according to Numeracy for 

Experiment 2 

   

Numeracy Problem Bayesian BRN Other Total 

Higher Causal 9 1 11 21 

 Standard 3 9 17 29 

 Total 12 10 28 50 

Lower Causal 6 7 54 67 

 Standard 7 15 40 62 

 Total 13 22 94 129 

    Note: BRN = base rate neglect 
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Table 4 

Binary Logistic Regression predicting likelihood of Bayesian responding in Experiment 2 

    95% CI 

 B S.E. Wald DF P Exp(B) Low Up 

Gender -1.35 .76 3.14 1 .08 .26 .06 1.16 

Problem .33 .75 .19 1 .66 1.39 .32 6.11 

Numeracy -.2 .35 .34 1 .56 .82 .41 1.62 

Raven’s 1.19 .6 3.99 1 .05 3.3 1.02 10.63 

REI Rational Ability -.13 .49 .07 1 .79 .88 .34 2.29 

REI Rational 

Engagement 
.61 .45 1.80 1 .18 1.83 .75 4.44 

REI Experiential Ability .59 .53 1.24 1 .27 1.8 .64 5.04 

REI Experiential 

Engagement 
-.07 .43 .03 1 .87 .93 .4 2.16 

Problem* Numeracy 2.18 .71 9.37 1 <.01 8.86 2.19 12.14 

Problem*Raven’s -.75 .7 1.16 1 .28 .47 .12 1.85 

Problem*REI Rational 

Ability 
-.4 .67 .35 1 .55 .67 .18 2.51 

Problem*REI Rational 

Engagement 
-.04 .7 .01 1 .95 .96 .24 3.78 

Problem*REI Exp. 

Ability 
-1.19 .79 2.28 1 .13 .31 .07 1.42 

Problem*REI Exp. 

Engagement 
.36 .65 .30 1 .58 1.43 .4 5.08 

 


