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Analytical Formulation for the Shielding

Effectiveness of Enclosures with Apertures
Martin Paul Robinson, Trevor M. Benson, Christos Christopoulos, Member, IEEE, John F. Dawson,

M. D. Ganley, A. C. Marvin, S. J. Porter, and David W. P. Thomas, Member, IEEE

Abstract—An analytical formulation has been developed for the
shielding effectiveness of a rectangular enclosure with an aper-
ture. Both the magnetic and electric shielding may be calculated
as a function of frequency, enclosure dimensions, aperture di-
mensions and position within the enclosure. Theoretical values of
shielding effectiveness are in good agreement with measurements.
The theory has been extended to account for circular apertures,
multiple apertures, and the effect of the enclosure contents.

Index Terms— Apertures, circuit modeling, electromagnetic
compatibility, electrical equipment enclosures, electromagnetic
shielding.

I. INTRODUCTION

E
LECTROMAGNETIC shielding is frequently used to re-

duce the emissions or improve the immunity of electronic

equipment. The ability of a shielding enclosure to do this

is characterized by its shielding effectiveness, defined as the

ratio of field strengths in the presence and absence of the

enclosure. At each point in an enclosure, we can define an

electric shielding effectiveness and a magnetic shielding

effectiveness .

For an infinite conducting sheet illuminated by a plane wave,

and are equal and depend only on the frequency and

on the conductivity, permeability, and thickness of the sheet.

However, if an enclosure is made from the sheet, then

and are generally different and become dependent on the

position within the enclosure. Furthermore, it is practically

found that the shielding is determined mainly by penetration

of energy through apertures in the enclosure rather than

through the walls, although an exception to this finding can

be at audio frequencies. In this paper, we assume that

the conductivity of the enclosure walls is sufficiently high that

only aperture penetration is important.

Shielding effectiveness can be calculated by numerical sim-

ulation or by analytical formulations. Numerical methods can

model complex structures but often require much computing

time and memory in order to model a problem with sufficient
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detail. This means that although they are good at predicting the

shielding of a particular enclosure, it is difficult for designers

to use them to investigate the effect of design parameters

on and . Numerical methods that have been used

to calculate shielding include transmission-line modeling [1],

finite-difference time-domain (FDTD) method [2], and method

of moments (MoM) [3].

Analytical formulations provide a much faster means of cal-

culating shielding effectiveness, enabling the effect of design

parameters to be investigated (we use the term formulation

rather than solution, as they often use empirical relationships

rather than fundamental principles). Many of these are derived

from Bethe’s theory of diffraction through holes [4] and apply

only to electrically small apertures. Other formulations include

that of Hill et al. [5], derived from a power-balance method

and the widely quoted formula of Ott [6],

where is wavelength and is aperture length.

Our aim here has been to derive a relatively simple for-

mulation that incorporates all the relevant design parameters

without placing inconvenient restrictions on their range. We

follow Mendez [7] in considering the enclosure as a wave-

guide, and assume a single mode of propagation (the

mode). However, our formulation applies above the cutoff

frequency for this mode as well as below. Both electric and

magnetic shielding are calculated as functions of frequency,

aperture dimensions, enclosure dimensions, wall thickness, and

position within the enclosure. Simple modifications enable

multiple apertures and internal losses to be included. At

present, our formulation applies only to rectangular enclosures,

but these comprise a large proportion of shields used in

practical electronic design. It may be applied to electrically

large and small apertures.

II. THEORY

A rectangular aperture in an empty rectangular enclosure is

represented by the equivalent circuit of Robinson et al. [8],

which is shown in Fig. 1. The longer side of the slot is shown

normal to the -field, which is the worst case for shielding.

The electric shielding at a distance from the slot is obtained

from the voltage at point in the equivalent circuit, while the

current at gives the magnetic shielding. The radiating source

is represented by voltage and impedance and

the enclosure by the shorted waveguide whose characteristic

impedance and propagation constant are and . We
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Fig. 1. Rectangular box with aperture and its equivalent circuit.

proceed by first finding an equivalent impedance for the slot

and then using simple transmission line theory to transform

all the voltages and impedances to point .

A. Slot Impedance

The aperture is represented as a length of coplanar strip

transmission line, shorted at each end (implying that we need

only consider the transmission line currents on the front face

of the enclosure). The total width is equal to the height of the

enclosure and the separation is equal to the width of the slot

. Its characteristic impedance is given by Gupta et al. [9] as

, where and are elliptic

integrals. The effective width is given by

(1)

where is the thickness of the enclosure wall. If

(which is true for most practical apertures) then, according to

Gupta et al., the following approximation may be used:

(2)

Fig. 2 shows this variation of with .

To calculate the aperture impedance , we transform the

short circuits at the ends of the aperture through a distance

to the center. This is represented by point in the equivalent

circuit. It is necessary here to include a factor to account

for the coupling between the aperture and the enclosure

(3)

This accounts for the connection between transmission line

and waveguide.

Fig. 2. Characteristic impedance Z0s of aperture as a function of we=b.

B. Electric and Magnetic Shielding Effectiveness

By Thèvenin’s theorem, combining , , and gives

an equivalent voltage and source

impedance . For the mode

of propagation, the waveguide has characteristic impedance

and propagation constant

, where . Note that and are

imaginary at frequencies below the cutoff (equal to ).

We now transform , , and the short circuit at the end of

the waveguide to , giving an equivalent voltage , source

impedance , and load impedance

(4)

(5)

(6)

The voltage at is now , and the current

at is .

In the absence of the enclosure, the load impedance at is

simply . The voltage at is and the current

is , The electric and magnetic shielding are,

therefore, given by

(7)

(8)

C. Extensions to the Formula

We have extended the theory to account for electromagnetic

losses, circular apertures, and multiple apertures.

Circuit boards, power supplies, and other contents intro-

duce electromagnetic losses into enclosures. This affects their

shielding effectiveness, particularly at resonant frequencies

[10]. As a first approximation we have assumed that these

losses are uniformly distributed throughout the enclosure. Dis-

tributed losses in coaxial lines may be modeled by including

a correction factor in the expressions for characteristic

impedance and propagation constant [11]. Adopting a simi-

lar approach for the shielding formulation gives a modified



TABLE I
ENCLOSURES USED FOR SHIELDING MEASUREMENTS

characteristic impedance and propagation constant

(9)

(10)

These can be substituted for and in the calculations in

Section II-B.

Turner et al. [12] have found that the shielding effectiveness

of a round hole is approximately the same as that of that

of a square aperture of the same area. The formulation can,

therefore, be applied to circular apertures by letting

(11)

where is the diameter of the aperture.

If there are similar apertures in one face of the enclosure,

then the individual aperture impedances must be combined.

We have assumed that the individual impedances may simply

be combined in series, giving a total impedance

(12)

The calculations then proceed as in Section II-B. This simple

approach ignores the mutual admittance between apertures and

may not be applicable if the apertures are too close together.

III. MEASUREMENTS

The shielding effectiveness of a range of enclosures and

apertures was measured. Apertures were either cut into the

walls of the enclosures or into removable plates. These were

attached with finger stock to ensure good contact at the joints.

The lids of the enclosures were fastened with gaskets, finger

stock, or closely spaced screws for the same reason. Table I

lists the relevant parameters of the enclosures. The aperture

length ranged from 40 to 200 mm and the width from 4

to 80 mm.

Shielding measurements were made by placing sensors in

the enclosure, or by observing the emissions from a radiating

circuit within the enclosure. Measurements with sensors were

made in screened rooms. The source of the field was a network

analyzer connected via an amplifier to a stripline [13], log

periodic, or Bilog [14] antenna. The rooms were dampened

with absorbing material to reduce the effects of resonances. To

measure , a monopole antenna in the lid of the enclosure

sensed the field. It was coupled via a cable or an optical link

to the second port of the network analyzer. Fig. 3 shows the

Fig. 3. Method of measuring electric shielding SE .

Fig. 4. Method of measuring magnetic shielding SM .

Fig. 5. Digital circuit used for measurement of shielding. Oscillator fre-
quency 10 MHz.

orientation of the monopole in the enclosure. For calibration,

a measurement of was made using the probe and lid only.

Measurement of was similar to the above except that

a shielded loop was used to sense the field (only one sensor

being used at a time). Fig. 4 shows how the gap in the loop

was aligned with the unshielded section of the inner conductor

orthogonal to the electric field, minimizing unwanted coupling.

For calibration, a measurement was made using the probe only.

Shielding effectiveness was also measured by comparing

the emissions from a small circuit board (size 80 60 mm)

in the presence and absence of the enclosure. Emissions were

measured with a stripline from 10 to 300 MHz and a Bilog

antenna from 300 to 1000 MHz. A synchronous digital circuit

was used, as shown in Fig. 5. This enabled the shielding to

be measured at the harmonics of the clock frequency, which

was 10 MHz.



Fig. 6. Calculated SE at three positions in 300 � 120 � 300 mm enclosure
with 100 � 5 mm aperture.

The monopole sensor was also used to measure of the

300 120 300 mm enclosure containing lossy elements.

To introduce electromagnetic losses, various unpowered circuit

boards were placed in the enclosure. Blocks of radio absorbing

material (RAM) were also used. These were placed on the

floor of the enclosure, and offset from the center to prevent

them touching the sensor. The blocks were 130 mm wide (i.e.,

parallel to the slot), 60 mm high (i.e., perpendicular to the slot),

and 5–50 mm thick (i.e., along the direction of propagation).

The effect of block thickness on the shielding was investigated.

IV. RESULTS

A. Electric Shielding Effectiveness

Fig. 6 shows the calculated at three positions within the

unloaded 300 300 120 mm enclosure with a 100 5 mm

aperture. The calculations show that the enclosure resonates

at approximately 700 MHz, leading to negative shielding

(field enhancement) around this frequency. Below the resonant

frequency, decreases with frequency and increases with

distance from the aperture.

Fig. 7 shows the calculated and measured at the center

of the box ( mm). We can see that there is good agree-

ment, both above and below the cutoff frequency of 500 MHz.

Note that much of the variation in the measurements is due

to the imperfect damping of resonances in the screened room.

These shift in frequency when the enclosure is placed in the

room, leading to the “noisy” appearance of the plots of shield-

ing versus frequency. The agreement at the two other positions

( mm and mm) was also good. Fig. 8 shows

the calculated and measured for a larger aperture, size 200

30 mm. The resonance is broader and the low-frequency

shielding is worse at than that of the smaller aperture.

Fig. 9 shows the calculated and measured at the center

of the 222 55 146 mm box while Fig. 10 shows these

quantities at the center of the 483 120 483 mm box. In

each case the aperture was 100 5 mm. It can be seen from

these figures that the smaller box does not resonate below

1 GHz, while the larger box shows resonances at 440 and

980 MHz.

Fig. 7. Calculated and measured SE at center of 300 � 120 � 300 mm
enclosure with 100 � 5 mm aperture.

Fig. 8. Calculated and measured SE at center of 300 � 120 � 300 mm
enclosure with 200 � 30 mm aperture.

Fig. 9. Calculated and measured SE at center of 222 � 55 � 146 mm
enclosure with 100 � 5 mm aperture.

B. Magnetic Shielding Effectiveness

Fig. 11 shows of the 300 300 120 mm enclosure

with a 100 5 mm aperture, calculated at

and mm (the same positions as in Fig. 6). The enclosure



Fig. 10. Calculated and measured SE at center of 483 � 120 � 483 mm
enclosure with 100 � 5 mm aperture.

Fig. 11. Calculated SM at three positions in 300� 120� 300 mm enclosure
with 100 � 5 mm aperture, and measured SM at center of enclosure.

resonance at 700 MHz can be seen at mm and

mm, but is less pronounced at the center of the box

( mm). This is expected from the mode structure of

the resonance. At low frequencies, increases with distance

from the aperture (as does ), but is almost independent of

frequency.

Fig. 11 also shows that there is good agreement between

calculated and measured at the center of the box (

mm). Agreement was also good at mm, where

the resonance at 700 MHz was seen in the measurements.

Agreement was slightly worse just behind the slot (

mm), with the calculated values of being 5–10 dB higher

than the measurements at low frequencies.

C. Change in Emissions

Fig. 12 shows the shielding of the 300 120 300 mm

enclosure with a 150 40 mm aperture obtained from the

difference in emissions between the shielded and unshielded

circuit. The enclosure resonance can be seen, although its

frequency is some 50 MHz lower, presumably because of

the loading effect of the circuit on the enclosure. The cal-

culated values of and are also shown in Fig. 12. At

low frequencies, the reduction in emissions lies between the

calculated and . This might be expected as a typical

circuit board is a source of both electric and magnetic fields.

D. Effect of Electromagnetic Losses

Introducing the loss term into the formulation does not

greatly affect the calculated shielding effectiveness, except

around the resonant frequencies. Fig. 13 shows at the

center of the 300 300 120 mm enclosure with a 100 5

mm aperture for various values of . We can see that increasing

the loss damps the resonance, improving the shielding. It also

lowers the resonant frequency.

Fig. 14 shows of this enclosure and aperture with

various sized blocks of RAM inside. We see that as the

thickness increases, the resonant frequency shifts in the manner

predicted by the theory and shown in Fig. 13. Placing single-

sided circuit boards in the enclosure had a similar effect on

the shielding. Fig. 15 shows this for two boards, one (PCB 1)

loaded mainly with integrated circuits, resistors and capacitors,

the other (PCB 2) a power supply board carrying a mains

Fig. 13. Effect of loss term ζ on calculated S
E

 . 

 

Fig. 12. Emissions measurement of shielding at center of 300x120x300 mm 

enclosure with 150x40 mm aperture compared to calculated S
E 

and S
M
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transformer. Note how PCB 2 introduces a second resonance

at approximately 860 MHz.

E. Circular Apertures

We measured at the center of the 300 300 120

mm enclosure with a square aperture of side 77 mm and a

circular aperture diameter 88 mm. Each aperture’s area was

approximately 6000 mm . The values of for these apertures

did not differ by more than 2 dB over the frequency range of

200–1000 MHz.

Fig. 16 shows the measured and calculated at the center

of the enclosure with the circular aperture. Also shown are

the values calculated from Ott [6] and from Hill et al. [5].

Although these show the right frequency dependence at low

frequencies, they do not predict the resonance at 700 MHz.

The new formulation gives better agreement both at low

frequencies and at the resonance.

We also compared our formulation with measurements

described in the literature. Steenbakkers et al. [15] measured

the magnetic shielding effectiveness at various positions in

a 150 150 150 mm enclosure with a round aperture

in one wall. Our analytical formulation gives values of

TABLE II
REDUCTION IN SE DUE TO NUMBER OF APERTURES

within 10 dB of their results. Steenbakkers et al. found that

increasing the hole diameter from 30 to 60 mm reduced

by 12 dB. The analytical formulation predicts a reduction of

14 dB. The measurements of Steenbakkers et al. also show

that at subresonant frequencies, increases with distance

from the aperture—an effect predicted by our formulation and

seen in Fig. 11.

F. Multiple Apertures

We measured at the center of the 300 300 120

mm enclosure with one, two and three 160 4 mm apertures.

For these measurements, the box with a single aperture was

used as the calibration standard. This greatly reduced the

artifacts due to the resonances of the room, because merely

changing the number of apertures did not significantly alter

the frequencies of these resonances. Increasing the number of

apertures was found to reduce the shielding effectiveness.

Table II shows the calculated reduction in at 400 MHz

compared to measurements over the range 200–600 MHz.

The analytical solution predicts that and are in-

creased by increasing the number of apertures while keeping

the total area the same. Fig. 17 shows the measured at the

center of the 300 300 120 mm enclosure with one, two,

four, and nine apertures. In each case the total area was 6000

mm . As predicted, having more but smaller holes improves

the shielding.

We investigated the effect of dividing a 100 5 mm

slot into several shorter slots using the same enclosure as

above. Table III shows the calculated and measured increase

in and . The measured increase is slightly more than

predicted.

Fig. 15. Measured S
E

 with two different circuit boards in enclosure. 

 

 

 

  

Fig. 16. Measured and calculated S
E

 at center of 300x120x300 mm 

enclosure with 88 mm diameter circular aperture. 

  

 

  

 

Fig. 14. Measured S
E 

with various sized blocks of RAM in enclosure. 
 

 

 

 
 

 

 

 
 

 



TABLE III
IINCREASE IN SE AND SM DUE TO DIVIDING SLOT

Fig. 18 shows at the center of the same enclosure with

two designs of ventilation plate, one with three 160 4 mm

slots, the other with 20 12-mm-diameter holes. Although the

total area of metal removed is about the same, is up

to 30 dB greater for the circular holes than for the slots.

The “jagged” appearance of the measured results is due to

resonances in the screened room. The agreement between

theory and measurements is surprisingly good, considering the

simple treatment of multiple apertures in (12).

V. DISCUSSION

The analytical formulation presented here provides a fast

means of investigating the effect of design parameters on the

shielding effectiveness of an enclosure. It confirms that long

thin apertures are worse than round or square apertures of the

same area. For a typical sized enclosure, the theory predicts

that doubling the length of a slot reduces and by about

12 dB, while doubling the width only reduces and by

about 2 dB. Calculations using the new formulation show that

doubling the number of apertures reduces both and

by about 6 dB. However, dividing a long slot into two shorter

ones increases and by about 6 dB.

The theory predicts that the size of the enclosure is also im-

portant to shielding performance. At subresonant frequencies,

doubling the enclosure dimensions while keeping the aperture

constant is predicted to increase by about 6 dB and

by about 13 dB. However, doubling the dimensions of both

enclosure and aperture is predicted to reduce by about 6 dB

and by about 1 dB. Furthermore, doubling the enclosure

size halves the lowest resonant frequency. A small enclosure

is, therefore, generally preferable to a large one.

There are two points to make concerning the contents of

the enclosure. First, and are lower nearer the aperture,

so noisy or sensitive circuits should be placed as far from

the aperture as possible. Secondly, the contents damp the

enclosure resonances, mitigating the negative shielding seen at

the resonant frequencies of an unloaded (i.e., empty) enclosure.

Our calculation has assumed that the conductivity of the

walls of the enclosure is so high that the only significant

path of energy is through the aperture. This may not always

be so, particularly for low frequency magnetic fields. Field

[16], following Kaden [17], gives equations for the electric

and magnetic shielding of conducting spherical shells. These

indicate that of an unbroken shell is always high unless the

walls are very thin or are poor conductors. However is zero

for static magnetic fields if the shell is made from nonmagnetic

material. The magnetic shielding rises with frequency, first

because of field cancellation by eddy currents, and then also

because of the skin effect. For the enclosures and apertures

investigated in this study, the frequency at which the “finite

conductivity” becomes comparable to the “aperture”

is at 10–100 kHz. Our assumption of aperture dominance

is therefore valid over our measurement frequency range of

1–1000 MHz. The results of Steenbakkers et al. [15] suggest

that there is a smooth transition between the two effects. If

the enclosure was made from a coated plastic or a conductive

polymer the transition would be at a higher frequency.

The analytical formulation assumes a single, mode

of propagation. Higher order modes would be able to

propagate at frequencies greater than . For all but the

largest enclosure studied, the and higher modes could

not propagate below 1000 MHz. For the 483 120 483 mm

enclosure, the cutoff frequencies of the and modes

are 621 and 931 MHz, respectively. However, Fig. 10 shows

that the theory gives good agreement with measurement up to

1000 MHz. This may be because the coupling to the higher

order modes is not significant for the enclosures and apertures

studied. Multimode propagation in a shielded enclosure has

been successfully modeled [18], but considerable work would

Fig. 18. Calculated and measured S
E
 for ventilation plates with either three 

160mm long slots or twenty 12mm diameter holes (centre of 

300x120x300mm enclosure). 

 

  

 

 

  

 

 

 

 
 

 
 

 
 

  

 

Fig. 17. Measured S
E
 for various numbers of circular apertures of same total 

area (centre of 300x120x300 mm enclosure).  
 

 

 

 

 



be needed to incorporate such calculations into the formulation

discussed here.

In this study, we have placed the aperture centrally in

one face of the enclosure, and considered the electromagnetic

fields along the midline. For an off-center aperture (e.g., a

gap underneath a lid), there might be transverse as well as

longitudinal propagation. Further work is needed in this area.

An advantage of the formulation is that it accounts for

the thickness of the enclosure walls. This is often difficult in

numerical methods, which assume infinitesimally thin walls.

The formulation might however be inaccurate if the width of

the aperture were small compared to the wall thickness .

The aperture would itself then act as a waveguide operating

below its cutoff frequency, leading to attenuation within the

aperture and giving greater shielding than predicted.

VI. CONCLUSION

The formulation described above gives good agreement with

measurements over a wide frequency range. It can predict the

electric and magnetic shielding effectiveness of a rectangular

enclosure with one or more apertures in one wall, both

at low frequencies and at resonance. It can be applied to

round, square, and rectangular apertures and the size of the

aperture need not be small compared to the enclosure. A

loss factor has been introduced to describe the damping of

resonances by the contents of the enclosure, although further

work is needed to characterize this factor for typical electronic

equipment. The calculation of electric and magnetic shielding

depends upon the frequency and polarization of the applied

field, the dimensions of the enclosure and the aperture(s), the

number of apertures, and the position within the enclosure. The

formulation will, therefore, be of use to designers of shielded

enclosures.
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