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Khovanov homotopy types and the Dold-Thom functor

Brent Everitt, Robert Lipshitz, Sucharit Sarkar and Paul Turner⋆

Abstract. We show that the spectrum constructed by Everitt and Turner as a possible Khovanov homotopy type is

a product of Eilenberg-MacLane spaces and is thus determined by Khovanov homology. By using the Dold-Thom

functor it can therefore be obtained from the Khovanov homotopy type constructed by Lipshitz and Sarkar.

A Khovanov homotopy type is a way of associating a (stable) space to each link L so that the

classical invariants of the space yield the Khovanov homology of L. There are two recent con-

structions of Khovanov homotopy types, using different techniques and giving different results

[3, 6]. In [3] homotopy limits were employed to build an Ω -spectrum X•L = {Xk(L)} with the

following properties:

(i). the homotopy type is a link invariant, and

(ii). the homotopy groups are Khovanov homology:

πi(X•(L)) = Kh−i(L).

The main goal of this note is to prove the following result.

Theorem 1. Each of the spaces Xk(L) is homotopy equivalent to a product of Eilenberg-MacLane

spaces.

In [6] the programme of Cohen, Jones and Segal [2] was generalized to produce a suspension

spectrum XKh(L) with the following properties:

(i). the homotopy type is a link invariant, and

(ii). the reduced cohomology is Khovanov homology:

H̃ i(XKh(L)) = Khi(L).

As a corollary we obtain that X•(L) is homotopy equivalent to the infinite symmetric product of

XKh(L).
To prove Theorem 1 we use the explicit model, due to McCord [8], of the Eilenberg-MacLane

spaces. Given a monoid G and a based topological space X , let B(G,X) denote the set of maps
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u : X → G such that u(x) = 0 for all but finitely many x ∈ X . Then B(G,X) is a monoid, and

if G is a group (the case of interest) then B(G,X) is a group. Moreover, when G is an abelian

topological group the set B(G,X) can be topologized in a natural way so that the group opera-

tion is continuous. This construction has nice functoriality: letting Ab,Top∗ and AbTop denote

respectively the categories of abelian groups, based topological spaces and topological abelian

groups, one has the following result.

Proposition 1. [8, Proposition 6.7] McCord’s construction is a bifunctor

B(−,−) : Ab×Top∗→ AbTop.

Furthermore, as special case of [8, Theorem 11.4], for an abelian group G the space B(G,Sn)
is the Eilenberg-MacLane space K(G,n). Thus we may take as the Eilenberg-MacLane space

functor:

B(−,Sn) : Ab→ AbTop.

Conversely, the following is [4, Corollary 4K.7, p. 483] (apparently originally due to Moore;

cf. [8, p. 295]):

Proposition 2. A path-connected, commutative topological monoid is a product of Eilenberg-

MacLane spaces.

The spaces Xk(L) are built as homotopy limits of diagrams of spaces. Recall that given a small

category C and a (covariant) functor D : C→ Top∗ (a diagram), that holimCD is constructed as

follows (see, e.g., [1, Section 11.5] or the concise notes [9, Section 3.7]). Consider the product

∏
σ∈N(C)

Hom(∆ n
,D(cn)) = ∏

n≥0
∏

c0

α1→···
αn→cn

αi 6=Id

Hom(∆ n
,D(cn)) (1)

where N(C) is the subset of the nerve of C consisting of all sequences of composable morphisms

σ = (c0
α1−→ c1

α2−→ ·· ·
αn−→ cn) in which none of the morphisms are identity maps, and Hom de-

notes the space of continuous maps from the standard n-simplex. The homotopy limit holimC D

is the subspace of this product consisting of those tuples ( fσ )σ∈N(C) such that the following

diagrams commute:

∆ n−1

di

��

fdiσ
// D(cn)

Id

��

∆ n fσ
// D(cn)

(2)

for each 0 < i < n, and

∆ n−1

d0

��

fd0σ
// D(cn)

Id

��

∆ n fσ
// D(cn)

and ∆ n−1

dn

��

fdnσ
// D(cn−1)

D(αn)

��

∆ n fσ
// D(cn)

(3)

corresponding to the cases i = 0 and i = n, respectively. Here the map di denotes the ith face

inclusion, diσ = (c0
α1−→ ·· ·ci−1

αi+1αi
−→ ci+1 · · ·

αn−→ cn) when 0 < i < n, and d0,dn similarly.

The following is well-known, but for completeness we give its (short) proof.
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Proposition 3. Let D : C→ Top∗ be a diagram of topological abelian groups and continuous

group homomorphisms. Then the homotopy limit of D is a topological abelian group.

Proof. Pointwise addition makes the set Hom(∆ n,D(cn)) into an abelian group, and the product

in formula (1) is the product (topological abelian) group. It remains to see that the diagrams (2)

and (3) describe a subgroup of this product. Suppose that tuples ( fσ ) and (gσ ) make these

diagrams commute. Then the first two diagrams automatically commute for the pointwise sum

( fσ +gσ). The third diagram for the pointwise sum becomes,

∆ n−1

dn

��

// ∆ n−1×∆ n−1

dn×dn

��

fdnσ×gdnσ
// D(cn−1)×D(cn−1)

+
//

D(αn)×D(αn)

��

D(cn−1)

D(αn)

��

∆ n // ∆ n×∆ n fσ×gσ
// D(cn)×D(cn)

+
// D(cn)

for which the first square obviously commutes, the second commutes since f and g are in the

prescribed subspace and the third commutes from the fact that D(αn) is a group homomorphism.

The inverse operation is similarly seen to be closed, hence the subspace defined above is a

subgroup. ⊓⊔

Proof (Proof of Theorem 1). Let L be an oriented link diagram with c negative crossings. The

space Xk(L) is constructed as follows. Let I denote the category with objects {0,1} and a single

morphism from 0 to 1, and In the product of I with itself n times. Let 0 be the initial object in In,

and let P be the result of adjoining one more object to In and a single morphism from the new

object to every object except 0.

In [3] it is shown that there is a functor F : P → Ab such that the ith derived functor of

the inverse limit, lim
←−P

iF , is isomorphic to the ith unreduced Khovanov homology of L. The

space Xk(L) is constructed by composing this functor with the Eilenberg-MacLane space functor

K(−,k+ c) and taking the homotopy limit of the resulting diagram of spaces.

We may now use the explicit model for Eilenberg-MacLane spaces given by McCord. By

applying Proposition 1 we define a diagram D : P→ AbTop as the composition

P F
// Ab

B(−,Sk+c)
// AbTop.

By the homotopy invariance property of the homotopy limit construction we have

Xk(L)≃ holimP D.

By Proposition 3, the homotopy limit on the right is itself a topological abelian group, and hence,

by Proposition 2, a product of Eilenberg-MacLane spaces. ⊓⊔

Corollary 1. The homotopy type of X•(L) is determined by Kh(L).

The spectrum XKh(L) = {X
(k)
Kh(L)} constructed in [6] has the additional property that the

cellular cochain complex of the space X
(k)
Kh(L) is isomorphic to the Khovanov complex of L (up

to shift). It follows from the description of the Khovanov homology of the mirror image (see [5])

that

H̃i(XKh(L)) = Kh−i(−L)
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where −L denotes the mirror of L. The infinite symmetric product Sym∞
X
(k)
Kh(L) is seen from

the Dold-Thom theorem to be

Sym∞
X
(k)
Kh(L) =∏

n

K(H̃n(X
(k)
Kh(L)),n)

from which we have the following.

Corollary 2. For large enough k, the space Xk(−L) is homotopy equivalent to the infinite sym-

metric product Sym∞
X
(k)
Kh(L).

We end by noting that the analogue or Theorem 1 for the spectra XKh(L) is not true. For

all alternating knots XKh(L) is a wedge of Moore spaces [6], however there are examples of

non-alternating knots for which XKh(L) is not a wedge of Moore spaces (see [7]).

Acknowledgements

We thank Tyler Lawson for several helpful suggestions, including communicating Proposition 3

to us.

References

[1] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics,

Vol. 304, Springer-Verlag, Berlin, 1972. MR0365573 (51 #1825)

[2] R. L. Cohen, J. D. S. Jones, and G. B. Segal, Floer’s infinite-dimensional Morse theory and homotopy theory,

The Floer memorial volume, 1995, pp. 297–325. MR1362832 (96i:55012)

[3] Brent Everitt and Paul Turner, The homotopy theory of Khovanov homology. arXiv:1112.3460.

[4] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR1867354 (2002k:55001)

[5] Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–

426.MR1740682 (2002j:57025)

[6] Robert Lipshitz and Sucharit Sarkar, A Khovanov homotopy type or two. arXiv:1112.3932.

[7] , Some Steenrod squares on Khovanov homology. In preparation.

[8] M. C. McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 146 (1969), 273–

298. MR0251719 (40 #4946)

[9] Rubén Sánchez-Garcı́a, Homotopy limits and colimits. www.math.uni-duesseldorf.de/∼sanchez/.


