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There has been much excitement among quantitative geographers about newly available

data sets, characterized by high volume, velocity, and variety. This phenomenon is often

labeled as “Big Data” and has contributed to methodological and empirical advances, par-

ticularly in the areas of visualization and analysis of social networks. However, a fourth v—

veracity (or lack thereof)—has been conspicuously lacking from the literature. This article

sets out to test the potential for verifying large data sets. It does this by cross-comparing

three unrelated estimates of retail flows—human movements from home locations to shop-

ping centers—derived from the following geo-coded sources: (1) a major mobile telephone

service provider; (2) a commercial consumer survey; and (3) geotagged Twitter messages.

Three spatial interaction models also provided estimates of flow: constrained and uncon-

strained versions of the “gravity model” and the recently developed “radiation model.” We

found positive relationships between all data-based and theoretical sources of estimated

retail flows. Based on the analysis, the mobile telephone data fitted the modeled flows and

consumer survey data closely, while flows obtained directly from the Twitter data diverged

from other sources. The research highlights the importance of verification in flow data

derived from new sources and demonstrates methods for achieving this.

Introduction

Much has been written about “Big Data”: definitions, ethics and the methodological challenges

the phenomenon poses (Boyd and Crawford 2012; Davis 2012; Madden 2012). There has also

been speculation that it could revolutionize Regional Science, Geography, and related fields

(Kitchin 2013; Arribas-Bel 2014). Many new data sets are geographically referenced: smart

ticketing systems monitor transport flows at known locations; mobile phone logs are linked to

specific masts. Yet the spatial element of the Big Data revolution has yet to be fully articulated

with reference to empirical foundations related to data quality, notwithstanding excellent

theory and position papers on the subject (see Rae and Singleton 2015).
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Among the excitement surrounding Big Data overall, there has been little time to pause for

thought about the kinds of application are most suited. Less still has been written about where

big data sets are most (in)appropriate for different purposes (Crampton et al. 2013). With the

growing volume of data available, there has been a tendency to proceed uncritically with the

analysis. This has resulted in many beautiful visualizations and new insights (King, Pan, and

Roberts 2014) but little in the way of systematic evaluation of the quality of large data sets.

While veracity in Big Data has been discussed previously,1 the associated concepts and meth-

ods are largely undefined in the peer-reviewed academic literature, particularly in relation to

spatial data. This article sets out to fill this gap by articulating the concept in the context of the

estimation of retail flows—movement of people for shopping.

Continual questioning and testing for the veracity of data and models is central to the

scientific method in quantitative geography: “the geographer-scientist must continually test

his theories and models, and he must not expect certainty” (Wilson 1969, 227). We argue

that, in the era of Big Data, this commitment to testing should not be forgotten. Indeed,

we argue that veracity becomes even more important, due to the increased potential to

arrive at erroneous conclusions based on the sheer volume of data. As Taleb (2012, 430)

provocatively puts it, Big Data brings “cherry-picking to an industrial level.” Seeing past

the sensationalist hyperbole of Taleb’s statement, the wider point is that new data sets

bring about new risks as well as the much trumpeted opportunities. Without rigorous tests,

the credibility of new data sets risks being undermined by faulty conclusions from unveri-

fied sources.

In this context, we demonstrate methods for the verification of Big Data, based on an

empirical foundation: three large, unrelated data sets on movement patterns within Yorkshire,

United Kingdom. The aim is to demonstrate and implement methodologies for verifying Big

Data to begin to evaluate the strengths and weaknesses of diverse sources for geographical

modeling. To achieve this aim, we pursued the following objectives:

� Convert the three disparate data sets into a single format: an origin-destination “flow

matrix” representing the amount of flow (in terms of human movement) from 120 residen-

tial zones to 79 known retail centers of varying sizes.

� Develop and implement models of expected flow, using the classic gravity model and the

more recently published radiation model (Simini et al. 2012).

� Make comparisons between the retail flows which result from each of these six sources—

three empirical and three theoretical—in terms of model-data fit.

� Discuss the implications of this research for understanding the quality of different data

sets and for processes of verification in research involving Big Data.

The lack of cross-comparison and validation in the emerging field of Big Data for geographi-

cal modeling is problematic because large data sets are inherently diverse. For example, a huge

data set comprising social media scraped intermittently from the internet will have very different

attributes than a smaller but more systematically collected data set on travel habits from a market

research survey. Yet each data set may be designated as “big.” This article discusses this issue

with reference to three large yet unrelated data sets collected from Yorkshire, United Kingdom:

location data from a major mobile phone operator; a year’s worth of geotagged tweets; survey

data on demographics and shopping provided by the consultancy Acxiom.

Each of these sources of information could also be defined as “big” in some way. Yet,

without a framework to assess their relative merits, it is difficult to assess the applications for
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which each data set would be most and least suited. There is a clear need for new sources of

information to inform research on spatial behavior. From a retail analysis perspective, for

example, data sets to inform and calibrate models have been patchy. Whilst developments in

modeling have been impressive—see Birkin, Clarke, and Clarke (2010) for a recent review—

the data to support such advances has been elusive.

Until recently, the vast majority of data on retail flows (origin-destination matrices) have

only been available from two sources, each with its own limitations:

� Retail loyalty card data: this source is limited to a specific retailer, providing only a par-

tial summary of consumer behavior from a potentially nonrepresentative sample.

� Market research data: this source (exemplified by a data set provided by Acxiom in this

research) tends to record solely a person’s main retail destination. As we shall see, this is

a major limitation because most consumers shop at several locations.

Defining Big Data

This article reflects on an often-cited definition of Big Data as newly available information that

is high in volume, velocity, and variety (Laney 2001).2 To this list, we advocate the addition of

a fourth v: veracity, or lack thereof. Although such definitions are frequently mentioned in talks

on the subject, criteria defining whether or not a data set is “Big” have seldom been explored in

detail. Rather than focusing on normative definitions of Big Data and strict criteria for inclu-

sion, we base our definition on how the term is used in practice. Big Data is, in practice, an

umbrella term. We define Big Data as unconventional datasets that are difficult to analyze

using established methods. Often this difficulty relates to size but the form, format, and com-

plexity are equally important.

The four v’s provide a basis for considering the relative merits of large data sets. The con-

sequences of each attribute (or its absence) for the types of application for which “Big” data

sets are suited is rarely discussed. We thus start from the premise that each of the aforemen-

tioned attributes of Big Data can provide both advantages and disadvantages to the researcher.

One “big” data set may be completely different from the next in terms of its relative merits.

Whereas Laney (2001) is primarily concerned with data management for e-commerce, we

consider here the advantages and disadvantages of volume, velocity, variety, and degree of

veracity in the context of contemporary spatial modeling. Each has important consequences for

the applicability of the data sets for the real world.

The volume of data available is clearly related to its spatiotemporal coverage (in terms of

the frequency of data and its geographic density). On the other hand, highly voluminous data

may be of relatively low quality and contain much noise. Separating the signal from the noise

in a highly voluminous data set may be a difficult and time consuming process, meaning that

volume is not always a benefit.

High velocity implies that the data is collected in real time and is highly dynamic in that it

has high temporal (second-by-second) resolution. This is advantageous for applications explor-

ing behavior that is highly dynamic. Yet velocity has drawbacks: the processes observed may

only be ephemeral and not represent overall patterns. An example would be someone who

tweets only when they visit new locations, providing an unrepresentative sample of travel

behavior.3 Real-time monitoring systems to process output from the “fire hose” requires more

computational work than a static data set (Driscoll and Walker 2014). Processing large data
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sets “live” has overheads and may only be necessary for informing real-time decision making

applications, such as disaster response. Therefore, static data sets are used in this study.4

Variety can be used to refer to the diversity of information within a single “big” data set

(intra-data set variety). It can also refer to the diversity of data sets that fall within the Big Data

umbrella (inter-data set variety). For a single data set to be diverse implies that it may be able

to provide insight into many processes within a single phenomenon, adding nuance to our mod-

els. Yet variety can also be associated with a lack of focus: some information about many

aspects of a system may not be as useful as highly concentrated information about one specific

topic. An example of intra-data set “variety” is provided by loyalty card data, which contains a

range of information from one purchase per year through customers whose transactions are

recorded five times or more a week.

Veracity refers to the degree of truthfulness associated with a data set. We argue that it is

lack of veracity that is most associated with Big Data, compared with more conventional offi-

cial data sets used in geographical research. Hence veracity (and the related term of verifica-

tion), will be used here as an expression of the desire to establish broad parameters of data

reliability. Large data sets sometimes lack the quality assurances associated with smaller data

sets taken from official sources. Some authors and communities prefer the use of validation for

the assessment of model results against real world patterns, reserving verification to refer to

rigor in the design and implementation of software codes. In the current context, verification is

a better expression of the desire to establish broad parameters of data reliability. The question

of whether the sheer volume of “big” data sets can compensate for the lack of verification has

yet to be resolved and is clearly context dependent.

Veracity, or lack thereof, is probably the least discussed of the v’s. To what extent is Twit-

ter data representative of a given population? How do we know that the data provider has not

prefiltered commercial data sets before making it available to researchers? These types of ques-

tion, we argue, are neglected in the field and deserve robust answers.

The four v’s are useful for identifying which data sets are most suitable for different appli-

cations a priori. For example, a high volume of data should normally be advantageous, but this

could be mitigated by greater velocity or additional variety in a less-voluminous data set.

Ultimately, however, empirical evidence must be used as the “gold standard” of data sets’ suit-

ability for different applications. In, practice the generation of a complete and truthful origin-

destination matrix for shopping in the Leeds region is not currently achievable. This explains

the focus on crossvalidation of the data sources and model outputs in this article. Moreover, the

experience of using diverse data to explore the same question is itself revealing, illustrating

ways to crossvalidate seemingly incommensurable data sets. The research question used to

assess each data set is: how well can each data set be used to model flow to retail centers?

The methods adopted here demonstrate the benefits of crossvalidating large data sets as a

step toward the verification of Big Data and highlight some methods toward achieving this

aim. The processes of geographical aggregation and filtering demonstrated in this article illus-

trate that, with the appropriate analysis, large data sets that seem very different in the first

instance can be made commensurable. The wider point is that no single large data set should be

considered to be “true,” meaning that crossvalidation of data sources and model outputs, so

often lacking in Big Data research, is a critical stage in the process.

A more theoretical contribution of this article is a critical assessment of Big Data with an

emphasis on veracity that is underexplored in the literature. We demonstrate that, although

diverse, it is possible to perform quality checks on large data sets through crossvalidation.
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We use the empirical results to argue that it is debatable whether sources that meet the other

three criteria of Big Data, but not the “veracity test,” should be referred to as Big Data at all.

“Big Noise” may be a more appropriate label before cleaning, where the real value of large

data sets is added. This understanding can help researchers identify which data sets are most in

need of verification and cleaning and which can be used in a near-raw state. The distinction

between Big Data and Big Noise also provides an indication of the amount of work needed on

a particular data set. However, even after processes of cleaning, filtering, and aggregation (out-

lined in the Methods section), Big Data cannot be guaranteed to have veracity. As illustrated in

the Results section, it may only be with the cross-comparison of Big Data that the degree of

veracity or otherwise can be ascertained.

Data

For some retail organizations, customer interaction data have been relatively easy to acquire.

For example, in the automotive industry, vehicle registration has allowed individual sales to be

tagged to unique customer and dealer locations (Birkin et al. 1996). Other sectors have now

begun to assemble valuable intelligence about customers from loyalty card schemes (Humby,

Hunt, and Phillips 2008). While loyalty cards are themselves an emerging Big Data source,

they have their disadvantages. These include coverage (relating to a single retailer), sample

size (not all customers are cardholders), and availability. Therefore, loyalty cards are problem-

atic as a Big Data source for academic research on local economic activity.

The classic source of intelligence for the retail industry has been market research.5 Tradi-

tionally, the resulting data sets are based on small yet representative stratified random samples.

This approach is still popular for monitoring political and social attitudes and behavior and,

with the addition of geodemographic profiling, it is possible to infer social and economic char-

acteristics of respondents (Mitchell and McGoldrick 1994). Yet with this approach temporal

movement patterns cannot be inferred and the same issues that surround any door-to-door sam-

pling apply. Retailers within a sector may be willing to syndicate larger samples yet the outputs

are often only available at a coarse spatial resolution inaccessible and expensive to acquire for

third party organizations.

Data on origins and destinations consisted of 79 shopping areas served by 120 residential

zones (see Fig. 2). After processing, each input data set was aggregated into the same format: a

“flow matrix” consisting of 120 rows, representing residential origins, by 79 columns, repre-

senting shopping destinations. The three input data sets are summarized in Table 1.

A data set of geotagged Twitter messages (“tweets”) was collected using the Twitter

Streaming Application Programming Interface (API). The messages were collected during 445

days between 2011-06-22 and 2012-09-09. The full data set consisted of 992,423 tweets origi-

nating in West and North Yorkshire. Each record in the data set represents one tweet, including

time-stamp, user id, message text, and coordinates of the location where the tweet originated.

Because our “listener” was set-up with a geographical filter, only geotagged tweets were col-

lected. Twitter data have been used for a range of purposes in academia, including economic

forecasting (Bollen, Mao, and Zeng 2011), analysis of political sentiments (Bermingham and

Smeaton 2011), and tracking disease (Signorini, Segre, and Polgreen 2011). Inspired by such

research, this article seeks to explore Twitter data as an alternative to more established sources

of shopping behavior with an emphasis on Twitter’s veracity.
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A travel flow matrix derived from mobile telephone records was provided by a major tele-

phone operator. The telephone data were collected between February 1, 2014 and March 28,

2014. Although the mobile service operator did not reveal the precise number of users/mobile

devices, the data suggest this number is �750,000. (see Table 1). The data represent home

location and frequency trips between major retail centers across Yorkshire. The data set is not

“geolocated” in the sense that the Twitter data are (with one set of coordinates per connection).

Instead, mobile telephone data provide information about the mast or Wi-Fi network to which

each phone is connected at any point in time. The spatial resolution is thus not high but suffi-

cient to infer movement behaviors to retail centers: the spatial resolution of mobile phone mast

data depends on the density of masts in the local area. In urban areas (where most retail centers

are located), the spatial resolution is comparatively high. In rural areas, by contrast, the nearest

mast may be several miles away and spatial resolution is comparatively low.

An individual-level geolocated survey data set on shopping habits was provided by the

consultancy Acxiom who do surveys across the United Kingdom, collecting approximately one

million records yearly. The data have a fine spatial resolution (full postcode) and many attrib-

utes of interest for market research. Specifically, the question on “Where do you shop most

often for non-food goods like clothes, shoes, jewelry, etc.?” provides insight into the center

most associated with each area. A limitation of this data set is that it only identified the most

frequently visited destination, unlike the Twitter and mobile phone data, which provide multi-

ple destinations for each person.

Each of these data sets has advantages and drawbacks due to the nature of the quantitative

and qualitative information they contain and how they are collected, in terms of penetration

and geographical and temporal resolution. These are described in some detail below. It was the

task of the analysis phase to identify what these were and their consequences for the utility of

each data set for modeling spatial behavior.

Penetration and content

An important consideration related to sample bias is “penetration”—in this context the uptake

of a particular data collection technology within the population (Hilbert 2013). Penetration is

analogous to the “response rate” in surveys and refers to the proportion of the population who

are users (or frequent users) of the data-collecting system. The penetration of mobile phones,

for example, is substantially higher than the equivalent metric (sample size) for the Acxiom

survey data. This was despite the fact that only one mobile telephone network (of several

Table 1. Summary of the input data sets

Data source Timeframe N. observations N. users N. flows> 0

Twitter June 22, 2011 to

September 9, 2012

15,730 8,740 1,250

Mobile telephone

records

February 1, 2014 to

March 28, 2014

751,580 ? 5,445

Consumer survey 2011 21,552 21,552 1,021

Note: “N. flows> 0” refers to the number of “flowlines,” O-D pairs, for which a positive

flow was recorded, of a possible 9,600 records and “N. observations” refers to the number if

rows after filtering.
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operating in the area) was used, illustrating the sheer volume of this data source. Twitter data

have the lowest penetration of the sample population of the three data sets because (a) many

people do not use Twitter and (b) only a few percent of tweets are geotagged. Exploring this

issue a little further will help shed light on the findings, presented in the Results section.

Mobile telephone penetration in the United Kingdom has reached 93% (Ofcom 2012), and

in Yorkshire and Humberside, a region incorporating the study area, a survey by YouGov sug-

gested nearly 99% of adults own a mobile phone. In addition, the survey found that 90% of UK

residents aged between 18 and 24, and 95% of those aged 55 years or older own a mobile

phone (YouGov 2011). By contrast, the uptake of Twitter is relatively low at only one-fifth of

the U.K. population (EMarketer 2014).

The age dependency of Twitter use is stronger: 24.7% of 18–24 year olds regularly tweet.

This percentage falls to 4.5% for U.K. residents aged between 55 and 64 years and to 2.1% of

those over 65 years. Based on these statistics, mobile phone data sets are more representative

of the U.K. population when compared to Twitter data. The activity of a mobile phone owner

at any time is not reported, whereas the activity of a Twitter user can sometimes be inferred

from the publicly available content of the tweet. The Acxiom data set has an intermediate cov-

erage between mobile phone and Twitter data.

Geographical resolution

Although 80% of U.K. Twitter users are active on a mobile device, only 1%–2% of all tweets

are geotagged. We used only geotagged tweets with exact coordinates, indicating location by a

GPS or Wi-Fi connection. An additional complication is that Twitter users who enable geotag-

ging may not be representative of Twitter users overall, let alone all people (Mitchell et al.

2013). Further, people who send messages very rarely or continuously can bias the results of

social media data. This was resolved by excluding individuals who had sent fewer than 20 or

more than 10,000 tweets during the data collection period.

Conversely, a mobile phone is connected permanently to a radio mast, and the service pro-

vider knows the location of that mast. Due to variable mast density, the precise location of a

mobile phone can be hard to obtain, and there is potential overlap where some areas may be

covered by adjacent masts. In addition, a mobile phone may not connect to its nearest radio

mast if the capacity of that mast is already used (Nanni et al. 2014). Nevertheless, for the pur-

poses of this study, the location of a mobile phone inferred from these data is sufficient to track

movement between the suburbs of a city. It should be noted that the billing address of the

owner of a mobile phone is assumed to be their home address. Clearly, this could be mislead-

ing.6 An additional issue for mobile phone location data derived from mast connections is that

behavior must be derived from the connection times at certain locations, rather than precise

coordinates at a specific time. If a mobile phone is turned off, loses signal, or connects sporadi-

cally to different masts, this may bias the data in unknown ways.

Temporal resolution

The time at which Twitter users are most active varies throughout the day, with the majority of

tweets in the United Kingdom being sent in late morning and early afternoon, that is, over

lunchtime (360i report, July 2013). In contrast, as a mobile phone is almost always connected

to a radio mast, its location can be estimated most of the time.

This study uses network data for the period between February 1, 2014 and March 28, 2014

obtained from a major mobile phone service provider. The data have been queried,
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pre-processed, anonymized, and extrapolated by the service provider prior to this analysis. A

disclosure control process, using stochastic rounding, has also been applied to further anonym-

ize the data.

The Acxiom data set has the lowest temporal resolution, with only one snapshot typically

provided to clients per year. For the purposes of this study, we use a snapshot year of Acxiom

data from 2010, the most recently available data set. Because the annual survey is ongoing it

would be possible to obtain more up-to-date records, pending commercial restrictions. Because

the Acxiom data is not continuous (i.e., it has low “velocity,” as defined above), one could

question whether it should be classified as “Big Data” at all. We refrain from entering this

debate, instead acknowledging the contested nature of the term and emphasizing its utility as a

“catch all” phrase from referring to new, unusual and nonofficial data sets. The continuous

nature of the mobile phone and Twitter data sets, combined with the ongoing production of the

survey data set, means that there is potential for future work to assess the rate of growth and

capacity to represent dynamic processes in each data set.

Method

The first challenge we faced was the sheer diversity of information available in each of the

three data sets. To tackle this problem, a single origin-destination matrix was used to ensure

the resulting flows could be directly compared. The most scattered data set spatially was the

U.K.’s geolocated tweets, which were first reduced in number with a spatial filter and then

aggregated up to the level of postcode districts. Similar techniques were employed to bring the

mobile phone and Acxiom data sets into a suitable form.

Flows from mobile phone data

The data are generated whenever a mobile device is connected to a radio mast. The service pro-

vider knows the location of the mast to which each device is connected and the period the

device is attached to that mast, referred to here as the “dwell time.” An “event” is triggered

every time a device moves between masts or Wi-Fi networks, a telephone call or text is sent or

received, or a connection to a Wi-Fi network is made, generating a chronology of attachments

(Nanni et al. 2014). This leads to a detailed picture of the locations visited by the owner of a

device and an understanding of their “activity space.” The activity that is undertaken by the

owner of the device at any point in time is unknown.

The first stage of the analysis involved the identification of retail centers in the study area.

The centers were identified using a commercial product called RetailVision which was sup-

plied by the retail consultancy GMAP. Information was acquired for 79 locations in the follow-

ing postal areas: BD (Bradford), HX (Halifax), HG (Harrogate), HD (Huddersfield), LS

(Leeds), WF (Wakefield), and YO (York). The number of retail outlets for each of the identi-

fied centers has been used as a measure of its “attractiveness.” In the next step, “visits” were

defined as connections to towers in the retail center made between 7 am and 5 pm with a dwell

time of between 30 min and 5 h. These rules target shoppers but may also pick-up on nonshop-

ping activity such as part-time work. The “dominant center” for each person was that which

was most visited in the period of data collection, although flows to other centers were also reg-

istered. Where two or more centers were visited equally, the center with the greatest number of

outlets was chosen.
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For all “shoppers” living within the 120 postal districts of the study area, a dominant retail cen-

ter has been identified. This results in a 120 row by 79 column matrix with each cell representing

the number of shoppers in each postal district for whom a particular center is their most dominant.

The matrix is modified to provide an indication of the number of customers in each center.

This is obtained by dividing the cells on each row by the sum of that row and multiplying the

result by the number of households within the postal district, acquired from the 2011 Census

household estimates for postcodes in England. A retail flow can, therefore, be interpreted as the

number of households in a residential area who are customers of a retail center. This definition

is applied consistently throughout this article to all three data sets.

Flows from Twitter data

The general methodology used for the Twitter data are reported by Lovelace et al. (2014). Indi-

vidual tweets were georeferenced and defined as SpatialPointsDataFrame objects in R. The

dominant location during “home hours” was assigned as the “home” of each user and these

were then linked (via user id) to “shopping tweets” (defined below) to infer travel behavior.

Visits to multiple destinations by the same user were recorded.

Various modifications were made to the approach, to maximize the probability that desti-

nations were related to the topic under investigation: shopping. Different definitions were

tested and what is presented is the result of what was in fact one of the simplest definitions of a

“shopping tweet”: any message sent outside of a user’s home area, close to a shopping center

(within a 500 m radius, different buffer sizes were tested, as illustrated in Fig. 1), during prime

shopping times (10am and 5pm on Saturdays). This crude spatio-temporal filter was favored

over more sophisticated techniques of tracking “dwell time” (described above for mobile phone

data, but unsuitable here due to the asynchronous nature of tweets), keywords related to

Figure 1. Illustrative 1,000 and 500 m buffers around Leeds shopping center, as defined by

Retail Vision data.
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shopping (an unreliable proxy of behavior) and frequency of tweets, with goal of simplicity

and reproducibility in mind. The method for identifying “home tweets” relied on repeat mes-

sages from the same place during non-work hours (Lovelace et al. 2014).

The results of this vital preprocessing phase—the importance of which should not be over-

looked by data analysts (Wickham 2014)—are shown in Fig. 2 for the Twitter data set. The fig-

ure shows a substantial concentration of tweets in the metropolitan area of Leeds and Bradford

at the south-western edge of the study region. There are secondary clusters around the city of

York at the center, and seaside towns such as Scarborough on the east coast.

Retail flows from Acxiom data

Text string manipulation was used to match the eight-character postcode provided per respond-

ent in the Acxiom data to the three- or four-character postcode district codes used as the origins

in the study. Identifying the destinations where people undertake their shopping was more chal-

lenging, as respondents are provided with an open-ended question on “Where do you shop

most often,” hence the great diversity of answers. Still, 89% of responses were repeated at least

once by other people. Typical examples of unique responses, highlighting this diversity, were:

“Trafford Centre, Man” (the “Man” referring to Manchester), “Sreat Universal” (likely to be

typo where the respondent was referring to the Great Universal mail order company), and

“Dont have enough.” Clearly, only the first of these can be geocoded, and the latter two must

be allocated NA values. In addition, the second most common answer is a blank, and many

common responses are generic nongeographical names such as “Primark,” “Catalog,” “In the

town,” and “on line.” Therefore, a high proportion—roughly half of respondents—have no

identifiable shopping destination.

Figure 2. Illustration of the “home tweets” (one per user, red) and “shopping tweets” (one

or more per user, green) identified from the national Twitter data set.
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Of the more commonly used destinations, including “Leeds,” “York,” and “Huddersfield”

(these are the three most common responses, each stated by more than 1,000 people), the

majority could clearly be linked to one of the 79 shopping destinations taken from the RetailVi-

sion data. To link each character string to a destination involves either fuzzy matching of char-

acters or “geocoding”—linking words to coordinates—and then selecting the nearest store.

Neither will produce a 100% certain match but, having tried both methods, it was found that

the geocoding option was far more reliable and accurate.

Google’s geocoding API was called from within R to perform the this task, using the geo-

code command from the ggmap package (Kahle and Wickham 2013). A useful feature of this

method is that it flags values that could not be successfully geo coded: 76.2% of the 24,075

destinations recorded for households in the study area were successfully geocoded. A further

16.9% of the destinations were geocoded to destinations outside the study area, leaving 59.4%

rows of Acxiom data with geocoded destinations inside the study area. These coordinates were

allocated to the nearest shopping center. The 50 most common destination labels (accounting

for 80% of responses) were checked manually to ensure the results made sense. Overall, there

were 14,292 flows represented in the resulting flow matrix from the Acxiom data.

Modeling retail flows

Various retail modeling approaches (including those which we articulate below) were deployed

to determine the rate of interaction between residential zones and retail destinations. The retail

flow “system” was be modeled as a spatial network (a “flow matrix”) with the model parame-

ters obtained from the origin-destination points described above. The model can then be used

to predict the response of shoppers to proposed changes, such as the addition of a new retail

center, or to plan transport strategies. The main models employed by researchers to analyze the

movement of people, goods, and communications are variations on the “gravity model” and the

“intervening opportunities” model. All interactions were measured as person trips, although it

would be possible to extend the analysis to estimate expenditure.

The unconstrained gravity model

The gravity model is based on Newton’s law of gravitational force, and states that, for the pur-

poses of this article, the rate of travel flow is directly proportional to the “attraction” between

the origin and destination, and inversely proportionally to some function of the distance

between them. It is, therefore, assumed in the model that shoppers aim to minimize the “cost”

of a journey. Clearly, this will be related to the distance between the origin and destination, in

addition to other factors. Distance was calculated as the Euclidean distance in meters between

shopping center centroid and the centroid of the residential postcodes based on the “OSGB

1936” coordinate reference system. In addition to “distance decay” (which represents how

much distance is a barrier to travel via the d in the equation below), the gravity model used

here has three other tuneable parameters. The resulting model, incorporating the tunable

parameters a, b, and d is defined as follows:

Sij ¼ a
Ob

i Wg
j

dd
ij

(1)

where Sij the number of people who travel from origin postal district i to retail destination j; Oi

is the number of people in postal district i; Wj is a measure of the attractiveness of the retail
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destinations j (here this is simply the number of shops in each center); and d is the distance

matrix between origins (rows represented by i) and destinations (columns, j). The parameters

were tuned such that the modeled flow fits the actual data contained within the origin-

destination matrix. This is achieved using unconstrained nonlinear optimization, minimizing

the least squares error between the flows predicted by the model and the actual values in the

origin-destination matrix.

Production-constrained gravity model

Although the gravity model has been used successfully to model traffic flows and population

movement, it is clear that if the values for Oi and Wj are doubled then, according to equation

(1), the number of trips between them would quadruple. Yet intuition suggests they should dou-

ble. In the second model, the gravity law is modified such that the sum of the rows in the

origin-destination matrix is equal to the number of trips originating from each origin. Further,

an exponential distance decay function is introduced following Wilson (1971). This reflects the

statistical derivation of this version of the model (Wilson 1967). The production-constrained

gravity model is written as:

Sij ¼ AiOiWjexpð2bdijÞ (2)

where Sij, Oi, Wj, and dij are the same as in equation (1) and b is a distance decay parameter.

The variable Ai,

Ai ¼
X

j

Wjexpð2bdijÞ (3)

is a balancing factor to ensure that the following equation is true for all flows:

X

j

Sij ¼ Oj (4)

Thus the balancing factor is calculated as follows:

Ai ¼ 1=
X

j

Wjexpð2bdijÞ (5)

The distance decay parameter can be obtained by logarithmic transformation of the expo-

nential form described above to a linear form as follows:

log Sij ¼ log Oi1log Wj2bdij (6)

Linear regression models of the gradient of the response log Sij to the predictor dij can be

used to find the optimal value of 2b. For a more formal treatment of gravity models, the inter-

ested reader is directed toward Wilson (1971).

The radiation model

The radiation model proposed by Simini et al. (2012) derives its name from the analogy of a

particle emitted from a source and absorbed by a destination location. The theory behind the

model assumes that there is no direct relationship between the number of trips and distance.

Instead, it proposes that the number of trips over a given distance is proportional to the
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attractiveness of the destinations at that distance and inversely proportional to the attractiveness

of the intervening opportunities. In its basic form, the model is parameter free, and can, there-

fore, be applied in cases where there are no measurements of trip numbers, only requiring

information on the distribution of populations. Although the mathematical formulation of the

radiation model for trip flows is quite recent, the importance of intervening opportunities pro-

vides a clear link to established theories (Stouffer 1940).

In the original model developed by Simini et al. (2012), mi and nj represent populations,

and the number of trips between i and j are predicted by the model. In this version of the model,

these parameters are replaced by Oj and Wj, as defined above. Further, we add a “home-field

advantage” parameter for each origin, ei. This represents the increased attractiveness of retail

opportunities available close to the home location, for example due to knowledge of the local

area. A tunable scaling parameter, C, is included in the model in place of the scaling factor, Ti,

employed by Simini et al. (2012) in their model to scale the flows between an origin and desti-

nation by the proportion of commuters in the study area. This also removes the need for the

additional parameter in the numerator as used by Simini et al. (2012). The revised model is,

therefore, written as:

Sij ¼ C
Oi1ei

ðOi1ei1PijÞðOi1ei1Wj1PijÞ
(7)

The matrix Pij is the number of retail outlets in the circle of radius dij centered at i, exclud-

ing outlets at the source and destination. The values for ei and C are estimated using uncon-

strained nonlinear optimization with the objective function to minimize the square of error

between estimated and observed flows.

Results

To be useful for retailers, developers, and Local Authority planners, estimates of retail flow

predicted by a model should match the source data. This is critical for assessing the impact of

proposed changes, such as the addition of a new retail centre.7 Model predictions for each retail

centers were compared to the corresponding values obtained from the mobile network data.

These results are compared below.

The origin-destination matrices obtained directly from the mobile phone data, the Twitter

data, and the Acxiom data are visualized in Fig. 3. This shows the much larger size of the

mobile phone data set and the relatively sparse nature of the Twitter data set compared with the

other two sources.

To quantify the fit between the flow matrices, the coefficient of determination (R2
T)—a

measure of model fit—was used. The overall fit per matrix was calculated (Table 2), in addition

to R2
T per origin zone, to identify the geographical distribution of model fit. R2

T is defined as fol-

lows (Steel and Torrie 1960):

R2
T ¼ 12ðr2

eÞ=ðr2
yÞ (8)

where r2
e is the sample variance of the residuals in the observed output and r2

y is the variance

of the residuals in the model. If the variance of the model residuals is low compared with the

variance of the observed output, R2
T tends to unity, indicating the model gives a good explana-

tion of the observed data. If the variances are similar in magnitude, R2
T tends to zero, indicating
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Figure 3. Flows derived from three sources: mobile phone data (top), geotagged tweets

(middle), and retail survey data (bottom).
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a poor fit. If the variance in the model residuals is large compared to the variance in the

observed data, R2
T will be negative, indicating a very poor fit. The correlation between flows

obtained directly from the phone, Twitter, and Acxiom data and the parameter-free radiation

model was calculated using the coefficient of determination. Table 2 summarizes the coeffi-

cient of determination for the three flow matrices obtained from the phone, Twitter, and

Acxiom data and a fourth flow matrix obtained from the parameter-free radiation model.

It can be seen from Table 2 that the matrix of flows obtained directly from the Twitter data

do not coincide with those obtained from the mobile network data particularly well. This is

partly due to the scarcity of the Twitter data, which represents only 8,500 flows compared to

almost 100 times more (740,000) flows obtained directly from the mobile phone data. The

flows obtained from the phone data are considered to be the “benchmark” for the study, and for

the remainder of this section the spatial variability of the fit of the flows obtained from the

Twitter data, the Acxiom data, and the parameter-free radiation model to the flows obtained

from the telephone data (i.e., the first column in Table 2) are discussed.

There is good agreement with the mobile network data for the area around central Brad-

ford, the areas to the north, east, and west of York, and the area around Selby. This may be due

to central Bradford having a much higher proportion of users represented in the Twitter data

compared to other postal districts in the study area. The reason the other areas show good

agreement to the mobile network data is less clear. In contrast, areas with a high proportion of

Twitter users in the data, for example, central York and the area around Settle, have a very

poor fit to the mobile network data.

Despite the relatively small sample size of the Acxiom data set (just under double the size

of the Twitter data), the resulting flows fit those predicted by the much larger mobile phone

data surprisingly well. City centers, such as central York, Halifax, and Leeds, have a compara-

tively high proportion of respondents and show a good match to the mobile data. There is a

poor fit for central Bradford, due in part to the low proportion of respondents in this area. Sub-

urban areas of the major towns and cities in the area also show a poor fit to the mobile data.

This may be due to the responses being simply “Leeds” or “Bradford” and not the name of the

particular suburb in which the respondent predominantly shops. A similarly poor fit is apparent

with rural areas; this is probably because the mobile data tracks users who need to travel to a

retail center for all types of purchases, in contrast to the Acxiom data that are for purely non-

grocery goods.

The parameter-free radiation model provides the best fit to the mobile phone data, indeed

the model fit is good for the majority of the study area, particularly around the major retail cen-

ters of Leeds, Bradford, Scarborough, York, Huddersfield, and Wakefield. The model fit for

many of the rural areas is relatively poor, this may be due to the lack of “intervening oppor-

tunities,” meaning the flows are overestimated.

Table 2. Coefficient of determination between the matrices of flows obtained directly from

the phone, Twitter, and Acxiom data and estimated by the parameter-free radiation model.

Mobile phone Twitter Acxiom P-F radiation

Mobile phone 1

Twitter 0.127 1

Acxiom 0.653 0.2 1

P-F Radiation 0.793 0.069 0.548 1
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The matrices of flow obtained directly from the Twitter, phone, and Acxiom data described

above have each been used to obtain parameters for three varieties of spatial interaction model:

an unconstrained gravity model, a production-constrained gravity model, and a radiation

model, using the methodology described in the previous section. Table 3 summarizes compari-

sons between the retail flows at each of the retail centers obtained from each of nine models

generated using the mobile phone, Twitter, and Acxiom data.

It is clear from Table 3 that models obtained from the Twitter data are very poor in com-

parison to those obtained using the mobile phone and Acxiom data sets. This is simply because

the Twitter data are sparse and insufficient to provide a robust and convincing fit to the model

output. Again, in spite of the relatively small data set provided by Acxiom, the models provide

a good fit to the data; however, closer inspection of all the predicted flows reveals that the fit is

relatively poor for those areas with a low proportion of respondents.

Considering the three models obtained from the flow matrix derived from the mobile

phone data (i.e., the top line in Table 3), Figs. 4–6 illustrate the spatial variability in the coeffi-

cient of determination between the modeled flow matrices and the source data. Fig. 4 illustrates

the coefficient of determination of the prediction generated by the unconstrained gravity model.

It can be seen that this model provides a reasonable fit to the source data, with the model pro-

viding a good model fit close to the major retail centers of Leeds, Bradford, Scarborough,

Table 3. Average coefficient of determination values for the flows per origin postcode and

the retail destinations its inhabitants visit obtained from mobile, Twitter, and Acxiom data

(rows) and the models generated from these data sources (columns)

Gravity (unconstrained) Gravity (constrained) Radiation

Mobile phone 0.831 0.742 0.909

Twitter 0.39 0.281 0.272

Acxiom 0.853 0.608 0.84

Figure 4. The coefficient of determination between flows obtained from unconstrained grav-

ity model and flows inferred from mobile telephone data by postcode district of origin.
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York, Huddersfield, and Wakefield. Away from these centers, the performance of the model

deteriorates, especially at the boundary of the study area.

Fig. 5 reveals that the model fit is acceptable for the majority of the study area. However,

Table 3 suggests that the fit of the output of the production-constrained gravity model to the

source data is poor in comparison to the unconstrained gravity model, and that the fit is less sat-

isfactory for the more populous area around Leeds and Bradford. This is slightly surprising and

may be due to the adoption of a very simple model form in equation (2). While it is likely that

an enhanced specification of this model, for example, to include a different functional represen-

tation of the attractiveness or distance effects, such model optimizations were considered to be

outside the scope and purpose of this article.

The radiation model provides a good overall fit to the source data, as illustrated in Fig. 6.

The model also appears better able to predict retail flows at the boundary of the study area

compared to the spatial interaction models. It is possible the better model fit to the source

data is due to the radiation model having more tunable parameters in the “home advantage”

form used here than the other models. This may lead to “over-fitting” to the source data and,

therefore, reduce the effectiveness of the model when predicting the impact of proposed

changes.

Discussion and conclusions

This article has explored the relative utility of three large data sets for exploring retail-related

travel behaviors. The work is of some empirical interest, reaffirming the long-standing idea

that “the influence of a city of this category [a ‘Regional Capital’] radiates over an extensive

area—its region” (Dickinson 1930). The results, primarily obtained from the Acxiom and

mobile telephone data sets, demonstrate the potential for new Big Data to explore long-

standing issues such as those raised by Dickinson more than 80 years ago. Our work suggests

Figure 5. The coefficient of determination between flows obtained from production-

constrained spatial interaction model and flows inferred from mobile telephone data by post-

code district of origin.
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that, in the absence of reliable official data sets on retail travel (as opposed to commuter flows),

emerging Big data sets can provide new insight into retail travel patterns.

However, the main contribution of this article is methodological and theoretical. The meth-

ods will be of interest (and potentially useful) across wider fields of application including tour-

ism, public service provision and transport planning. Others have recently noted the potential

utility of mobile telephone records in tracking and perhaps controlling epidemics (The Econo-

mist 2014) and in the production of census-like migrant distributions (Tatem et al. 2014). The

wider point relates to the concept of Big Noise, coined in this article to refer to Big Data that is

high volume but of relatively low value in its raw state. Even after “data mining” processes to

refine the low grade “ore” of the Twitter data, the data set seemed to have relatively low levels

of veracity compared with the other data sets. These data quality judgments are rare in the

emerging Big Data literature and we hope that the concepts and methods developed in this arti-

cle will lead to better assessment of data quality in future work.

Data quality is paramount in empirical work and this is particularly true for emerging data

sources which lack a track record in applied research. This problem has been addressed in this

article through crossverification between sources and against a selection of model results. A

superficial interpretation of the results suggests that the robustness of each source is related to

the intensity of its coverage, hence the data volume. Mobile telephone data, collected the most

frequently, is a promising source for retail flow data while relatively sparse and infrequent geo-

located twitter messages unsurprisingly performed worst. However, volume is only one factor

that should decide how (and whether) a data set is used. There are many, much subtle explana-

tions of the results. Acxiom market research data contains a very wide range of demographic

attributes, as well as attitudes, lifestyles and behaviors (Thomas, Stillwell, and Gould 2014).

The slow velocity and stable sample size of the surveys make the Acxiom data set is better

suited to the exploration of long-term trends than short-term shifts.

The work supports the view that variety can be a strength or weakness, depending on con-

text. Twitter messages contain intriguing clues about activity patterns (Malleson and Birkin

2012; Lovelace et al. 2014) but cannot be assumed to represent real behavior. For many retail

applications, velocity may be the key attribute, for identifying market trends. More sophisti-

cated methods may be needed to capture the seasonal, weekly, and diurnal variations in behav-

ior patterns. But for the Acxiom and Twitter data, the flow of information is simply not

sufficiently fast to pick-up on short-term shifts in shopping habits.

The empirical case study used to explore these points was deliberately limited in scope but

could be expanded in future work. The year’s worth of market research data could be extended

to cover more recent years and the mobile telephone and Twitter data could (provided access)

be updated almost continuously. However, the subset of these vast data sets analyzed in this

article have been sufficient to demonstrate clear trends. A more systematic appraisal of the

models could be incorporated to allow a thorough consideration of different model parameters

and functional forms of distance decay. More specifically, the ongoing nature of the data sets

under investigation provides an opportunity for assessing their ability to pick-up on future

trends. Our preliminary hypothesis would be that the Twitter and mobile phone data sets would

shine here, notwithstanding issues of changing rates of use disrupting time-series analysis.

An important finding for future researchers jumping on the Big Data “bandwagon”“(Kwon,

Lee, and Shin 2014) is that social media messages from Twitter messages were found to be sig-

nificantly skewed in their spatial and temporal distributions. This is likely to be mirrored by bias

due to a small number of high volume users accounting for the majority of Twitter-inferred flows.
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With this caveat in mind, we allowed multiple trips (to different destinations) per user to over-

come issues of data sparsity in the Twitter data. Advanced filtering techniques and sensitivity

analyses to identify and minimize such biases (Davis, Dingel, and Morales 2015) are therefore

recommended areas for future research. For the models used in this article to be more policy-

relevant, they would need to estimate absolute “flow” in absolute values, rather than the relative

flow numbers presented here. Further refinements (which could be aided by the textual content of

social media) would seek to quantify the expenditure resulting from different flows—the lack of

monetization of the flows is a clear limitation of this research from the perspective of private

business, but not from the perspective of transport planning.

A more specific limitation of this article relates to the scale of the case study. “Edge

effects,” also known as the “boundary problem” (Batty 2012), may have artificially reduced fit

toward the boundary of the study area and affected the distance decay parameter. This limita-

tion could be minimized in a nationwide study or by modeling “sinks” outside the study area: it

is recommended that further work focused on developing spatial interaction models of retail

flow use a wider area to train and test the models. A wider issue that this article highlights, that

is also applicable to more traditional data sets, is the context-dependence of verification. Differ-

ent methods would be needed to assess the data sets’ quality for assessing user experience, or

frequency of visit, for example.

Notwithstanding these limitations and drawbacks, the results of this work demonstrate the

potential for emerging large data sets to be used in geographical modeling. Applications where

official data sets are limited, such as retail flows, are especially well suited to the use of Big

Data. This will require new methods and concepts, some of which are explored presented in

this article. Verification in geographical research is set to become increasingly important as

data sets become more diverse. There is great potential for further work on data verification of

data sets as more and more Big Data sources are made available to the research community.

While this article has been primarily methodological and theoretical in its emphasis the

Figure 6. Coefficient of determination between flows obtained from the radiation model and

flows inferred from mobile telephone data by postcode district of origin.
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approach, of crossvalidating unrelated sources of geographically aggregated information, has

great potential in applied research.

This article also relates to the research funding landscape surrounding quantitative geogra-

phy and the social sciences. In recognition of the importance of Big Data for academic

research, research councils are mobilizing resources to take advantage of new sources of data,

from both government and commercial domains.8 An optimistic view of such investment is

that, in the long run, it will facilitate new research insights. In geographic research, for exam-

ple, we have demonstrated the potential to harness new data sets to better understand retail

flows. There is also great potential for using Big Data for social benefit. Understanding how

mobility patterns shift over short-term time scales and for multiple purposes could have impor-

tant implications for sustainability and help answer important questions such as: How can soci-

ety best transition away from fossil fuels?

For such exciting geographical Big Data research to happen, it is critical that publicly

funded researchers have access to the data. It is encouraging, therefore, to see many initiatives

aiming to unlock the great potential of Big Data for academics.9 This view seems to be shared

by national statistical agencies that are considering the possibility that Big Data could eventu-

ally replace official data sets altogether. That seems to be the view of the U.K.’s Office for

National Statistics which is looking into how synthesized data sets could replace the National

Census after 2021 (Coleman 2013).

New methods and greater experience are needed before such an ambition becomes reality.

As pointed out with respect to the physical sciences, “researchers need skills in both science and

computing—a combination that is still all too rare” (Mattmann 2013). This problem is even more

acute in the social sciences and there is a need for training around the specific skill sets needed to

deal with the deluge of new data sets and software packages available in the 21st century (Harris

et al. 2014). On the data side, new sources should not be assumed to be better than existing sour-

ces simply because they are bigger, although its large size does seem to contribute to relatively

good data-model fit found for mobile telephone data. The work presented in this article outlines a

small step in this direction, highlighting the importance of cross-validation.
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Notes

1 See http://www.ibmbigdatahub.com/blog/measuring-business-value-big-data

2 This understanding suggests that Big Data should more correctly be called ’V data’. It would seem dif-

ficult to dislodge the currently fashionable term, but the three (now four) v’s are certainly worth

mentioning.

3 Data collected via the fitness app Strava, which records users’ position over time using the GPS

receiver contained in most modern smartphones, is another good example of this time bias. Routes are

more likely to be recorded during exceptional times rather than the more frequent everyday patterns

due to the competitive nature of the app.
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4 Note there is often a link between temporal velocity and spatial specificity. Frequent data collection

can often be allocated to more specific points on the map (as with geotagged tweets) although this is

not always the case (as with raw mobile telephone data).

5 This can be seen in the growth of dedicated market research corporations such as MORI and Verdict.

6 For example, business mobiles may be registered to a users’ place of work rather than their home;

phones owned by parents but operated by children who move away from home may also cause

problems.

7 Note it is generally assumed that the population of each postal district is located at the centroid of the

corresponding polygon and the models presented in this article are no exception. Clearly, this is not an

accurate reflection of the population distribution; however, for the purposes of comparing the relative

performance of the modeling techniques described in the previous section, this is a reasonable

approximation.

8 In the social sciences, this can be seen in a few multimillion pound investment programmes, in “Big

Data,” including the Australian Urban Research Infrastructure Network (https://aurin.org.au/) U.K.’s

Big Data Network (http://www.esrc.ac.uk/research/major-investments) and the Big Data Research Initi-

ative in the United States.

9 See, for example, the Consumer Data Research Centre (cdrc.ac.uk/projects/), which aims to make com-

mercial data more accessible to academics for social benefit.
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