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ASYMMETRIC PROBLEMS AND

STOCHASTIC PROCESS MODELS OF TRAFFIC ASSIGNMENT

David Watling

Institute for Transport Studies, University of Leeds, UK

Abstract

There is a spectrum of asymmetric assignment problems to which existing results on uniqueness

of equilibrium do not apply. Moreover, multiple equilibria may be seen to exist in a number of

simple examples of real-life phenomena, including interactions at priority junctions, responsive

traffic signals, multiple user classes, and multi-modal choices.

In contrast, recent asymptotic results on the stochastic process approach to traffic assignment

establish existence of a unique, stationary, joint probability distribution of flows under mild

conditions, that include problems with multiple equilibria. In studying the simple examples

mentioned above, this approach is seen to be a powerful tool in suggesting the relative,

asymptotic attractiveness of alternative equilibrium solutions. It is seen that the stationary

distribution may have multiple peaks, approximated by the stable equilibria, or a unimodal

shape in cases where one of the equilibria dominates. 

It is seen, however, that the convergence to stationarity may be extremely slow. In Monte Carlo

simulations of the process, this gives rise to different types of pseudo-stable behaviour (flows

varying in an apparently stable manner, with mean close to one of the equilibria) for a given

problem, and that this may prevail for long periods. The starting conditions and random number

seed are seen to affect the type of pseudo-stable behaviour, over long but finite time horizons.

The frequency of transitions between these types of behaviour (equivalently, the average sojourn

in a locally attractive, pseudo-stable set of states) is seen to be affected by behavioural

parameters of the model. Recommendations are given for the application of stochastic process

models, in the light of these issues.



     A slightly stronger definition of equilibrium has been used by some authors, eg Dafermos (1980). The difference is1

discussed by Smith (1984a). The above follows Smith's definition of `Wardrop equilibrium'.

     See, for example, Smith (1979b, 1984c) and Horowitz (1984) for alternative, global definitions of stability.2

     It is assumed henceforth that travel cost is a linear, increasing function of travel time, and that the time-weighting is link-3

independent. Hence `time' and `cost' are interchangeable in the conditions stated.

     An alternative existence theorem is provided in Smith (1981a), based on properties of the cost functions at individual4

intersections, assuming the flows at one intersection do not affect costs at another.
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1. INTRODUCTION: EQUILIBRIUM TRAFFIC ASSIGNMENT

Traffic assignment is concerned with predicting an average flow for each link in a road network,

given rules about the way in which drivers select a route. The demand-side data are given in the

form of an origin-destination (OD) matrix, representing the average inter-zonal demand for

travel during, say, a peak period. The supply-side data are specified in terms of a set of link

travel time functions, which give the average link travel times when the link flows are at a given

level. Drivers are assumed to make their route choice based on the generalised travel cost,

typically a linear combination of travel time and flow-independent attributes.

Equilibrium traffic assignment models assume that drivers select a route so as to minimise their

own travel cost, of which they have perfect predictive knowledge. A traffic assignment is defined

as being in equilibrium if and only if the travel costs on all used routes between each OD pair

are equal, and greater than the cost that would be experienced on any unused route at these flow

levels . An equilibrium is said to be (locally) stable unless arbitrarily small deviations may1

cause the system to diverge from the original equilibrium state, following Netter (1972), Braess

and Koch (1979), and Heydecker (1983) . Guaranteeing the existence of a unique stable2

equilibrium has long been recognised as being highly desirable. This would ensure that in a

before-and-after study of some scheme, modelled differences may be attributed to the effects of

the scheme, rather than instability in the model behaviour. For example, a minor change could

otherwise cause an equilibrium algorithm to approach different equilibria.

iSuppose a network has n links, and the (perceived) travel cost  for link i is c (v), where v =3

1 2 n i(v ,v ,...,v ) and v  is the flow on link i. The Jacobian is defined as the nxn matrix with (i,j)

i jelement Mc /Mv  . A traffic assignment problem is termed separable when the Jacobian is

i i idiagonal; that is to say, when c  = c (v ). Beckmann et al (1956) showed that a unique stable

iequilibrium exists for any separable problem where the c (.) are continuous and strictly

increasing. Dafermos (1971) appears to be the first to have considered the non-separable case,

requiring that the Jacobian be symmetric and positive definite. However, many problems of

practical interest are neither separable nor symmetric.

Non-separable problems where the symmetry of the Jacobian cannot be guaranteed are termed

asymmetric. The most general result for such problems was derived by Smith (1979b), who

established (subject to a technical condition):

  ! existence of equilibria  under the continuity of the vector of cost functions c(.);4

  ! uniqueness of equilibrium under the strict monotonicity condition:

(c(v)-c(w)) . (v-w) > 0



     A similar restriction, that each link flow be bounded by the link capacity, was imposed by Beckmann et al (1956).5

     Heydecker (1983) sought to establish a necessary condition for uniqueness, the violation of which would indicate the6

presence of no or multiple stable equilibria. In fact, he found his proposed condition was necessary only for positive
definiteness, which (as stated above) is not necessary for equilibrium uniqueness. 
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for all "supply-feasible"  vectors v, w of link flows on the network, v =/  w.5

Dafermos (1980), while concurrently establishing an existence theorem, showed that Smith's

uniqueness condition was equivalent to requiring that the Jacobian be positive definite. This is

not a trivial condition to verify in practice, but a useful indicator as to its possible truth or

violation may be gained from a sufficient condition for a symmetric matrix to be positive

definite. This indicator requires that:

 (a) the travel cost on each link is an increasing function of the flow on that link, when other

link flows are held constant; and

 (b) the dominant explanatory factor in a link's cost is the flow on that particular link, rather

than any other link flow.

which in terms of the Jacobian requires (Sheffi, 1985, p213):

i i i i j (j=/ i) i jMc /Mv  > 0 & Mc /Mv  > G  Mc /Mv      for all i.

In practice, such conditions are often violated: for example, at a priority junction, where delay on

a minor arm is strongly dependent on the flows on the major road. It should be recognised,

however, that positive definiteness is a sufficient but not a necessary condition for equilibrium

uniqueness . Indeed, it is possible to conceive examples with an indefinite Jacobian but a unique6

equilibrium, as well as those with multiple equilibria (see later). The range of asymmetric

problems falling in this area of uncertainty is in fact even greater, when one considers extensions

to the basic model described above, such as:

Multiple user class (MUC) assignment, which allows several groups of user, each with its own

OD matrix and generalised cost parameters. Braess and Koch (1979) established existence of

MUC equilibria under positive definiteness of the Jacobian, for each link, of UC costs with

respect to UC flows. Except in the symmetric case (Dafermos, 1972), no conditions for

uniqueness of UC link flows have yet been established. Uniqueness of "total 

link flows" - a weighted sum of the UC link flows, based on link-independent weights - has been

established by Daganzo (1983) and Van Vliet et al (1985), though only for a restricted class of

models where the flow-dependent part of UC costs is a UC-independent function of total link

flow.

Stochastic equilibrium assignment (Fisk, 1980; Daganzo, 1982; Sheffi, 1985, chapter 12),

where drivers' perceived costs are random variables. Uniqueness is guaranteed only under at

least as restrictive assumptions as the deterministic case (positive definiteness), in addition to

certain technical conditions on the link cost probability distributions.

Responsive traffic signals and assignment, equilibrium occurring when the flows are in

equilibrium given the signal timings and the signal control policy is satisfied given the flows.
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Even if link costs are assumed separable for given signal timings, asymmetric interactions may

arise in the responsive case, since an increase in flow on one junction approach will tend to cause

a decrease in the share of green time (and hence an increase in delay at fixed flow levels) to other

approaches at that junction. Smith (1981b) proposed some fairly restrictive assumptions for

existence of equilibria in this case, although the question of uniqueness has yet to be addressed.

Joint travel choice models including, for example, multi-modal assignment and combined

generation-distribution-assignment. Sheffi (1985, chapter 9) shows how a number of these may

be reformulated as asymmetric link-interaction, single mode models over suitably extended

networks. Fernandez & Friesz (1983) provide a comprehensive review, attributing the most

general theoretical result to Aashtiani and Magnanti (1981). This is based on additional

conditions imposed on the `demand functions', i.e. the OD demand levels as a function of the

vector of minimum OD costs:

   ! (existence) demand functions are non-negative, continuous, and bounded above;

   ! (uniqueness) the vector of negative demand functions is strictly monotone.

In multi-modal problems, for example, this latter condition may be violated, since bus delays are

most heavily dependent on car flows.

In spite of these gaps in equilibrium theory, there has been little research into understanding

problems with asymmetric, indefinite Jacobians, either from an empirical or theoretical point of

view. This may in part have been due to the lack of suitable tools. For example, equilibrium

solution algorithms are typically only guaranteed to converge under conditions that are at least

as restrictive, and in any case are not designed to provide information on multiple solutions.

2. ASYMMETRIC PROBLEMS: SOME EXAMPLES

The study in this paper will be based on a number of examples of asymmetric problems. Highly

simplified networks will be used, since many of the analyses performed are only computationally

feasible in such cases. However, the models used represent realistic properties of practical

interest, and have important implications for the study of larger networks, discussed later. For

the moment, it is sufficient that the examples be considered broad descriptions of plausible

routes on an isolated OD movement. 

The networks considered all consist of a single OD pair, joined by two parallel links/routes with

i 1 2cost functions c (v ,v ), for i=1,2. Both deterministic and stochastic equilibrium solutions are

discussed. In the latter case, it is supposed that drivers select a route according to a logit model

with dispersion parameter ß (>0):

1 1 2p (c ,c ) =            1               

1 21 + exp (ß(c  - c ))

1where p  is here the proportion of drivers selecting route 1. If the OD demand is T, the condition

for stochastic equilibrium is:

1 1 1 2v   =  T p (c (v),c (v))  .

Solutions are determined by explicitly checking the equilibrium conditions over fine increments

of flow, and homing in on areas where there is a change of sign. Note that although the
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equilibrium proportion of T using each route is invariant with respect to T, particular values for

T are assumed, for the convenience of the analysis in section 4.

2.1 Cascetta's example

The following example, although rather abstract, is interesting because it has previously been

considered in this journal series in a context relevant to the present paper. Cascetta (1989)

considered a 2-link network with an OD demand of 10, and cost functions:

1 1c  = 0.7 v  + 7

2 2 2c  = -8.464797 v  + 31.9296 v  < 3.132

2 2 2c  = (2/3) v  + (10/3) v  $ 3.132

Therefore, although the cost functions are separable, they are not monotonically increasing.

Morlok (1979) shows how a cost function of this general shape could arise from a demand-

responsive bus service, so the example is not entirely abstract if the routes are viewed as modes.

A similar argument could be given concerning problems with responsive traffic signals, though

these are dealt with explicitly later, in example 2.6.

Cascetta, assuming a logit route choice model with dispersion parameter ß = 0.3, identified two

1stochastic equilibria, at around v  = 3.60 and 9.50 (the latter appears to be a slight typographical

error, since the second equilibrium can be verified to be around 9.95). These two are both stable,

as can be verified by an analysis such as Heydecker's (1983). In fact, there is a third stochastic

1equilibrium, at v  = 8.40, but this is unstable. 

2.2 Priority junction example

iConsider a two-link network where the cost (travel time) c  on link i (i=1,2) is:

i i i i iwhere ( =( (v) is the flow-dependent (exit) capacity, and a , b  and m  are constants. Suppose

that link 2 runs parallel to link 1 for some distance, but that link 2 traffic must then give

ipriority to and join link 1 at a priority junction (after which they experience the same delay). If s

1 1is the saturation flow of link i (i=1,2), it is assumed that ( =s , but that based on a steady state

gap acceptance model:

2where g > 0 is a gap acceptance parameter and 0.02s  represents a "pushing in" capacity that is

1 1also applied in the case v  > s  (Van Vliet, 1985). These assumptions are an aggregate

representation of those used in the well-known SATURN model of Van Vliet. The asymmetric

1 2 2interaction here arises through the effect of v  on (  and hence c .



     The fact that stochastic equilibrium gives unique UC flows, where deterministic equilibrium does not, is known by the work7

of Daganzo (1983). An analogous (and better known) result arises in single user class problems, where equilibrium route
flows are in general non-unique in the deterministic case but unique in the stochastic case.

6

For example, assume an OD demand of T=80, with g=0.03 and link-based parameters: 

1 1 1 1 2 1 1 1a  = 3.5; b  = 2.5; m  = 3; s  = 250; a  = 1.0; b  = 4.0; m  = 5; s  = 170.

1This example has two stable deterministic equilibria, at v  = 0 and 60.80. For ß > 1.18 two

corresponding stable stochastic equilibria arise, for ß < 1.18 there is only one.

2.3 Multiple user class example 1

Consider a two-link network in which a demand of 15 trucks and 100 cars must be routed, and

where a truck has a "passenger car equivalent" factor of 3. Link delays, as a function of the total

i i iequivalent link flows (v  = v  + 3v , for i=1,2) are given by:CAR TRUCK

and both links are 1 unit in length. Trucks are assumed to value distance twice as much as delay

in their cost definition, whereas cars only value it the same as delay. On any link, the Jacobian

of UC costs with respect to UC flows in not positive definite - trucks have a greater influence on

car costs than car flows do - and in fact there are an infinity of deterministic equilibria. However,

the Jacobian of link delays with respect to total link flows is separable and positive definite, and

1the unique deterministic equilibrium in terms of total link flows is at approximately v =96.7.

However, there is a unique stochastic equilibrium with respect to UC flows : for example, with7

i iß=1 at v =63.5 and v =9.5.CAR TRUCK

2.4 Multiple user class example 2

The following two-user class example is due to Netter (1972, Example 1, p414).  Denoting the

ki kiflow and perceived cost of user class k on link i by v  and c  respectively, then:

11 11 21c  = 0.5 v  + 5 v  + 6

21 11 21c  = 0.3 v  + 0.6 v  + 0.8

12 12 22c  = 0.5 v  + 3 v  + 10

22 12 22c  = 0.2 v  + 0.4 v  + 4

and the OD demand flow for user class 1 and 2 is assumed to be 16 and 4 respectively. The

dominance of user class 2 flows over the perceived costs of user class 1 means that the positive

definiteness condition is certainly violated; furthermore, the costs are clearly not of the pce-type

studied above. This problem has two stable deterministic equilibria - corresponding to the cases

where the total demand of 20 is all routed via link 1 or all via link 2 - and one unstable

equilibrium, where the user class OD demands are evenly split between the two routes.

2.5 Multi-modal example
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This example is due to Daganzo (1983, p 294-5). The demand T on a single OD pair is assumed

to choose between bus and car according to a demand function. In the traffic model, a bus is

assumed to have the same effect on delays as two cars. The bus operates at a fixed frequency on

a fixed route, and so - because link delays are assumed to be linear functions of total equivalent

car link flows - has a fixed effect on delays. The cost of travel by car is assumed to be equal to the

delay, and that by bus equal to twice the delay. Daganzo also proposes a 3-link network

structure for the problem, although this is somewhat artificial due to the use of one link with

zero delay. In fact, it is easy to show that these assumptions are equivalent to a single-link

network with cost functions:

where the demand of T person trips is split according to a logit demand function:

In the form given above, the violation of the positive definiteness condition is clear. As 2 6 4, the

demand function approaches a deterministic rule; in the limit there are 3 equilibria, 2 stable

CAR CAR 2ones at v  = 0 and T, and an unstable one at v  = / . As mentioned by Daganzo, for large butT

finite 2 there are three corresponding stochastic equilibria.

2.6 Responsive signals example

This example, adapted from Smith (1979a), considers two parallel routes that meet at a

signalised intersection working on a fixed cycle time 6. For each link i (i=1,2), the share of green

itime 8  is chosen in response to the prevailing flows, following Webster's method: 

where 0<g<1 is a minimum green-time share (added here to Smith's example to avoid problems

i i i i iof an undefined delay function at zero green time) and y  = v /s , with v  and s  respectively the

flow and saturation flow. Since green time proportions sum to 1, there is an implicit assumption

of no "lost time", and that links cannot have green simultaneously. It is supposed that link costs

are given by Webster's two-term formula for expected delay:

i i iThis formula applies when link flows are within capacity (v  < 8  s ), but not for over-capacity

flows. Smith considers this "supply-infeasibility" problem in some detail, but it is not of direct

2interest to the present paper. Therefore, only Smith's example with an OD demand of /  is1
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1 2considered here, since then all demand-feasible flow allocations satisfy  y  + y  < 1, implying that

i i ithe green times given by Webster's control method will always satisfy v  < 8  s .  The minimum

1green time value (g=0.01) used in the tests below, together with the assumed values for s  and

2 i is , will not cause any problems either, since all flow allocations satisfy v  < (1-g)s .

1 2Smith assumed further that s =1 and s =2, but did not specify the value used for 6 in his tests.

With an OD demand of 0.5 the link flows will be in the range 0 to 0.5, and this is not an

unreasonable range for flows measured in vehicles per second. Therefore, it seems reasonable to

assume 6 to be measured in seconds; 6=60 is used below. Finally, it will be convenient for later

tests to be able to use different OD demand levels. In fact, the same equilibrium proportions of

idemand arise if we assume an OD demand T, provided any link flow v  arising is scaled before*

i isubstitution in the cost function: v  = v  / 2T . Assuming T=100, three deterministic equilibria*

1arise: two stable ones at the all-or-nothing solutions and one unstable equilibrium around v  =

33.67. For ß > 0.13, there are three corresponding stochastic equilibria.

2.7 Dynamic choice models

"Dynamic models" consider the within-day variation in time of traffic flows and driver choices.

Asymmetric interactions may arise here due to flows in one time period leading to queues that

delay those in later time periods (similar interactions occur when rail/air departures are delayed

- see Carey and Kwiecinski, 1994). For example, consider arrivals at a single bottleneck of

icapacity c vehicles/hour, where the arrival rate in time period i is v  vehicles/ hour (i=1,2) and

where each interval is of length t hours. Supposing first-in-first-out (FIFO) queuing discipline

2applies, the delay to period 1 arrivals may be calculated independently of v : The queue at time t

1 1 1will rise to q =max(0,(v -c)t), subsequently requiring a time q /c to disappear. By deterministic

queuing theory, the average delay is the integral of this piecewise-linear queuing profile, divided

by ct:

Considering now both time periods, the queue at the end of time period 2 will be

2 1 2 2 2q =max(0,q +(v -c)t). If q >0, this queue will subsequently disappear in a further time q /c. If

2 1 2q =0, the queue disappeared during time period 2, at a time q /(c-v ) after the end of time period

1. Hence the area under the queuing profile for all arrivals is obtained and, by subtracting that

due to period 1, the area due only to period 2 is derived. This gives an average delay for period 2

arrivals of:
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1 2 2 1If v <c, d  is a function of v  only. The case v >c is more interesting, and supposing further that

1 2v +v >2c, the Jacobian of time period delays with respect to time period flows is:

1 2 1 2Clearly, for c<v < / c, an increase in v  has a greater marginal effect on d  than an increase in3

2v . 

In spite of the above asymmetry, it seems difficult to create examples with multiple equilibria.

For example, a simple application of this model is equilibrium departure time choice. We assume

drivers have no initial preference for a departure time, value cost purely in terms of queuing

delay, and that their departure time is the same as their arrival time at the bottleneck.

1 2 60 1Assuming T=v +v =200, c=60 and t= / , the unique equilibrium is at approximately v =134.8.5

Indeed, existence and uniqueness of an equilibrium departure time distribution for a single

bottleneck is guaranteed by the work of Fargier (1983), though little is known for more general

networks (Alfa, 1986). Similar issues arise in dynamic assignment modelling (see Jayakrishnan

et al, 1995, for a recent review), although intuitively the potential for such interactions is

reduced in formulations that route drivers according to instantaneous rather than actual travel

costs, or that do not attempt to preserve FIFO. Carey (1992) has argued as to the inherent non-

convexity of multi-destination models that preserve FIFO, though again examples with multiple

equilibria seem elusive.



     Smith is the only one to offer a proof of convergence to the set of equilibrium solutions for a general
8

network, under the specialised form of dynamic process he proposed.
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3. STOCHASTIC PROCESS (SP) MODELS OF TRAFFIC ASSIGNMENT

3.1 Introduction

We have so far assumed that an assignment problem is adequately characterised by its states of

long-term equilibrium. A number of authors have also considered the dynamic evolution of this

system towards points of deterministic (eg Smith, 1984b) and stochastic equilibrium (eg Alfa et

al, 1979; Horowitz, 1984; Ben-Akiva et al, 1986; Vythoulkas, 1990; Emmerink et al, 1994) .8

These are all essentially deterministic process (DP) models. For consider, as an example, the

within-day static traffic assignment problem. A dynamic model of evolution toward stochastic

equilibrium has the following general structure:

 1. [Initialisation] Set time period (eg day) counter k=0. Assume some initial mean

perceived link costs.

 2. [Demand-side] Increment k. Based on the current mean perceived costs and the

assumed probability distribution of perceived costs, calculate the expected (mean) route

flows and hence the mean link flows for period k.

 3. [Supply-side] Calculate the experienced link costs for period k arising from the mean

flows in 2 (eg from cost-flow relationships).

 4. [Learning] Update the mean perceived link costs, based on the new experiences in step

3 (eg via some kind of weighted average of experienced costs in at most the last m

periods, for some given m). Return to step 2.

For given initial costs, the evolution of this system may be precisely determined, ie it is indeed

deterministic. If the model reaches a stable stochastic equilibrium state, the flows and costs in

subsequent periods will never change. Note that the flow expectations in step 2 are conditional

ones, given the starting conditions in step 1. There is no claim that if a stochastic equilibrium is

reached, it will be invariant with respect to the starting conditions.

In contrast, Cascetta (1989) considered the dynamic evolution as a discrete time stochastic

process (SP). In this case, steps 2 and 3 above are replaced by:

 2'. [Demand-side] Increment k. The current mean perceived costs and the assumed

probability distribution of perceived costs together define a joint probability distribution

for route, and thence link, flows. The link flows in period k are random variables,

following this distribution.

 3'. [Supply-side]  Calculate the experienced link costs for period k arising from the flows in

2' (eg from cost-flow relationships).

Note the important distinction between 3 and 3' - the former takes as input the mean flows,

whereas the latter is based on the flow random variable, implicitly taking account of the whole

probability distribution of flows rather than just a mean value. In this case, the evolution of the

system from a given starting condition can only be determined according to a probability law, ie

it is indeed stochastic. The analogue of an equilibrium state in a DP model is here a stationary

probability distribution (or equilibrium probability distribution) - stability of the probabilities



     The term `state' should be clarified. In equilibrium and DP approaches, it refers to any assignment of link flows to the9

network that is feasible with the OD matrix, where flows may be fractional. In SP approaches, it may be variously defined,
but is always in terms of discrete variables, such that the number of feasible states is finite. For example, in a two-link
single OD problem with an integer demand T, there are 2  possible (micro-) states at the individual route choice level,T

corresponding to all the possible combinations of choices of the T individuals on any one day. When referring to SP models
in this paper, we will typically consider a macro-state description in terms of total link flows, giving T+1 possible states in
this example.
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of the different system states. Reported applications of SP models, while sparse in the

assignment literature, have been reported in behavioural choice problems in other transport

fields (see Kitamura, 1988, and Hensher, 1988, and the references therein) and the social

sciences in general (see the review of De Palma and Lefèvre, 1987). The distinctive feature of the

present application -namely disutilities with non-separable asymmetric interactions - appears,

however, to set it aside from previous studies.

SP models differ in a number of ways from DP and stochastic equilibrium models, not all of

which are immediately apparent. For example: the absolute magnitude of origin-destination

flows affects the relative sizes of route flows in the former, but not in the latter two approaches;

likewise, SP models treat OD flow variables as discrete, rather than continuous. See Cascetta

(1989) for a discussion of other differences. In spite of this, similar tools are useful for solving

these problems in practice, notably stochastic network loading procedures based on Monte Carlo

methods. The use of these in probit-based stochastic equilibrium approaches is well-documented

(Sheffi, 1985), and a similar approach may be adopted in DP models for approximating step 2:

The OD demand is divided into N equal parts, each is assigned to a route based on cost

minimising rules given a pseudo-random sampling from the perceived link cost distribution, and

finally the resulting flows are combined. The result will therefore have a pseudo-random

element, meaning that at stochastic equilibrium the subsequent flows may still vary. It should

be recognised, however, that this is purely an error of estimation, rather than a representation of

real variability, since by choosing an extremely large value of N the error is made negligible.

In SP models Monte Carlo methods may be used in a subtly different way, to generate a pseudo-

random "observation" of the whole process (referred to as a realisation) over some given time

horizon. In practice, at step 2', we perform the same stochastic loading procedure as above for

ijeach day, except that we must divide the (discrete) demand for OD pair (i,j) into T  parts, each

part representing a single individual. In this case, the generated flows will continue to vary, even

when the stationary stage is reached; the observed variance is an intrinsic feature of the SP

approach, and (as the results in 3.2 establish) provide an estimate of the stationary variance in

the underlying process.

3.2 Existence, uniqueness, stability and ergodicity

Cascetta (1989) established a number of powerful results in relation to SP assignment models.

He imposed various conditions on the `route choice probabilities', these latter defined for each k,

as the time period k probabilities of any user choosing the various routes available, given the

states  occupied by the system in periods k-1 and before. He required that these probabilities:9



     We note in passing an interesting analogy between this communication condition and a global stability10

property studied by Smith (1979b) in the context of deterministic equilibrium.
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 (i) are time homogeneous, ie depend only on the sequence of previous states, not on the

(absolute) periods in which these occurred;

 (ii) are strictly positive for all feasible routes; and

 (iii) do not depend on more than a finite number of previous states.

An implication of (i) is that the average demand matrix must be constant over time, and (iii)

implies that potential users will at some stage start to `forget' experiences. (ii) is satisfied by

conventional stochastic choice models, such as logit or probit, and ensures that states

"communicate" (any state may be reached from any other) . Cascetta proved that if these rather10

weak conditions were satisfied, then the resulting process would possess a unique stationary

probability distribution, that is independent of the starting conditions and - once the stationary

period is reached - the elapsed number of days. Furthermore, under these conditions the process

is `ergodic'. This implies, for example, that stationary flow means and variances of the

underlying process may be estimated from the stationary part of a single pseudo-random

realisation.

These results are powerful for a number of reasons, since they hold for various definitions of

`state', including individual route choices, route flows and link flows; and for individual vehicle

microsimulation models as much as aggregate cost-flow relationships. Most notably, there is no

explicit restriction on the supply-side. That is to say, a unique stationary probability distribution

is guaranteed to exist even for asymmetric indefinite cost functions and problems with multiple

conventional equilibria. However, a critical point is that all these are asymptotic properties,

holding over infinite time. As we shall see in section 4, over extremely long but finite periods,

such models may exhibit rather different behaviour.

3.3 The SP approach for separable problems

Some attention has been paid in the past to properties of SP models, though under the implicit

assumption of separable costs and/or a unique conventional equilibrium. This work is important

to mention, primarily to clarify a number of critical distinctions with the non-separable case

(section 4). Davis and Nihan (1993) showed that a SP assignment model may, under certain

conditions, be approximated by the sum of a DP and a Gaussian SP. Further, they note that `the

stationary distribution for the [approximating] process will also be Gaussian, with a mean equal

to the [sic] deterministic fixed point', proposing an additional assumption whereby this fixed

point `is the stochastic user equilibrium'.

De Palma and Lefèvre (1987) - citing the same general theorems applied by Davis and Nihan -

went on to study the relationship between stationarity of SPs and the stability of conventional

equilibrium in a number of simple examples. Although their work is devoted to processes that

are either linear or deterministic or in continuous time, some of the examples are relevant to the

(most difficult) non-linear, discrete time, stochastic processes considered presently. For example,
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n n nthey considered a two-link network with cost functions c (v )=a+bv  (n=1,2; b>0) and OD

demand T, where the unique deterministic (and stochastic) equilibrium is clearly T/2. Assuming

a logit rule with dispersion parameter ß=1 and a driver learning model with m=1, it was shown

that the stationary distribution of a SP approach was unimodal or bimodal according to b<2/T or

b>2/T.

This latter (bimodal) example may seem surprising, particularly in the light of Davis and

Nihan's intuitively appealing Gaussian approximation. In fact, it is important to understand

that this is a pathological example, due partly to the `sharp' effect on costs of drivers changing

route, and partly to the implied variance in perceived costs being small. On the first point: in

real networks, link flows are made up of a number of route flows, meaning costs are less

sensitive to changes in one route flow. On the second point: the bimodality condition may

equivalently be interpreted as b=1 and ß>2/T, recalling that in the logit model the variance in

perceived costs is proportional to 1/ß. As ß becomes extremely large but finite, drivers tend to

behave identically on any given day, and from 

any given initial conditions a simulation of this process will be seen to oscillate perpetually on

1alternate days between v =0 and T (or states close thereto). Although such periodic behaviour is

unstable in a deterministic sense, it is the stationary behaviour of the SP, since the

probabilities of occupying the different states on any randomly selected day are stable

1(approximately, probability of 0.5 for states v =0 and T, and zero for other states). See also

Horowitz (1984) for a similar example with a DP model. 

An alternative way of characterising the two types of behaviour above - and one that will prove

useful in later examples - is in terms of the one-step transition probability matrix. This is the

(T+1)x(T+1) matrix P with (i,j) element given by the conditional probability:

ij 1 1P  = Pr (v =j today | v =i yesterday)       (i=0,1,...,T; j=0,1,...,T)

which is uniquely defined because we have assumed m=1 ("the Markov property"), as:

w

he

re

iq

is given by the assumed route choice rule, in this case the logit probability 

Fo

r

ex

a

mple, with T=10, b=1, and ß=0.1 (upper) or ß=0.7 (lower), this matrix is (to 4 d.p.):

0.0000 0.0001 0.0007 0.0048 0.0227 0.0740 0.1677 0.2605 0.2655 0.1604 0.0436

0.0000 0.0002 0.0018 0.0109 0.0423 0.1129 0.2093 0.2662 0.2222 0.1099 0.0245

0.0000 0.0006 0.0047 0.0227 0.0722 0.1580 0.2398 0.2497 0.1706 0.0691 0.0126

0.0001 0.0016 0.0109 0.0432 0.1127 0.2018 0.2508 0.2138 0.1196 0.0397 0.0059

0.0003 0.0042 0.0229 0.0747 0.1597 0.2341 0.2383 0.1663 0.0762 0.0207 0.0025

0.0010 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 0.0439 0.0098 0.0010

0.0025 0.0207 0.0762 0.1663 0.2383 0.2341 0.1597 0.0747 0.0229 0.0042 0.0003

0.0059 0.0397 0.1196 0.2138 0.2508 0.2018 0.1127 0.0432 0.0109 0.0016 0.0001

0.0126 0.0691 0.1706 0.2497 0.2398 0.1580 0.0722 0.0227 0.0047 0.0006 0.0000

0.0245 0.1099 0.2222 0.2662 0.2093 0.1129 0.0423 0.0109 0.0018 0.0002 0.0000

0.0436 0.1604 0.2655 0.2605 0.1677 0.0740 0.0227 0.0048 0.0007 0.0001 0.0000
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Fig 1: Transition probability matrix (separable costs: T=10, b=1, ß=0.1)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0090 0.9909

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0356 0.9638

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0087 0.1292 0.8617

0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0150 0.0922 0.3370 0.5541

0.0000 0.0000 0.0001 0.0007 0.0052 0.0254 0.0857 0.1986 0.3019 0.2721 0.1103

0.0010 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 0.0439 0.0098 0.0010

0.1103 0.2721 0.3019 0.1986 0.0857 0.0254 0.0052 0.0007 0.0001 0.0000 0.0000

0.5541 0.3370 0.0922 0.0150 0.0016 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

0.8617 0.1292 0.0087 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.9638 0.0356 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.9909 0.0090 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig 2: Transition probability matrix (separable costs: T=10, b=1, ß=0.7)

The matrix in Fig 1 has a balanced look, most states transforming into any other state with a non-

negligible probability. In Fig 2, however, the probabilities are more closely concentrated on the

1 1second diagonal; for example, states v =0, 1 and 2 are highly likely to transform into v =10, and

vice versa. It can be shown that in general, the strength of this imitation is reduced by reducing

ß or increasing m.

3.4 Large problems and Monte Carlo simulation of the SP approach

iIn the logit-based example considered in section 3.3, the choice probability q  could be computed

analytically, and because the network had only two links, the transition probabilities were seen to

follow a simple Binomial distribution. In such a case, the simplest way to generate a Monte Carlo

realisation of the process is to repeatedly simulate the link flow directly from a binomial

distribution. This technique is used, for analytical convenience, in the examples throughout this

paper. An alternative technique, that produces just the same sort of results as those discussed later,

would be - for each individual 1,2,...,T - to sample a perceived cost from an independent Weibull

iprobability distribution (with mean c ) on each link, and to assign that individual to the link with

the lowest perceived cost. In this way, link flows are an aggregation of individual choices. The

equivalence of these two techniques has been long-established in the random utility theory

literature.

Other stochastic choice models may, of course, be implemented in a similar way: for example,

assuming a Normal distribution of link costs gives rise to a probit model. The probit approach has

the advantage that, in larger networks, it does not suffer from any of the well-documented

deficiencies of the logit approach (Sheffi, 1985). Moreover, the technique described above, whereby

individual choices are explicitly simulated, may be extended in an obvious way to general networks

ij ijwith Normal link cost distributions. In this way, one day of the SP approach requires G  T

minimum cost paths to be calculated. (A possible alternative technique for reducing this

computational load, which is more akin to the first approach above and worthy of future
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investigation, is to employ the recent work of Maher (1992), whereby probit choice probabilities may

be computed without the need for individual simulation).

The author has applied the individual choice simulation approach to a (separable) problem with

some 440 links, 70 zones, and 20000 individuals, and has obtained reasonable run-times with the

latest generation of personal computers. It should be recognised, however, that the run-time is

clearly highly dependent on the number of days simulated. In separable problems, simulations have

been observed to stabilise rapidly around the stationary position, usually in 20-50 days. As we shall

see in section 4.4, asymmetric problems may behave quite differently, and this emphasises the need

to gain a better understanding of such approaches in small networks, where simulating a large

number of days is feasible.

4. STOCHASTIC PROCESS MODELS IN ASYMMETRIC PROBLEMS

In this section we examine SP models in relation to the asymmetric examples considered in section

2, in three main ways. Consider the simplest case m=1, then the (T+1)-vector r  - denoting the*

unknown stationary probability distribution of the link 1 flow - satisfies:

r  = P  r* t *

where P is the transition probability matrix, as defined in section 3.3, and the superscript ̀ t' denotes

the transposition operator. This fixed point problem defines a system of T linear equations in T

unknowns (one constraint and variable is deleted, since the elements of r  must sum to 1), that may*

then be solved by any standard technique, eg Gaussian elimination (Barnett, 1990).

Alternatively, we may examine the evolution of the SP from some given initial conditions. Let the

(T+1)-vector r  denote the probability distribution of the link 1 flow at the end of day k, where r(k) (0)

is the given initial condition. Still considering only the case m=1, the evolution of the probability

distribution is calculated recursively from:

r  = P  r (k=0,1,2,...).(k+1) t (k)

r  is either defined explicitly, or as a point distribution (ie probability mass 1 at an "initial flow of(0)

1v  "), or implicitly as the distribution corresponding to some initial mean perceived costs.(0)

For m>1, the notation is more messy but the principles are similar, so only the outline is given here.

The probability of occupying a state on day k now depends on the states occupied on days k-1, k-2,

ij i..., max(0,k-m), implying that in the definition of P  in section 3.3, q  is re-defined as a function of

the average difference in cost over this time:
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where v  is the link 1 flow on a previous day s. On any day k>m (to be more general replace m by(s)

min(k,m)), a transition is now an m-step one, from one of the (T+1)  possible combinations of statesm

which could have occurred in the previous m days.

In addition to solving directly for the stationary distribution and to calculating the exact evolution

of the probability distribution, a third method of analysis is considered: simulation of the process

using Monte Carlo methods (see comments at the end of section 3.1). This will almost certainly be

the only feasible method of implementing the SP approach with networks / demand levels of a

realistic size.

4.1 The stationary distribution

In cases where conventional stochastic equilibrium models lead to a unique solution, we have seen

that, except in extreme cases, the stationary distribution of a SP model is unimodal with a mean

approximated by the equilibrium solution. A natural extension to cases of multiple equilibria is to

expect the distribution to be bimodal, with peaks approximated by the stable equilibria. For the

multi-modal problem 2.5, this is indeed the case, with the perfectly symmetric form illustrated in

Fig 3.

Fig 3: Stationary distribution for multi-modal example (T=10,m=1,2=3.0).

CARThe stable stochastic equilibria are at v =0.03 and 9.98 in this case. Not surprisingly by its

definition, the unstable equilibrium is not significant. For larger m (eg m=3 or 10) and/or large but

smaller 2 (eg 2=1.5), the distribution is flatter but still clearly bimodal. Similar comments apply to

the multiple user class example 2 (section 2.4). A little more interesting is Cascetta's example (2.1),

shown in Fig 4 for the case m=1.
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Fig 4: Stationary probability distribution for Cascetta's example (m=1).

1 1Taking an arbitrary division into {v  : v =9,10} and the remaining states (as we see later, this turns

out not to be so arbitrary), the SP approach may be considered to be saying that in the long term,

from arbitrary starting conditions, states in the region of the upper stable equilibrium are around

4 times as likely to occur (probability 0.8) as those around the lower equilibrium. The stationary

mean can be regarded as some kind of weighted average of the equilibria, although it could be

questioned whether the mean is an appropriate measure to use in such circumstances. These

powerful results, on the global attractiveness of the possible states, could not be obtained from an

equilibrium analysis, which is essentially "static" and only considers local measures of attractiveness

(stability).

This predominance of one of the equilibrium solutions is even more exaggerated in the responsive

signals (2.6; see Watling, 1995) and priority junction (2.2) examples. In the former case, multiple

stochastic equilibria arise for ß not too small. In spite of this, the stationary distribution is, for all

practical purposes, exclusively concentrated in the vicinity of the upper equilibrium. For example,

1for T=100, ß=0.13, m=1, this upper equilibrium is at v =98.90, whereas the stationary mean and

standard deviation are 98.34 and 1.76 respectively. Similar behaviour occurs in the priority junction

example; the lower of the equilibria completely dominates here.

These examples illustrate that the SP approach has clear benefits in cases of multiple conventional

equilibria, not only identifying them but providing insights into their relative plausibility. We

attempt to understand these examples a little further in the following section, before discussing

some of the difficulties in the implementation of the SP approach.

4.2 The transition probability matrix

In this section we attempt to gain an insight into the day-to-day transitions that led to the

stationary distributions considered above. For large values of ß, it was discussed in section 3.3 how

periodic, day-to-day oscillations between all-or-nothing solutions gives rise to a bimodal stationary

distribution. It is therefore reasonable to ask whether the bimodal distributions obtained above are
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characterising similar dynamic behaviour. (A suggestive reason to expect they may be different is

gained from the comments on increasing m, which in 3.3 was seen to smooth out the bimodality,

whereas in, for example, the multi-modal case above the bimodality remains but is slightly less

peaky). Consider, for example, the multi-modal problem (2.5):

0.6152 0.3063 0.0686 0.0091 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4196 0.3807 0.1554 0.0376 0.0060 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

0.2166 0.3580 0.2663 0.1174 0.0340 0.0067 0.0009 0.0001 0.0000 0.0000 0.0000

0.0719 0.2165 0.2934 0.2357 0.1242 0.0449 0.0113 0.0019 0.0002 0.0000 0.0000

0.0126 0.0691 0.1706 0.2497 0.2398 0.1580 0.0722 0.0227 0.0047 0.0006 0.0000

0.0010 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 0.0439 0.0098 0.0010

0.0000 0.0006 0.0047 0.0227 0.0722 0.1580 0.2398 0.2497 0.1706 0.0691 0.0126

0.0000 0.0000 0.0002 0.0019 0.0113 0.0449 0.1242 0.2357 0.2934 0.2165 0.0719

0.0000 0.0000 0.0000 0.0001 0.0009 0.0067 0.0340 0.1174 0.2663 0.3580 0.2166

0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0060 0.0376 0.1554 0.3807 0.4196

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0091 0.0686 0.3063 0.6152

Fig 5: Transition probability matrix for multi-modal example (T=10,m=1,2=1.5).

The probability mass in Fig 5 is concentrated on the leading diagonal (even more so for larger 2),

whereas in Fig 2 it is focused on the second diagonal. That is to say, in the case above there is a high

probability that today's flows will be in the vicinity of yesterday's. In one respect this is not

surprising, since it is in essence what we mean by the local stability of equilibria in conventional

models. Transition matrices of this type also underlie examples 2.2, 2.4 and 2.6.

Cascetta's example (2.1) is also interesting to study:

0.0000 0.0001 0.0011 0.0073 0.0313 0.0924 0.1893 0.2661 0.2454 0.1341 0.0330

0.0001 0.0010 0.0075 0.0327 0.0933 0.1828 0.2487 0.2320 0.1420 0.0515 0.0084

0.0006 0.0070 0.0343 0.0991 0.1878 0.2441 0.2204 0.1364 0.0554 0.0133 0.0014

0.0044 0.0319 0.1033 0.1980 0.2491 0.2149 0.1288 0.0529 0.0143 0.0023 0.0002

0.0202 0.0965 0.2072 0.2636 0.2201 0.1260 0.0501 0.0137 0.0024 0.0003 0.0000

0.0639 0.2023 0.2882 0.2433 0.1348 0.0512 0.0135 0.0024 0.0003 0.0000 0.0000

0.1485 0.3120 0.2950 0.1653 0.0608 0.0153 0.0027 0.0003 0.0000 0.0000 0.0000

0.1615 0.3230 0.2907 0.1550 0.0543 0.0130 0.0022 0.0002 0.0000 0.0000 0.0000

0.0000 0.0003 0.0027 0.0147 0.0529 0.1305 0.2234 0.2623 0.2020 0.0922 0.0190

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0080 0.0636 0.2982 0.6294

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0441 0.9550

Fig 6: Transition probability matrix for Cascetta's example (m=1).

In Fig 6 we may identify a set of states (eg {9,10}) in a small block in the bottom right corner that

are ̀ locally attractive', ie highly likely to transform into a state in the same set. There is a clear,

though less distinct, block in the top left corner (eg corresponding to states {1,2,3,4,5,6,7}), with only

a small number of states offering the opportunity for communication between these attracting

regions. This begins to raise some doubts about the reasonableness of Cascetta's irreducibility

condition (ii) in section 3.2. Although all transition probabilities are in fact non-zero, a number are

extremely small (we return to this issue later).

4.3 Convergence to the stationary probability distribution
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For Cascetta's problem (2.1) with m=1, table 1 illustrates the convergence rate to the stationary

distribution under various starting conditions. 

v =10 v =0 v =4(0) (0) (0)

k k k k k k,  k   : F    k   : F    k   : F   
10-2

10-3

10-4

10-5

10-6

10-7

 51 9.14591 2.18725

133 8.86969 2.48152

223 8.83534 2.51359

312 8.83195 2.51670

402 8.83161 2.51701

491 8.83158 2.51704

 92 8.45621 2.81589

181 8.79356 2.55142

271 8.82782 2.52048

360 8.83119 2.51739

450 8.83154 2.51708

102 8.45150 2.81913

192 8.79406 2.55097

281 8.82778 2.52053

371 8.83120 2.51739

460 8.83154 2.51708

Table 1: Convergence to stationarity for Cascetta's example (m=1)

On each day, the whole probability distribution is calculated, but for illustration only its mean and

standard deviation are reported. , refers to the change in the mean and standard deviation between

day k and day k-1. The results verify Cascetta's theorem, that the stationary probability

distribution (and hence the stationary values of : and F) is independent of the starting conditions.

In the case v =10, the process is first attracted towards values close to the higher of the two stable(0)

stochastic equilibrium states, and then is gradually drawn down in the direction of the lower stable

equilibrium.  For v =0 and 4, closer to the lower equilibrium, this behaviour is reversed (this is(0)

clearer from examining earlier days in the process, not shown here). This is consistent with the

intuitive explanation of the approach, that - although it finds the stable equilibria attractive - it

attempts to settle down in a position which is a compromise (weighted average) between the two.

The most important feature of these results is, however, that convergence is quite slow.  When the

between-day difference in (:,F) first drops below 10 , even though the differences thereafter-2

continue to fall (this is not a chance fluctuation, with convergence in later days monotonic), it takes

k kmany more days before :  and F  truly approximate their stationary values to within a 10  error.-2

As m becomes larger, the convergence rate slows disproportionately. Table 2 shows the convergence

pattern for m=3. Unfortunately, it did not prove computationally feasible to study m=10 in this way,

the value used by Cascetta (in this case there are 11  possible combinations of 10-day period states10

that need to be considered in computing the transitions). However, we can certainly say that

convergence would be incredibly slow, and certainly slower than for m=3. This is because, as m

increases, with a high probability the process spends longer periods around each attracting region,

since a longer sequence m of ̀ extreme' experienced costs is required to change the mean perceived

costs significantly. See section 4.4 for a consideration of larger m.

v(0) = 10 v(0) = 0 v(0) = 4
k k k,   k   :   k   :   k   :

10-2

10-3

10-4

10-5

10-6

10-7

    6 9.92679

  550 9.56376

 2622 9.04456

 5306 8.94425

 8069 8.93346

10831 8.93238

    7 4.82056

 1474 7.73300

 4237 8.81235

 7000 8.92027

 9763 8.93106

12524 8.93214

   10 3.77223

 1760 7.73330

 4523 8.81238

 7286 8.92027

10049 8.93106

12812 8.93214
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Table 2: Convergence to stationarity for Cascetta's example (m=3)

In examples 2.2, 2.4, 2.5 and 2.6 a similar pattern emerges, with convergence tending to slow down

considerably with an increase in m, and for similar reasons an increase in ß (2 in example 2.5), since

both reduce the variance in flows around an attracting region and thereby the probability that these

regions will communicate. Furthermore, this convergence rate may be dependent on the initial

conditions, most notably in the responsive signals example (2.6). For example, with ß=0.13 and m=1

1and a starting condition of v =50 or 100, less than a hundred days are required to attain the(0)

1stationary mean and standard deviation to two decimal place accuracy, whereas with v =0 around(0)

50000 days are necessary. For higher ß, such as ß=0.3, the problem was more serious - starting from

1v =0, after 100000 days virtually all the probability mass was concentrated in the states 0-8,(0)

whereas the stationary distribution has virtually all probability in states 92-100. It was estimated

that at this stage, the probabilities for states 92-100 were increasing at an approximately linear rate

of around 10  per day.-26

4.4 Monte Carlo simulation of the process

In networks of a realistic size, none of the techniques in 4.1-4.3 will be feasible. On the other hand,

Monte Carlo simulations are very simple to program and implement and, as discussed in section 3.4,

converge rapidly in separable problems, even in large networks (eg Timms and Watling, 1993). As

we may expect from the comments in 4.3, asymmetric problems unfortunately pose greater

difficulties. Consider first, however, an asymmetric case where the simulation approach works as

expected. A typical such simulation, from Cascetta's example with m=1, is illustrated in Fig 7.

Fig 7: Simulation of Cascetta's example (m=1), post-100-day mean beneath.

A similar pattern persists for many thousands of days thereafter, as well as for different random

number seeds and various starting conditions. Two distinct, locally attractive areas are visible, with

the simulation periodically jumping between them. Convergence to the stationary mean - shown

beneath the main graph in Fig 7 - depends crucially on the simulation periodically occupying both

attracting regions, in order to gain a reliable estimate of their stationary relative frequencies (which



     Since in the bimodal cases such as that in Fig 3, the stationary mean is unrepresentative of any likely system state,11

fundamental questions are raised as to the applicability of evaluation measures (eg economic, user-benefit) based on mean
flows/costs. Ideally, these measures should take account of the whole stationary distribution, rather than just a mean, and
should at the very least allow the input of multiple modes of the distribution with weights estimated from the stationary
distribution.
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are proportional to the average length of time each region is occupied). That is to say, the transitions

illustrated are an integral part of the stationary behaviour. The simulation reaches a position

reasonably close to the true mean (8.83) between days 300 and 400, having only occupied each

attracting region for two or three periods. 

As m is increased, the average "sojourn" around each region increases in duration. It does not take

too large a value of m before the typical length of a single sojourn exceeds a reasonable number of

days to simulate, giving rise to a biased estimate of the stationary behaviour. For example, with

m=10, in simulations of length 1000 days (first 100 discarded in forming the mean) and a starting

1state of v =10, fifty different simulations (random seeds) all gave rise to an apparently stable(0)

1mean flow on link 1 in the range 9.93-9.96. With a starting state of v =0, however, 38 of the(0)

simulations reached a stable mean flow in the range 3.59-3.69, and 12 in 9.93-9.96. For a single

simulation, the only indication of non-stationarity was a hardly-discernible trend in the mean flow

to approach the other attracting region as the simulation progressed.

Therefore, over a long time horizon simulations may attain one of two "pseudo-stable" positions,

depending on the starting conditions and random number seed. The results reported by Cascetta

(1989) for this example - where a unique stationary mean was obtained from such simulations - are

either atypical or were obtained from an enormous number of days. In any case, they cause users

to be dangerously over-optimistic when applying such techniques to asymmetric problems; certainly,

a great deal of care is needed.

Similar behaviour was observed in simulations of examples 2.2, 2.4, 2.5 and 2.6. Even regions that

are asymptotically insignificant (ie in terms of the stationary distribution) may be attractive for long

1periods. For example, in the responsive signals example (2.6) with m=1, ß>0.15 and v =0,(0)

simulations may occupy only states in the vicinity of the lower stochastic equilibrium solution for

many thousands of days, even though these have negligible probability in the true stationary

distribution.

5. CONCLUSION

There is a range of asymmetric traffic assignment problems of practical interest that may possess

multiple deterministic or stochastic equilibrium solutions. In stochastic process models, however,

these problems give rise to a unique stationary probability distribution, as established by Cascetta.

In simple examples studied in the current paper, this distribution was seen to have peaks

approximated by the stable equilibria . Equally, however, some examples were seen to possess a11

unimodal distribution but two stable equilibria. In this latter case, even though states in the vicinity

of both equilibria are locally attractive (stable), one of the regions has greater global attractiveness,
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in the sense that the stochastic process will ultimately approach it from arbitrary starting

conditions.

The stochastic process approach therefore has appealing asymptotic properties, but the rate of

convergence to stationarity may be extremely slow. The irreducibility condition of Cascetta's

theorem requires that all states communicate with a non-zero probability; while this holds under

traditional stochastic choice rules, some probabilities may be extremely small. The effect is best

observed in Monte Carlo simulations of the process, where for thousands - even hundreds of

thousands - of days, a pseudo-stable type of behaviour prevails, with flows varying about an

apparently stable mean close to one of the equilibrium solutions. Different pseudo-stable behaviour

(ie varying close to different equilibria) may be exhibited depending on the initial conditions, and

in different realisations of the process from the same initial conditions.

In practice, when using a stochastic process simulation to estimate the stationary distribution of an

asymmetric problem, it is clearly necessary that a range of initial conditions and random number

seeds be tested, and advisable that at least one extremely long simulation be performed. A

simulation should first be run with the model parameters set to values that give rise to the highest

behavioural variance (m=1 and small ß in the model considered in the current paper), since this

gives the greatest chance of transition between multiple attracting regions. 

Alternatively, such simulations may be used to estimate a transient (yet pseudo-stable) probability

distribution over a specified time-scale from some given initial conditions. The initial conditions will

need to be carefully chosen, eg in a study of a hypothetical network change, the starting conditions

for the current year, do-something run could be observed conditions on the street. A sensitivity

analysis with respect to the seed value is still required. In addition, it may be appropriate for the

`days' to assume a less abstract form in order to justify the choice of evaluation time-scale, perhaps

coarsely representing seasonal variations in weekday travel demand. From a methodological point

of view, should we wish to deter transitions between pseudo-stable regions caused by small network

changes, the use of variance reduction techniques (Rathi, 1992) or explicit behavioural rules based

on notions of inertia (Mahmassani and Jayakrishnan, 1991) may be appropriate.

It is an open question as to whether real-life networks exist with multiple equilibrium/ pseudo-stable

solutions, except in so far as the simple examples considered here coarsely represent movements on

an isolated OD pair. In larger networks, routes for different OD movements typically overlap,

meaning that link flows (and hence costs) are less affected by a change for a single OD pair.

Intuitively, this smaller variance will cause transitions between attracting regions to occur with an

even lower probability. In practice, equilibrium algorithms are currently applied to asymmetric

indefinite problems without regard to the issue of multiple solutions. Given the number of ready-

calibrated networks for equilibrium analysis, there is clearly a good deal of research potential in

applying the stochastic process approach to these, notwithstanding the difficulties in monitoring and

interpreting the simulations.

ACKNOWLEDGEMENTS



23

This work was supported by funding from the Engineering and Physical Sciences Research Council

of Great Britain.  I would like to thank David Grey, Mike Smith and Dirck Van Vliet for a number

of stimulating discussions during this work, and Ennio Cascetta for his comments on some earlier

results of the research.  The views expressed in the paper are, however, the responsibility of the

author alone.

REFERENCES

AASHTIANI, H.Z. & MAGNANTI T.L. (1981). Equilibria on a Congested Transportation Network.

SIAM Journal on Algebraic and Discrete Methods 2 (3), 213-226.

ALFA, A.S. & MINH, D.L. (1979).  A stochastic model for the temporal distribution of traffic demand

- the peak hour problem, Transpn Sci 13,  315-324.

ALFA, A.S. (1986). A review of models for the temporal distribution of peak traffic demand.

Transpn Res 20B(6), 491-499.

BARNETT, S. (1990). Matrices: Methods and Applications. Clarendon Press, Oxford.

BECKMANN, M., MCGUIRE, B. & WINSTEN, C.B. (1956).  Studies in the Economics of

Transportation, Yale University Press, New Haven, Connecticut.

BEN-AKIVA, M., DE PALMA, A. & KANAROGLOU, P. (1986).  Dynamic model of peak period

traffic congestion with elastic arrival rates, Transpn Sci 20 (2),  164-181.

BRAESS, D. & KOCH, G. (1979).  On the existence of equilibria in asymmetrical multiclass-user

transportation networks, Transpn Sci 13 (1),  56-63.

CAREY, M. (1992).  Nonconvexity of the dynamic traffic assignment problem, Transpn Res 26B

(2),  127-134.

CAREY, M. & KWIECINSKI A. (1994). Swapping the order of scheduled services to minimise

expected costs of delays. Transpn Res 28B(6), 409-428.

CASCETTA, E. (1989).  A stochastic process approach to the analysis of temporal dynamics in

transportation networks, Transpn Res B 23B (1),  1-17.

DAFERMOS, S. (1971).  An extended traffic assignment model with applications to two-way traffic,

Transpn Sci 5,  366-389.

DAFERMOS, S. (1972).  The traffic assignment problem for multi-class user transportation

networks, Transpn Sci 6,  73-87.

DAFERMOS, S. (1980).  Traffic equilibrium and variational inequalities, Transpn Sci 14 (1),  42-

54.

DAGANZO, C.F. (1982).  Unconstrained extremal formulation of some transportation equilibrium

problems, Transpn Sci 16 (3),  332-360.

DAGANZO, C.F. (1983).  Stochastic network equilibrium with multiple vehicle types and

asymmetric, indefinite link cost Jacobians, Transpn Sci 17 (3),  282-300.

DAVIS, G.A. & NIHAN, N.L. (1993). Large population approximations of a general stochastic traffic

assignment model. Operations Research 41 (1), 169-178.

DE PALMA, A., and LEFEVRE, C. (1987). The theory of deterministic and stochastic

compartmental models and its applications. In Urban Systems: Contemporary Approaches to



24

Modelling, ed. by C.S.Bertuglia, G.Leonardi, S.Occelli, G.A.Rabino, R.Tadei and A.G.Wilson, Croom

Helm, Kent, UK, 490-540.

EMMERINK, R.H.M., AXHAUSEN, K.W., NIJKAMP, P. & RIETVELD, P. (1994). Effects of

information in road networks with recurrent congestion. Transpn, forthcoming.

FARGIER, P. (1983). Effects of the choice of departure time on road traffic congestion: Theoretical

approach. In Proc 8th Int Symp on Transpn and Traffic Theory, ed. by V.F.Hurdle, E.Hauer

and G.N.Steuart, held June 24-26 1981, University of Toronto Press.

FERNANDEZ, J.E. & FRIESZ, T.L. (1983). Equilibrium Predictions in Transportation Markets: The

State of the Art. Transpn Res 17B (2), 155-172.

FISK, C. (1980).  Some developments in equilibrium traffic assignment methodology, Transpn Res

14B,  243-255.

HENSHER, D. (1988). Model specification for a dynamic discrete continuous choice automobile

demand system. In Behavioural Modelling in Geography and Planning, ed. by R.C.Golledge and

H.Timmermans, Croom Helm, Kent, UK.

HEYDECKER, B.G. (1983).  Some consequences of detailed junction modelling in road traffic

assignment, Transpn Sci 17 (3),  263-281.

HOROWITZ, J.L. (1984).  The stability of stochastic equilibrium in a two-link transportation

network, Transpn Res 18B (1),  13-28.

JAYAKRISHNAN, R., TSAI, W.K. & CHEN, A. (1995).  A dynamic traffic assignment model with

traffic-flow relationships. Transpn Res 3C (1), 51-72.

KITAMURA, R. (1988). An analysis of weekly activity patterns and travel expenditure. In

Behavioural Modelling in Geography and Planning, ed. by R.C.Golledge and H.Timmermans,

Croom Helm, Kent, UK, 399-423.

MAHER, M.J. (1992). SAM - A Stochastic Assignment Model. In Mathematics in Transport

Planning and Control, ed. J.D. Griffiths, Oxford University Press.

MAHMASSANI, H.S. & JAYAKRISHNAN, R. (1991). System performance and user response under

real-time information in a congested traffic corridor, Transpn Res 25A (5),  293-308.

MORLOK, E.K. (1979).  Short run supply functions with decreasing user costs, Transpn Res 13B,

183-187.

NETTER, M. (1972).  Affectations de trafic et tarification au coût marginal social: critique de

quelques idées admises, Transpn Res 6,  411-429.

RATHI, A.K. (1992). The use of common random numbers to reduce the variance in network

simulation of traffic, Transpn Res 26B (5),  357-363.

SHEFFI, Y. (1985).  Urban Transportation Networks, Prentice-Hall, New Jersey.

SMITH, M.J. (1979a). Traffic control and route-choice: a simple example, Transpn Res 13B, 289-

294.

SMITH, M.J. (1979b).  The existence, uniqueness and stability of traffic equilibrium, Transpn Res

13B (4),  295-304.

SMITH, M.J. (1981a).  The existence of an equilibrium solution to the traffic assignment problem

when there are junction interactions, Transpn Res 15B (6),  443-451.

SMITH, M.J. (1981b).  Properties of a traffic control policy which ensure the existence of a traffic

equilibrium consistent with the policy, Transpn Res 15B (6), 453-462.

SMITH, M.J. (1984a). Two alternative definitions of traffic equilibrium, Transpn Sci 18B (1), 63-

65.



25

SMITH, M.J. (1984b).  The stability of a dynamic model of traffic assignment.  An application of a

method of Lyapunov, Transpn Sci 18 (3),  245-252.

TIMMS, P.M. & WATLING, D.P. (1993). Modelling route guidance strategies under day-to-day

variability and individual behaviour. Contribution to EC project LLAMD-MARGOT deliverable M7,

Proportional routeing strategies, DRIVE office, Brussels.

VAN VLIET, D. (1985). SATURN User Manual and Notes, Institute for Transport Studies,

University of Leeds, Leeds, UK.

VAN VLIET, D., BERGMAN, T. & SCHELTES, W.M. (1985).  Equilibrium traffic assignment with

multiple user classes, Proc. PTRC 14th Summer Annual Meeting, Seminar M,  111-122.

VYTHOULKAS, P.C. (1990).  A dynamic stochastic assignment model for the analysis of general

networks, Transpn Res 24B (6),  453-469.

WATLING, D.P. (1995). Modelling responsive signal control and route choice. Paper presented at

7th World Conference on Transport Research, Sydney, July 16-20 1995.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

