This is a repository copy of Nonlocal effects in thin 4H-SiC UV avalanche photodiodes.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/898/

Article:

https://doi.org/10.1109/TED.2003.815144

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Nonlocal Effects in Thin 4H-SiC UV Avalanche Photodiodes

B. K. Ng, John P. R. David, Senior Member, IEEE, Richard C. Tozer, Senior Member, IEEE, Graham J. Rees, Feng Yan, Senior Member, IEEE, Jian H. Zhao, Senior Member, IEEE, and Maurice Weiner, Fellow, IEEE

Abstract—The avalanche multiplication and excess noise characteristics of 4H-SiC avalanche photodiodes with δ-region widths of 0.105 and 0.285 μm have been investigated using 230–365-nm light, while the responsivities of the photodiodes at unity gain were examined for wavelengths up to 375 nm. Peak unity gain responsivities of more than 130 mA/W at 265 nm, equivalent to quantum efficiencies of more than 60%, were obtained for both structures. The measured avalanche characteristics show that $\beta > \alpha$ and that the β/α ratio remains large even in thin 4H-SiC avalanche regions. Very low excess noise, corresponding to $k_{\text{eff}} < 0.15$ in the local noise model, where $k_{\text{eff}} = \alpha/\beta(\beta/\alpha)$ for hole (electron) injection, was measured with 365-nm light in both structures. Modeling the experimental results using a simple quantum efficiency model and a nonlocal description yields effective ionization threshold energies of 12 and 8 eV for electrons and holes, respectively, and suggests that the dead space in 4H-SiC is soft. Although dead space is important, pure hole injection is still required to ensure low excess noise in thin 4H-SiC APDs owing to β/α ratios that remain large, even at very high fields.

Index Terms—Avalanche multiplication, avalanche photodiodes (APDs), breakdown voltage, dead space, impact ionization, ionization coefficients, nonlocal effects.

I. INTRODUCTION

Silicon carbide (SiC) and III-nitrides are promising materials for ultraviolet (UV) sensing owing to their wide band gaps. Photodiodes utilizing these wide band-gap materials have the potential to operate at high temperature with low leakage current and good visible-blind/solar-blind performance. Avalanche photodiodes (APDs) with thin avalanche widths can greatly enhance the signal-to-noise ratio (SNR) of optical receivers limited by weak optical signals and high amplifier noise by providing internal gain, while maintaining high operating speeds and low operating voltages. The realization of III-nitride APDs is currently limited by material issues due to the lack of a native nitride substrate, although there has been some success in the demonstration of GaN APDs [1], [2] from using small device areas to achieve microplasma-free performance. By contrast, SiC is technologically more mature and is a potential alternative to the III-nitrides for UV detection. The 4H polytype of SiC has, in addition to its superior thermophysical properties, the advantage of widely differing ionization coefficients [3] for electrons (α) and holes (β), which is crucial for realizing APDs with low excess avalanche noise [4]. We have recently demonstrated very low noise UV APDs based on a 0.1-μm 4H-SiC avalanche region and showed unambiguously that $\beta > \alpha$ in 4H-SiC from multiplication measurements [5]. In addition, our results suggest that dead space, the distance over which the ionization coefficient reaches equilibrium with the electric field, may occupy a significant fraction of the avalanche width of 4H-SiC APDs. It is therefore necessary to examine the effect of dead space on the avalanche characteristics of 4H-SiC since such knowledge is crucial for the design and optimization of APDs employing thin avalanche regions. Furthermore, the discrepancy between the published experimental values of β for 4H-SiC by Konstantinov et al. [3] and Raghunathan and Baliga [6] merits further investigation. The accurate determination of the impact ionization coefficients in 4H-SiC has direct application to the design and optimization of high-temperature, high-power and high-frequency devices.

This paper investigates nonlocal impact ionization effects in thin 4H-SiC devices using two APD structures with nominal avalanche widths of 0.1 and 0.2 μm. The experimental details of this paper are described in Section II. Section III reports the responsivity and the avalanche multiplication characteristics of the APDs obtained from measurements. In Section IV, the measurements are interpreted using a simple quantum efficiency model and a nonlocal multiplication model. The modeled results are also discussed and compared with previous works in Section IV, and the conclusions of this paper are summarized in Section V.

II. EXPERIMENT

A. Layer Details

The APD structure with avalanche width of $w = 0.1$ μm has been reported in [5] and comprises a 2-μm n layer, a 0.1-μm i region, a 0.2-μm p layer, and a thin 0.1-μm p^+ cap grown on n^+4H-SiC substrate [inset of Fig. 1(a)]. The other APD structure has a reach-through layer to increase the quantum efficiency of penetrating UV light and is made up of a 2-μm n-reach-through layer, a 0.11 μm n layer, a 0.2-μm i-region, a 0.25-μm p layer and a 0.2-μm p^+ cap grown on an n^+ substrate [inset of Fig. 1(b)]. The intended doping levels were 4×10^{15}.

0018-9383/03$17.00 © 2003 IEEE
1×10^{18}, 1.3×10^{18}, and $3 \times 10^{19} \text{ cm}^{-3}$ for the n$^-$, n, p, and p$^+$ layers, respectively, of the second structure.

Square mesa diodes with areas ranging from $60 \times 60 \mu\text{m}^2$ to $210 \times 210 \mu\text{m}^2$ were fabricated using a 2° positive bevel edge termination technology [7] for the first APD structure. The reach-through APD structure was fabricated using a multistep junction extension termination [8] to create $50 \times 50 \mu\text{m}^2$ to $200 \times 200 \mu\text{m}^2$ mesa diodes. Windows were formed on the top ohmic contacts to provide optical access and thin layers of SiO$_2$/Si$_3$N$_4$ and SiO$_2$ were used to passivate the beveled APDs (BAPDs) and the multistep junction extension terminated APDs (MAPDs), respectively. The width and average doping level of the i-region of the BAPDs are found to be 0.1 μm and $1.5 \times 10^{17} \text{ cm}^{-3}$ p-type, respectively, from secondary ion mass spectroscopy (SIMS) measurement. The SIMS profile indicates that the doping levels in the cladding layers adjacent to the i-region are $2 \sim 3 \times 10^{18} \text{ cm}^{-3}$.

Fig. 1(a) and (b) shows the measured and modeled capacitance–voltage (C–V) profiles of $210 \times 210 \mu\text{m}^2$ BAPDs and $200 \times 200 \mu\text{m}^2$ MAPDs, respectively. The C–V profile of the MAPDs indicates that the 2 μm n$^-$ reach-through layer is not depleted, even when the bias approaches the breakdown voltage V_{bd}. C–V modeling from solving Poisson’s equation within the depletion approximation and assuming p-i-n structures gave $w = 0.105 \mu\text{m}$ and $w = 0.285 \mu\text{m}$ for the BAPDs and the MAPDs, respectively. The doping levels in the i-region of the BAPDs and the MAPDs are estimated to be $1.25 \times 10^{17} \text{ cm}^{-3}$ and $8.1 \times 10^{15} \text{ cm}^{-3}$, respectively, while the doping levels in the cladding layers of both structures have values of $1 \sim 3 \times 10^{18} \text{ cm}^{-3}$. The parameters extracted from the C–V characteristics of the BAPDs are found to be in good agreement with those determined from SIMS measurement. The diffusion voltage was estimated to be 2.9 V from extrapolating the C–V measurements and is consistent with the value calculated using the data of Henning et al. [9].

Reverse dark current–voltage (I–V) measurements indicate that the breakdowns are sharp and the reverse dark current is observed to increase by several orders of magnitude at the breakdown voltage. The breakdown voltages estimated from dark I–V measurements are 58.5 and 124.0 V for the BAPDs and the MAPDs, respectively. Most diodes exhibit low dark currents prior to breakdown and the average dark current density of the BAPDs and the MAPDs at 95% V_{bd} are 8 and 7 $\mu\text{A/cm}^2$, respectively. Forward I–V measurements indicate that series resistance is negligible over the current range measured.

B. Measurement Techniques

The spectral response of the diodes was measured using a mercury–xenon (Hg–Xe) lamp, a 0.22-m monochromator and a lock-in amplifier. The output beam from the monochromator was modulated at 180 Hz with a mechanical chopper and was focussed onto the optical window of the largest diodes. The absolute spectral responsivity of the diodes was obtained by calibrating the optical system with a commercial UV-enhanced Si photodiode.

The multiplication characteristics of the APDs under different carrier injection conditions were investigated using UV light from the Hg–Xe lamp and a HeCd laser. Photogenerated carriers were injected into the high field region of the diodes by focusing 230–365-nm light from the Hg–Xe lamp or 325-nm light from the HeCd laser to a small spot ($\sim 120 \times 80 \mu\text{m}^2$ and $\sim 10 \mu\text{m}$ diameter, respectively) onto the optical access windows. DC photocurrents were measured as a function of reverse bias voltage with a source-measure unit. To confirm the dc results, phase-sensitive ac measurements were also taken on some diodes using a lock-in amplifier and modulated UV light. Photocurrents as low as 10 nA were unambiguously measured using the phase-sensitive detection technique.

The multiplication factor M was obtained by normalizing the measured photocurrent to the primary photocurrent linearly extrapolated from the measured photocurrent at low bias. The multiplication characteristics from both dc and ac measurements were found to be indistinguishable. Gain uniformity of the layers was confirmed by measurement of identical multiplication characteristics on several diodes across the wafer. Multiplication values in excess of 200 were achieved for both structures. It was noted that the reverse bias photocurrent characteristic of the MAPDs did not exhibit the “step” characteristic of reach-through
photodiodes when illuminated with weakly absorbed light. This indicates that there is no significant discontinuity in the quantum efficiency with bias and confirms that the 2 μm n− layer of the MAPDs is not depleted up to device breakdown. The excess noise factor \(F \) was also measured at a center frequency of 10 MHz and a noise effective bandwidth of 4.2 MHz using the phase-sensitive detection technique and the measurement system of Li et al. [10]. As before, several diodes across each layer were measured to ensure reproducibility.

III. EXPERIMENTAL RESULTS

The typical unity gain spectral responsivity curves of the BAPDs and the MAPDs are shown in Fig. 2 with respective peak responsivities of \(\sim 144 \) and \(\sim 130 \) mA/W at the wavelength of 265 nm, which correspond to external quantum efficiencies of more than 60%. The responsivities of the MAPDs at long UV wavelengths would be expected to be higher if the 2 μm n−-reach-through layer were depleted. The 4H-SiC diodes exhibit no photoresponse for wavelengths longer than \(\sim 380 \) nm (see insets of Fig. 2), unlike their 6H counterparts, because of their wider bandgap, and are, therefore, visible-blind.

Figs. 3(a) and 4(a) show the normalized multiplication characteristics of the BAPDs and the MAPDs, respectively, measured using 230–365-nm light. The multiplication characteristics from longer wavelength light are consistently higher than those from light of shorter wavelengths for both structures, with the MAPDs exhibiting a wider spread of multiplication characteristics, as would be expected for a structure with thicker avalanche width. Breakdown voltages of 58.3 and 123.7 V for the BAPDs and the MAPDs, respectively, were also estimated by fitting the multiplication characteristics to Miller’s multipli-

![Fig. 2. Typical unity gain spectral responsivities of the (a) BAPDs (○) and the (b) MAPDs (□) over the wavelength range 230–375 nm. The responsivity curves (dashed lines) corresponding to external quantum efficiency of 10 to 70% are also included for reference. The insets show the same curves on semilogarithmic plots. Modeled results are shown as solid lines.](image)

![Fig. 3. Measured (symbols) and modeled (dashed lines) (a) multiplication and (b) excess noise characteristics of the BAPD structure from 230 nm (hexagon), 240 nm (△), 250 nm (▽), 265 nm (□), 297 nm (△), and 365 nm (○). Inset in (a) shows \(M = 1 \) plotted on a logarithmic scale to accentuate the low multiplication values. The modeled \(M_\text{th} \) (dot-dashed line) is also shown in (a) for comparison. Dotted lines in (b) are McIntyre’s local prediction for \(k_{\text{eff}} = 0 \) to 1 in steps of 0.1.](image)
The weakly absorbed 365-nm light [12] gives a mixed carrier initiated multiplication that is our closest measurable estimate to pure hole multiplication M_{th}. As the wavelength decreases the UV light is progressively absorbed at shorter depths and more electrons are injected from the top p⁺/p cladding layers. It is estimated that more than 95% of the UV light is absorbed in the p⁺/p cladding layers of both structures at the wavelength of 230 nm so that the multiplication characteristic from 230-nm light can be considered to correspond to pure electron multiplication M_e. As already pointed out in our earlier work on the BAPDs [5], the behavior of the multiplication characteristics with UV light of various wavelengths shows unambiguously that $\beta > \alpha$. This is further corroborated by the dependence of the multiplication characteristics of the MAPDs and of the excess noise curves of both structures on illumination wavelengths.

The k_{eff} values characterising the excess noise measured with 365-nm light can provide a conservative estimate of the α/β ratio in 4H-SiC within the local approximation if we assume that the excess noise from this wavelength light is due to pure hole injection. In reality, the α/β ratio will be less than this estimate since some electrons from the p⁺/p cladding layer are also injected into the avalanche region with the weakly absorbed 365-nm light. Based on this assumption and the local noise model [4] we would expect a lower limit for the excess noise in the BAPDs and MAPDs due to electron injection to correspond to $k_{eff} \approx 10$ and $k_{eff} \approx 6.7$, respectively. However, the measured excess noise from electron injection using 230-nm light of the BAPDs and the MAPDs corresponds to much lower values of $k_{eff} \approx 0.8$ and $k_{eff} \approx 2.8$, respectively. These values are clearly in disagreement with the lower limits for the electron initiated excess noise of both structures estimated from the characteristics measured with 365-nm light and cannot be explained by the small experimental error (<10%) associated with the excess noise measurements. The discrepancy suggests that dead space effects are important in these structures.

IV. Modeling and Discussion

To help interpret the avalanche multiplication results the responsivity curves of both structures are first modeled using a simple quantum efficiency description to determine the carrier injection profile at each illumination wavelength. A nonlocal model that takes into account the effect of dead space, the carrier injection profile and the nonuniform electric field profile is then used to fit the measured multiplication and excess noise characteristics of both structures so that the (enabled) ionization coefficients and the ionization threshold energies can be extracted.

A. Quantum Efficiency

The responsivity curves are modeled by treating both APDs as p-i-n structures. This assumption is also reasonable for the MAPDs since the n⁻ reach-through layer is found to be undepleted from C–V and multiplication measurements. For a p-i-n structure, the total photocurrent measured externally is due to i) electrons collected from the p layer at the p-i depletion edge, ii) electron-hole pairs collected from within the depletion region, and iii) holes collected from the n layer at the i-n depletion.

\[\text{Excess Noise Factor, } F = \frac{\text{Excess Noise}}{\text{System Noise}} \]

\[\text{Multiplication factor, } M = \frac{\text{Current}}{\text{Light}} \]
The internal quantum efficiencies associated with components i–iii can be written as [13] [see (1)–(3), shown at the bottom of the page] respectively, where σ is the absorption coefficient at the wavelength λ of the incident light, $L_1(L_2)$ is the minority electron (hole) diffusion length, $D_1(D_2)$ is the electron (hole) diffusion constant, $S_1(S_2)$ is the p(n) layer surface recombination velocity, X_1 is the undepleted width of the p layer, $X_2(X_3)$ is the distance from the front surface to the i–n depletion edge (n$^+$ substrate face), and [see (4), shown at the bottom of the page] It is assumed here that all carriers generated within the depletion region are collected. The external quantum efficiency η of the p-i-n structure is then given by

$$\eta = (1 - r)(\eta_1 + \eta_2 + \eta_3)$$

where r is the reflectivity at the front surface. The external quantum efficiency is related to the spectral responsivity by the expression

$$\eta = 1241 \times \frac{R}{\lambda}$$

where R is the responsivity in A/W and λ is the wavelength in nanometers.

The absorption coefficients of 4H-SiC are taken from the work of Sridhara et al. [12] for $\lambda > 310$ nm. Those at shorter wavelengths are estimated by extrapolating the data for $\lambda > 310$ nm and adjusting slightly to fit the responsivity data. The diffusion coefficients of electrons and holes in 4H-SiC are calculated from the electron and hole mobilities, μ_1 and μ_2, respectively, whose values are estimated from [14]. The p cladding thickness of the BAPDs is estimated from the SIMS profile while the nominal value is used for that of the MAPDs. The n cladding thicknesses for both structures were arbitrarily set as 100 μm since the modeled results are found to be insensitive to this parameter. The minority carrier diffusion lengths, the surface recombination velocities (assuming $S_1 = S_2$) and the reflectivity are treated as adjustable parameters. It is noted that the shape of a simulated quantum efficiency curve is most sensitive to the minority carrier diffusion lengths and only a unique combination of L_1 and L_2 can fit the measured results.

Table I lists the values of the parameters used in the model to fit the responsivity curves. As shown in Fig. 2, the responsivity curves calculated using these parameters are in good agreement with the measurements. The minority carrier diffusion lengths deduced for 4H-SiC are found to be broadly similar to those of 6H-SiC [15], [16].

B. Avalanche Multiplication

The random path length (RPL) model of Ong et al. [17], equivalent [18] to the recurrence model of Hayat et al. [19], was used to interpret the measured avalanche multiplication characteristics. This nonlocal model was modified to take into account the distributed carrier injection arising from weakly absorbed UV light and the effect of nonuniform electric field. The ionization behavior of a carrier in a nonuniform electric field region is characterized by the ionization path length probability density function (PDF) $h(x_0, z)$, which describes the probability of the carrier ionizing for the first time after traveling a distance z downstream from the starting position x_0. In the hard-threshold dead space model the ionization path length PDFs of electrons and holes are

$$\eta_1 = \frac{\sigma L_1}{(\sigma^2 L_1^2 - 1)} \left\{ \frac{(\sigma D_1 + S_1) - e^{-\sigma X_1}}{S_1 \sinh \left(\frac{X_2}{L_1} \right) + \frac{D_1}{L_1} \cosh \left(\frac{X_2}{L_1} \right)} - \frac{D_1 e^{-\sigma X_1}}{L_1 e^{-\sigma X_1}} \right\}$$

$$\eta_2 = e^{-\sigma X_1} \left[1 - e^{-\sigma (X_2 - X_1)} \right]$$

and

$$\eta_3 = \frac{\sigma L_2 e^{-\sigma X_2}}{(\sigma^2 L_2^2 - 1) \left[\sigma L_2 + K_n \right]}$$

and

$$K_n = S_2 \left\{ e^{-\sigma (X_2 - X_3)} - \cosh \left(\frac{X_2 - X_3}{L_2} \right) \right\} - \frac{D_2 e^{-\sigma (X_2 - X_3)}}{L_2} \sinh \left(\frac{X_2 - X_3}{L_2} \right).$$
given by [20] [see (7), shown at the bottom of the page] for electrons and [see (8), shown at the bottom of the page] for holes where electrons (holes) are assumed to travel in the \(x \) direction. \(\alpha^e(z)(\beta^e(z)) \) is the position dependent enabled electron (hole) ionization coefficients. \(d_e(x_0) \) \(d_h(x_0) \) is the ballistic dead space of the electron (hole) generated at \(x_0 \) and \(w_T \) is the width of the depletion region.

The ballistic dead space of electrons and holes, \(d_e(x_0) \) and \(d_h(x_0) \), respectively, can be found by solving the equations

\[
d_e(x_0) + x_0 \int_{x_0}^{x_0 + x_0} \xi(z)dz = E_{the} \quad \text{and} \quad d_h(x_0) + x_0 \int_{x_0 - d_h(x_0)}^{x_0} \xi(z)dz = E_{thh},
\]

where \(\xi(z) \) is the position dependent electric field and \(E_{the} \) \(E_{thh} \) is the ionization threshold energy of electrons (holes). The enabled ionization coefficients \(\alpha^e(z) \) \(\alpha^h(z) \) \(\beta^e(z) \) \(\beta^h(z) \), are related to the effective ionization coefficients, \(\alpha(z) \) and \(\beta(z) \), by the expressions

\[
\frac{1}{\alpha^e(z)} = d_e(z) + \frac{1}{\alpha^e(z)} \quad \text{and} \quad \frac{1}{\beta^e(z)} = d_h(z) + \frac{1}{\beta^h(z)},
\]

for electrons and holes, respectively, where \(0 < r < 1 \). The integrals in (12) were discretized and implemented as lookup tables to reduce computation time.

Calculation using the RPL model involves simulating many trials (typically 100000) to build up sufficient statistics to determine \(M \) and \(F \) from

\[
M = \frac{1}{n_T} \sum_{i=1}^{n_T} M_i \quad \text{and} \quad F = \frac{1}{n_T M^2} \sum_{i=1}^{n_T} M_i^2
\]

where \(M_i \) is the multiplication factor from a trial and \(n_T \) is the total number of trials. In each trial, carriers are injected at a position determined by the wavelength dependent carrier injection profile deduced from responsivity modeling, where \(w_T \) is suitably discretized and \(n_T \) is distributed to the spatial mesh of the depletion region according to the calculated profile. A carrier undergoes impact ionization to create a secondary electron-hole pair after travelling a random ionization path length, obtained from (12) using a random number generator, and terminating within the depletion region. This process is repeated for all remaining carriers and the value of \(M_i \) is determined from the total number of ionization events when all carriers have left the depletion region.

The electric field profiles are modeled using the parameters extracted from C–V measurements. Calculations using the ionization coefficients reported by Konstantinov et al. [3] gave much larger breakdown voltages than those measured in both structures. We therefore treat the ionization coefficients as adjustable parameters and obtain initial estimates, parametrized by the expression \(\alpha(\beta) = A \exp[-(B/\xi)^C] \), from the multiplication characteristics measured using 230- and 365-nm light by assuming that excitation at 365 nm gives rise to \(M_h \).

The resulting modeled multiplication and excess noise characteristics of the BAPDs and the MAPDs are depicted in Figs. 3 and 4, respectively. The predicted \(M_h \) of both structures [see Figs. 3(a) and 4(a)] are observed to be appreciably higher than those measured with 365-nm light, confirming that the \(\beta/\alpha \) ratios are large in these diodes. The multiplication characteristics are also plotted as \((M - 1) \) on a logarithmic scale in the insets of Figs. 3(a) and 4(a) to reveal the low multiplication values.
The field dependence of the ionization coefficients used in the model can be expressed as

\[
\alpha = 1.98 \times 10^6 \exp \left[- \frac{9.46 \times 10^6}{\xi} \right] \quad \text{cm}^{-1} \quad (14)
\]

\[
\beta = 4.38 \times 10^6 \exp \left[- \frac{1.14 \times 10^7}{\xi} \right] \quad \text{cm}^{-1} \quad (15)
\]

Best fits to the measured multiplication and excess noise characteristics of the BAPDs and MAPDs are achieved with ionization threshold values of \(E_{\text{thr}} = 12\ eV\) and \(E_{\text{thb}} = 8\ eV\). The good agreement between the measured and modeled multiplication characteristics at low multiplication values in both structures [-insets of Figs. 3(a) and 4(a)] provides further evidence that dead space has been properly accounted for. The fitted ionization threshold energies correspond to electron and hole dead spaces that are approximately 28 and 18%, respectively, of the width of a 0.1 \(\mu m\) ideal p-i-n structure at appreciable values of multiplication. We note from the work of Tan et al. [21] that a hard-threshold dead space ionization path length PDF predicts higher excess noise than one corresponding to a softer threshold. The small differences between the modeled and measured excess noise curves of both structures may therefore be due to softness of threshold in 4H-SiC.

Fig. 5 shows a comparison of ionization coefficients determined in this work with those reported by Konstantinov et al. [3] and Raghunathan and Baliga [6]. As depicted in Fig. 5, the values of \(\beta\) determined from modeling the experimental results are found to agree with the results of Konstantinov et al. while our values of \(\alpha\) are higher than those of Konstantinov et al., especially at lower fields. In Konstantinov's work ionization coefficients are determined by fitting the local model to the multiplication characteristics of three structures measured using 325-nm light. These authors claimed that the contribution of electrons to multiplication is only significant near breakdown, suggesting that the values of \(\alpha\) are critically dependent on the accuracy of the measured data in this region. Multiplication measurements near breakdown are prone to error due to gain saturation effects [22] which can limit the maximum achievable multiplication, especially when high gain and large current are measured. Any resulting error in the measured multiplication near breakdown due to gain saturation effects can translate into significant error in the deduced values of \(\alpha\). Furthermore, the use of only one optical wavelength to measure multiplication and the use of the local model may not be sufficient to determine accurately the ionization coefficients.

Raghunathan and Baliga measured hole initiated multiplication in thick p-type Schottky barrier diodes by generating electron-hole pairs in the depletion region with a pulsed electron beam [6]. In calculating \(\beta\) the measured multiplication characteristics were assumed to be due entirely to hole injection and \(\alpha\) was assumed equal to zero. While the second assumption may be appropriate for 4H-SiC, the first assumption may be erroneous since the injection condition is most likely to be mixed due to the significant penetration depth of the electron beam. This could possibly explain the much lower values of \(\beta\) obtained by Raghunathan and Baliga as compared to those of Konstantinov et al. and from the present paper.

V. CONCLUSION

The avalanche multiplication and excess noise characteristics of 4H-SiC APDs with multiplication region widths of \(w = 0.105 \mu m\) and \(w = 0.285 \mu m\) were investigated using 230–365-nm light. Measured multiplication values were found to increase and excess noise to decrease with excitation wavelength. Very low excess noise, corresponding to \(k_{\text{eff}} \approx 0.1\) and \(k_{\text{eff}} \approx 0.15\) for the \(w = 0.105 \mu m\) and \(w = 0.285 \mu m\) APDs, respectively, was measured using 365-nm light. These results show unambiguously that \(\beta > \alpha\) and that the \(\beta/\alpha\) ratios remain significantly above unity in these thin 4H-SiC avalanche regions. The multiplication and excess noise characteristics were interpreted using a nonlocal model, in which the wavelength dependent carrier injection profiles and the nonuniform electric field were accounted for. Good agreement with the experimental results was obtained using ionization threshold energies of 12 and 8 eV for electrons and holes, respectively. A small difference between the measured and modeled excess noise suggests that the dead space in 4H-SiC may be soft. The results show that although dead space effects in thin 4H-SiC APDs are important and help to reduce the excess noise, pure hole injection is still necessary to ensure the lower excess noise because of the persistence of large \(\beta/\alpha\) ratios even at very high fields.

REFERENCES

Richard C. Tozer (SM’98) received the B. Eng., M. Eng., and Ph.D. degrees from the University of Sheffield, Sheffield, U.K., in 1970 and 1975, respectively.

Following a period of Postdoctoral Research at the University of Sheffield in the area of CCD device applications, he became a Lecturer at the University of Essex, Essex, U.K., where he researched active sound cancellation. In 1980 he returned as a lecturer to Sheffield where he teaches analog circuit design. His research interests involve the application of analogue circuits to a wide range of experimental and instrumental problems.

Graham J. Rees received degrees in physics and theoretical physics from Oxford University, Oxford, U.K., and Bristol University, Bristol, U.K., respectively.

He has since been with Rome Universita della Scienze, Rome, Italy, Imperial College London, London, U.K., Plessey (now GEC) Caswell, London, Lund University, Lund, Sweden, and Oxford University, Oxford, U.K. He is currently a Professor at the University of Sheffield, Sheffield, U.K. His interests are in the physics of semiconductors and devices.
Jian H. Zhao (SM’94) received the B.S. degree in physics from Xiamen University, Xiamen, China, in 1982, the M.S. degree in physics from the University of Toledo, Toledo, OH, in 1985, and the Ph.D. degree in electrical engineering from Carnegie Mellon University, Pittsburgh, PA, in 1988.

He joined Rutgers University, Piscataway, NJ in 1988 as an Assistant Professor and is currently Professor and Director of SiCLAB, Department of Electrical and Computer Engineering. His research interests include wide bandgap semiconductor electronic and optoelectronic devices, III–V photonic devices, waveguide devices, and device modeling. He has authored and coauthored more than 120 refereed journal papers, four book chapters, and a book *Optical Filter Design and Analysis: A Signal Processing Approach* (New York: Wiley, 1999). He has eight patents awarded or pending.

Maurice Weiner (F’92) received the Ph.D. degree in physics from New York University, New York, NY in 1971.

In 1961, he joined the U.S. Army Research Laboratory, Fort Monmouth, NJ, where he was engaged in the development of microwave ferrite and gaseous electronic devices. Later, as Leader of the Solid State Pulser’s Team, he led the development of optically activated semiconductors, thyristors, and other solid state devices. In 1998, he joined United Silicon Carbide, Inc., North Brunswick, NJ, where he has helped to develop research programs for a variety of silicon carbide devices. He is the author of *Electromagnetic Analysis Using Transmission Line Variables* (Singapore: World Scientific, 2001).

Dr. Weiner served on numerous scientific panels and organized several workshops related to high-power semiconductor devices. He was Chairman of the 1994 IEEE Power Modulator Conference and served as coeditor of a Special Issue on the IEEE TRANSACTIONS ON ELECTRON DEVICES (December 1990), devoted to optically controlled semiconductor devices. He received the U.S. Army Research and Development Award in 1984, 1988, and 1992.