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D. Bauso, b L. Giarré a,1 and R. Pesenti b

a Dipartimento di Ingegneria dell’Automazione e dei Sistemi
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Abstract

We consider stationary consensus protocols for networks of dynamic agents with
fixed topologies. At each time instant, each agent knows only its and its neighbors’
state, but must reach consensus on a group decision value that is function of all
the agents’ initial state. We show that the agents can reach consensus if the value
of such a function is time-invariant when computed over the agents’ state trajecto-
ries. We use this basic result to introduce a non-linear protocol design rule allowing
consensus on a quite general set of values. Such a set includes, e.g., any general-
ized mean of order p of the agents’ initial states. As a second contribution we show
that our protocol design is the solution of individual optimizations performed by
the agents. This notion suggests a game theoretic interpretation of consensus prob-
lems as mechanism design problems. Under this perspective a supervisor entails the
agents to reach a consensus by imposing individual objectives. We prove that such
objectives can be chosen so that rational agents have a unique optimal protocol,
and asymptotically reach consensus on a desired group decision value. We use a
Lyapunov approach to prove that the asymptotical consensus can be reached when
the communication links between nearby agents define a time-invariant undirected
network. Finally we perform a simulation study concerning the vertical alignment
maneuver of a team of unmanned air vehicles.
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1 Introduction

Distributed consensus protocols are distributed control policies based on local information
that allow the coordination of multi-agent systems. Agents implement a consensus protocol
to reach consensus, that is to (make their states) converge to a same value, called consensus-
value, or group decision value [1,2].
Coordination of agents/vehicles is an important task in several applications including au-
tonomous formation flight [3,4], cooperative search of unmanned air-vehicles (UAVs) [5],
swarms of autonomous vehicles or robots [6–8], multi-retailer inventory control [9–11] and
congestion/flow control in communication networks [12].
Particularly interesting is the progress in the design and analysis of consensus protocols ob-
tained merging notions and tools from the Graph Theory and Control Theory [13]. Actually,
a central point in consensus problems is the connection between the graph topology, possi-
bly switching, and delays or distortions in communication links [14]. Switching topology and
directional communications are studied in [1,15–19], while cooperation based on the notion
of coordination variable and coordination function in [20,21]. There, coordination variable is
referred to as the minimal amount of information needed to effect a specific coordination ob-
jective, whereas a coordination function parameterizes the effect of the coordination variable
on the myopic objectives of each agent.
In this paper, n dynamic agents reach consensus on a group decision value by implement-
ing optimal, distributed and stationary control policies based on neighbors’ state feedback.
Here, neighborhood relations are defined by the existence of communication links between
nearby agents. We assume that the set of communication links are bidirectional and define
a time-invariant connected communication network. In this context, we argue that agents
asymptotically reach consensus on the desired group decision value by studying equilibrium
properties and stability of the group decision value via Lyapunov theory. Similarly to [1,3,13],
our agents follow a first-order dynamics. We restrict the group decision value to be a permu-
tation invariant function of the agents’ initial states. Permutation invariance means that the
value of the function is independent of the agents indexes.
Our contribution to the study on consensus problems is two-fold. First, we show that consen-
sus can be reached if the agents’ state trajectories satisfy a certain time invariancy property.
In doing this we consider both linear and non-linear protocols. On the basis of such a result,
we prove that the group decision values considered are sufficiently general to include any mean
of order p of the agents’ initial states, and not only the arithmetic/min/max means usually
dealt with in the literature (see, e.g., [13,22]). Second, we show that the distributed/individual
optimality of the considered protocols allows interpreting our consensus problem as a non
cooperative differential game [23,24] where a supervisor entails the agents to reach a consen-
sus by imposing individual objectives. This perspective reminds the mechanism design, or
inverse game theory [25]. Indeed, the main topic of the mechanism design is the definition
of game rules or incentive schemes that induce self-interested players to cooperate and reach
Pareto optimal solutions [23]. The advantage of the mechanism design is that intelligence as
well as implementation capabilities are distributed. Reviewing the asymptotically consensus
reaching as a team objective, the supervisor decomposes this team objective in n individual
objectives. By doing this, the agents are said “what to aim at” instead of “what to do”, and
are free to find the best solution to their subtasks. Obviously, the advantage of distributing
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intelligence has on one hand a non insdifferent cost due to the necessity of equipping each
agent with computational and processing units, but, on the other hand, reduces the monitor-
ing costs. We show that, if the supervisor imposes convex penalty functions, rational agents
have a unique optimal protocol. We prove this result through the Pontryagin Minimum Prin-
ciple (see, e.g., [26]). From a slightly different point of view, the solution of a mechanism
design problem allows to determine whether a set of agents with given individual objective
functions will implement the considered protocol.
The present paper states consensus protocol definition and mechanism design as two separate
problems for the sake of clarity. However, it must be noted that these two problems may be
seen as two faces of the same coin. The consensus protocol definition problem answers to
the question of determining the policies that the agents must implement to reach a given
consensus. The mechanism design problem answers to the question of which policy is imple-
mented, and hence which consensus value is reached, by selfish agents with given individual
objectives.
Unfortunately, solving the mechanism design problem is a difficult task, unless the problem
is an affine quadratic game [23]. Our idea is then to translate it into a sequence of more
tractable receding horizon problems. At each discrete time tk, the receding horizon control
scheme optimizes over an infinite planning horizon T → ∞, and executes the controls over
a one-step action horizon δ = tk+1 − tk [27,28]. The neighbors’ state whose evolution is un-
predictable, are kept constant over the planning horizon (naive assumption) [29,30]. At time
tk+1 each agent re-optimizes its controls based on the new information on neighbors’ state
which has become available. To find an approximate solution to Problem 2 we then take the
limit for δ → 0 of the given receding horizon solution.
The paper is organized as follows. In Section 2, we formulate the consensus problem (Prob-
lem 1) and the mechanism design problem (Problem 2). Section 3 and 4 concern the solution
to the consensus problem. In particular, in Section 3, we study the time invariancy property
of the state trajectory. In Section 4, we provide sufficient conditions for the asymptotical
stability of the group decision value via Lyapunov theory. Section 5 addresses the mechanism
design problem, whose solution is derived starting from the results on the consensus prob-
lem. More specifically, we exploit the Pontryagin Minimum Principle to derive necessary and
sufficient optimality conditions. Then, we merge the results on time invariancy, stability, and
optimality to design a mechanism for the distributed optimal consensus. In Section 6, we
simulate the vertical alignment maneuver of a team of UAVs. Finally, in Section 7, we draw
some conclusions.

2 Consensus and Mechanism Design Problems

We consider a system of n dynamic agents Γ = {1, . . . , n} and model the interaction topology
among agents through a time-invariant connected network (graph) G = (Γ, E). The network
is undirected, i.e., if (i, j) ∈ E then (j, i) ∈ E. The network is connected, that is, for any
vertex i ∈ Γ there exists a path, i.e., a sequence of edges in E, (i, k1)(k1, k2) . . . (kr, j), that
connects it with any other vertex j ∈ Γ. Finally, the network G is not complete, namely, each
vertex i is connected (with one edge) only to a subset of other vertices Ni = {j : (i, j) ∈ E}
called neighborhood of i.
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Each edge (i, j) in the edgeset E means that there is communication from j to i. As (j, i)
is also in the edgeset E the communication is bidirectional, namely, if agent i can receive
information from agent j then also agent j can receive information from agent i. Also, G not
complete means that each agent i exchanges information only with its neighbors.
Each agent i has a (simplified) first-order dynamics controlled by a distributed and stationary
control policy

ẋi = ui(xi, x
(i)) ∀i ∈ Γ, (1)

where xi is the state of agent i and x(i) is the state vector of the agents in Ni with generic

component j defined as follows, x
(i)
j =











xj if j ∈ Ni,

0 otherwise,

and such that (1) has unique solutions. The policy is distributed since, for each agent i, it
depends only on the local information available to it, which is xi and x(i). No other information
on the current or past system state is available to agent i. (We discuss the limitation of this
assumption at the beginning of Section 3). The policy is stationary since it does not depend
explicitly on time t. In other words, the policy is a time-invariant and memoryless function
of the state. Define the system state vector x(t) = {xi(t), i ∈ Γ}, then the system initial
state x(0) is the collection of the agents’ initial states. Define u(x) = {ui(xi, x

(i)) : i ∈ Γ}
as a distributed stationary protocol or simply a protocol. Let χ̂ : IRn → IR be a generic
continuous and differentiable function of n variables x1, . . . , xn which is permutation invariant,
i.e., χ̂(x1, x2, . . . , xn) = χ̂(xσ(1), xσ(2), . . . , xσ(n)) for any one to one (permutation) mapping
σ(.) from the set Γ to the set Γ. Henceforth χ̂ is also called agreement function. Putting
together slightly different definitions in [1,2,22], we say that a protocol u(.) makes the agents
asymptotically reach consensus on a group decision value χ̂(x(0)) function of their initial
states if ‖xi − χ̂(x(0))‖ −→ 0 as t −→ ∞. When this happens we also say that the system
converges to χ̂(x(0))1. Here and in the following, 1 stands for the vector (1, 1, . . . , 1)T .
Notwithstanding each agent i has only a local information (xi, x

(i)) about the system state
x, we are interested in making the agents reach consensus on group decision values that are
functions of the whole system initial state x(0). In particular, we are interested in agreement
functions verifying

min
i∈Γ

{yi} ≤ χ̂(y) ≤ max
i∈Γ

{yi}, for all y ∈ IRn. (2)

The above condition means that the group decision value must be confined between the
minimum and the maximum values of the agents’ initial states.
Finally, we define an individual objective for an agent i, i.e.,

Ji(xi, x
(i), ui) = lim

T−→∞

T
∫

0

(

F (xi, x
(i)) + ρu2

i

)

dt (3)
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where ρ > 0 and F : IR × IRn → IR is a nonnegative penalty function that measures the
deviation of xi from neighbors’ states. We say that a protocol is optimal if each ui optimizes
the corresponding individual objective.
In the above context, we face the following problem.

Problem 1 (Consensus Problem) Consider a network G = (Γ, E) of dynamic agents with
first-order dynamics. For any agreement function χ̂ satisfying condition (2), determine a
(distributed stationary) protocol, whose components have the feedback form (1), that makes
the agents asymptotically reach consensus on χ̂(x(0)) for any initial state x(0).

In the following, a protocol that solves the consensus problem is also referred to as a consensus
protocol. In addition a consensus protocol is said optimal, if its components are the optimal
controls ui(.) corresponding to minimizing (3).

Problem 2 (Mechanism design problem) Consider a network G = (Γ, E) of dynamic agents
with first-order dynamics. For any agreement function χ̂(.) determine a penalty function F (.)
such that there exists an optimal consensus protocol u(.) with respect to χ̂(x(0)) for any initial
state x(0).

Notice that a pair (F (.), u(.)) solving Problem 2 must be such that all individual objectives (3)
converge to a finite value. Then, it is necessary that the integrand in (3) be null if computed
in χ1. We will check later on that this necessary condition is verified by our candidate penalty
function F (.).

3 Time Invariancy of χ̂(x(t))

In this section and in the following one we focus on Problem 1. Initially, we show that if a
protocol, which solves a consensus problem, is distributed and stationary then the system
state trajectory enjoys the property that χ̂(x(t)) is time-invariant. Then, we find a family of
non trivial protocols that guarantee such a property. We prove that some of such protocols
are consensus protocols with respect to χ̂(x(0)) in the next section.

Lemma 1 (Time invariancy) Consider a network G = (Γ, E) of dynamic agents with first-
order dynamics. For an agreement function χ̂ assume there exists a distributed stationary
protocol u(.), whose components have the feedback form (1), that makes the agents asymp-
totically reach consensus on χ̂(x(0)) for any initial state x(0). Then the value of χ̂(x(t)) is
time-invariant, i.e., χ̂(x(t)) = χ̂(x(0)) for all t > 0.

Proof. The key idea is that the protocols used are time-invariant (so the system of differential
equations (1) is autonomous) and such that the system has unique solutions. Since the system
is autonomous and by assumption x(t) → χ̂(x(0))1 as t → ∞, then ys(t) = x(t+ s) is also a
solution (with ys(0) = x(s)) and we also have ys(t) → χ̂(ys(0))1 as t → ∞ for any s. Since
ys(t) and x(t) converge to the same limit we get χ̂(ys(0)) = χ̂(x(s)) = χ̂(x(0)) for all s. 2
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From continuity of function χ̂ and supposing that the state trajectory reaches the point
χ̂(x(0))1, the time invariancy property stated in Lemma 1 implies also that χ̂(x(0)) =
χ̂(χ̂(x(0))1). Note that the last condition satisfies (2). Actually, (2) imposes that function
χ̂(.) must be chosen such that any point λ1, for all λ ∈ IR, is a fixed point, i.e., χ̂(λ1) = λ,
as it can be trivially derived assuming y = λ1.
With this consideration in mind, let us impose the time invariancy of χ̂(x(t)) to derive a
necessary property for the consensus protocol. As it holds χ̂(x(t)) = const then

dχ̂(x(t))

dt
= ∇xχ̂(x) · ẋ =

∑

i∈Γ

∂χ̂(x)

∂xi

ẋi =
∑

i∈Γ

∂χ̂(x)

∂xi

ui = 0. (4)

The trivial protocol constantly equal to 0 leaves any value χ̂(x(t)) time-invariant, for any
possible χ̂(.), but obviously does not make the system converge. Consequently, it is no longer
considered hereafter.
Some other solutions of equation (4) can be obtained easily when χ̂(x) presents a particular
structure. A first possibility is when the following condition holds

∂χ̂(x)

∂xi

ui = 0 ∀i ∈ Γ. (5)

For example, χ̂(x) = min{xi} and ui = h(xi,minj∈Ni
{xj}) satisfy the above condition, for

any h(x, y) : IR2 → IR such that h(x, y) = 0 when x = y. Actually, ∂χ̂(x)
∂xi

6= 0 only for i such
that xi = minj∈Γ{xj}, then, by definition of function h(.), it holds ui(xi) = 0 and hence (5).
Note that though χ̂(x) = min{xi} is not differentiable, at points where the partial derivative
∂χ̂(x)
∂xi

is not defined the protocol ui = 0. The system converges to χ̂(x(0)) if we impose
the additional condition h(x, y) < 0 when x > y. Trivially, analogous argument applies to
χ̂(x) = max{xi}.
We specialize our study considering the following family of agreement function χ̂(x).

Assumption 1 (Structure of χ̂(.)) Assume that the generic agreement function χ̂(.) satisfies

condition (2) and is such that χ̂(x) = f(
∑

i∈Γ g(xi)), for some f, g : IR → IR with dg(xi)
dxi

6= 0
for all xi.

A point of interest is that the above family of agreement function is more general than the
arithmetic/min/max means already reported in the literature (see, e.g., Tab. 1). In this sense,
observe that the structure of the agreement function is general to the extent that any value
in the range between the minimum and the maximum values of the agents’ initial states can
be chosen as a group decision value. To see this, it is sufficient to consider mean of order p
with p varying between −∞ and ∞.

Theorem 1 (Protocol design rule) For any agreement function χ̂(.) as in Assumption 1, the
non trivial protocol

ui(xi, x
(i)) =

1
dg(xi)
dxi

∑

j∈Ni

φ(xj, xi), for all i ∈ Γ (6)
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mean χ̂(x) f(y) g(z)

arithmetic
∑

i∈Γ
1
n
xi

1
n
y z

geometric n
√
∏

i∈Γ xi e
1
n
y log z

harmonic 1
∑

i∈Γ
n
xi

n
y

1
z

mean of order p p

√

∑

i∈Γ
1
n
x
p
i

q

√

1
n
y zp

Table 1
Means under consideration and their representations in terms of f and g

lets the value χ̂(x(t)) be time-invariant if φ : IR2 → IR is an antisymmetric function, i.e.,
φ(xj, xi) = −φ(xi, xj).

Proof. A sufficient condition for χ̂(x(t)) being time-invariant is that its argument
∑

i∈Γ g(xi(t))
is time-invariant, too. The latter condition means

∑

i∈Γ

dg(xi(t))

dt
=

∑

i∈Γ

dg(xi)

dxi

ẋi =
∑

i∈Γ

dg(xi)

dxi

ui = 0.

It is immediate to verify that protocol (6) satisfies condition
∑

i∈Γ
dg(xi)
dxi

ui = 0. Actually, since
φ is antisymmetric and the links are bidirectional then we have

∑

i∈Γ

∑

j∈Ni
φ(xj, xi) = 0. 2

Consider the linear function φ(xj, xi) = α(xj − xi) and the different means introduced in
Tab. 1. The arithmetic mean is time-invariant under protocol u(xi, x

(i)) = α
∑

j∈Ni
(xj − xi);

the geometric mean under protocol u(xi, x
(i)) = αxi

∑

j∈Ni
(xj−xi); the harmonic mean under

protocol u(xi, x
(i)) = −αx2

i

∑

j∈Ni
(xj − xi); the mean of order p under protocol u(xi, x

(i)) =

α
x
1−p
i

p

∑

j∈Ni
(xj − xi).

Obviously, due to the time invariancy of χ̂(x(t)) if the system converges, it will converge to
χ̂(x(0))1, but it does not necessarily converge. As it turns out at the end of the next section,
for the cases in the example, the system converges to χ̂(x(0))1 only if α > 0 (for the harmonic
mean only if α < 0). In addition, we must also assume that xi(0) > 0 for all i ∈ Γ, when we
deal with means different from the arithmetic one.

4 Sufficient conditions for convergence

In the previous section, we find a family of protocols as in (6) that guarantees the time
invariancy of χ̂(x(t)). In this section, we determine sufficient conditions on the structure
of functions g(.) and φ(.) such that a protocol of type (6) makes the system converge to
χ̂(x(0))1 for any agreement function χ̂(.) and initial state x(0). In particular, we prove that
the system converges when the function g(.) is strictly increasing and the function φ(.) is
defined as follows:

φ(xj, xi) = αφ̂(ϑ(xj)− ϑ(xi)), (7)
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where α > 0, function φ̂ : IR → IR is continuous, locally Lipschitz, odd and strictly increasing,
and function ϑ : IR → IR is differentiable with dϑ(xi)

dxi
locally Lipschitz and strictly positive.

Putting together (6) and (7) the resulting protocol is

ui(xi, x
(i)) = α

1
dg

dxi

∑

j∈Ni

φ̂(ϑ(xj)− ϑ(xi)), for all i ∈ Γ. (8)

Initially, we study the stability of the system under protocol (8).

Lemma 2 Consider a network G = (Γ, E) of dynamic agents with first-order dynamics and
implement a distributed and stationary protocol u(.) whose components have the feedback
form (8). Then, all equilibria are of the form λ1 and if a trajectory x(t) converges asymptot-
ically to the equilibrium λ01 then λ0 = χ̂(x(0)), for any initial state x(0).

Proof. First, we show that any equilibrium point x∗ must have all its component equal, i.e.,
x∗ = λ1 where λ is a constant value. Then we prove that λ is equal to χ̂(x(0)).
Sufficiency. Assume, xi = λ, for all i ∈ Γ, then uiφ̂(ϑ(λ)− ϑ(λ)) = 0 since φ̂(.) is continuous
and odd. Thus, the point x∗ = λ1 is an equilibrium point.
Necessity. Assume that there exists an equilibrium point x∗ 6= λ1. We prove that such an
assumption implies the existence of at least one agent i with ui < 0, and this last result
contradicts the definition of equilibrium for x∗. Define I = {i ∈ Γ : x∗

i ≥ x∗
j , ∀j ∈ Γ} as the

set of agents with maximum state value. Trivially, I is included but not equal to Γ, as x∗ 6= λ1.
Then, i and j with (i, j) ∈ E such that x∗

i 6= x∗
j exist, since the network G is connected.

In particular, we can always choose i ∈ I such that there exists j ∈ Ni with x∗
j < x∗

i . Now

observe that, since φ̂(.) is an odd and strictly increasing and ϑ(.) is strictly increasing, then
∑

j∈Ni
φ̂(ϑ(x∗

j)− ϑ(x∗
i )) < 0. Actually, all the terms of the sum are non positive and at least

one is strictly negative. Since it also holds that α 1
dg

dxi

6= 0, the contradiction is proved.

Convergence. The above arguments show that χ̂(x(0))1 is an equilibrium point. Now, we prove
by contradiction that λ = χ̂(x(0)). Indeed, if λ 6= χ̂(x(0)), then χ̂(x) under protocol (8) is
no longer time invariant. Let us assume that the system actually converges to a different
equilibrium point x∗ = λ1 6= χ̂(x(0))1. As χ̂(.) enjoys the fixed point property, we have
χ̂(x∗) = λ 6= χ̂(x(0)). 2

We are now ready to prove that the agents asymptotically reach consensus on χ̂(x(0))1 when

function g(.) is strictly increasing, i.e., dg(y)
dy

> 0 for all y ∈ IR.

Theorem 2 Consider a network G = (Γ, E) of dynamic agents with first-order dynamics
and implement a distributed and stationary protocol whose components have the feedback
form (8). If function g(.) is strictly increasing, the agents asymptotically reach consensus on
χ̂(x(0))1 for any initial state x(0).

Proof. We follow a line of reasoning similar to the one in [1]. First, observe that consensus
reaching corresponds to asymptotic stability of a new variable η = {ηi, i ∈ Γ}, where ηi =
g(xi) − g(χ̂(x(0))). The vector η is a bijective function of the system state, since ηi is as
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strictly increasing as g(.), and η = 0 corresponds to x = χ̂(x(0))1. We prove the asymptotical
stability (in the quotient space IRn/span{1}) of the equilibrium point η = 0 by introducing
a candidate Lyapunov function V (η) = 1

2

∑

i∈Γ η
2
i . Trivially, V (η) = 0 if and only if η = 0;

V (η) > 0 for all η 6= 0. It remains to prove that V̇ (η) < 0 for all η 6= 0.

V̇ (η)=
∑

i∈Γ

ηiη̇i =
∑

i∈Γ

ηi
dg(xi)

dxi

ẋi = (9a)

=
∑

i∈Γ

ηi
dg(xi)

dxi

ui =
∑

i∈Γ

ηi
dg(xi)

dxi

α
1
dg

dxi

∑

j∈Ni

φ̂(ϑ(xj)− ϑ(xi)) = (9b)

=α
∑

i∈Γ

ηi
∑

j∈Ni

φ̂(ϑ(xj)− ϑ(xi)) = (9c)

=−α
∑

(i,j)∈E

(g(xj)− g(xi))φ̂(ϑ(xj)− ϑ(xi)) (9d)

In (9) we simply express ηi and η̇i in terms of the state variables and their derivatives. 2 To
get (9d) from (9c), we reorder the terms and exploit the fact that j ∈ Ni if and only if i ∈ Nj

for each i, j ∈ Γ. From (9d) we have V̇ (η) ≤ 0 for all η and, in particular, V̇ (η) = 0 only for
η = 0. Actually, as α > 0 and g(.), φ̂(.), and ϑ(.) are strictly increasing, we have that, for
any (i, j) ∈ E, xj > xi implies g(xj)− g(xi) > 0, ϑ(xj)−ϑ(xi) > 0 and φ̂(ϑ(xj)−ϑ(xi)) > 0.

Hence, we obtain α(g(xj) − g(xi))φ̂(ϑ(xj) − ϑ(xi)) > 0 if xj > xi. Trivially, a symmetrical
argument holds if xj < xi. 2

It is possible to partially relax the assumptions of Theorem 2 concerning the monotonicity of
function g(.). The reason is evident from the following theorem establishing that all agents’
state trajectories are bounded.

Theorem 3 Assume all the conditions in Theorem 2 hold. Then, condition (7) implies that
for all i ∈ Γ and t ≥ 0

min
j∈Γ

{xj(0)} ≤ xi(t) ≤ max
j∈Γ

{xj(0)}. (10)

Proof. Let α = minj∈Γ{xj(0)} and β = maxj∈Γ{xj(0)}. The aim is to prove that all solutions
stay inside the hypercube [α, β]n. This can be shown by noticing that, for each generic agent i,
the state xi(t) is a continuous. Observe, that on the faces of the polyhedron [α, β]n the
corresponding vector field does not point outwards. This translates into ui(α, x

(i)) ≥ 0 (and
ui(β, x

(i)) ≤ 0) which follows immediately from the definition of ui 2

2 Let K = g (χ̂ (x(0))), the dynamics of η can be equivalently expressed as

η̇i = α
∑

j∈Ni

φ̂
(

ϑ
(

g−1 (ηj +K)
)

− ϑ
(

g−1 (ηi +K)
))

.
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Trivially, condition (10) holds even if g(y) is strictly increasing only in the subset of IR
defined by minj∈Γ{xj(0)} ≤ y ≤ maxj∈Γ{xj(0)}, since the agents’ state trajectory values are
bounded within the same set. The boundedness of the agents’ state trajectories allows us to
partially relax the assumptions of Theorem 2 concerning the monotonicity of function g(.).
Indeed, Theorem 2 still holds if g(.) is strictly increasing in only a subset X ∈ IR provided
that xi(t) ∈ X, for all t ≥ 0 and for all i ∈ Γ. Theorem 3 proves that the latter condition
is certainly satisfied if X is a connected subset and xi(0) ∈ X for all i ∈ Γ. As a further
trivial generalization of Theorem 2 we observe that it holds even if g(.) is strictly decreasing.
However, in this case, α in (7) must be strictly negative instead of positive.
An immediate consequence of the above considerations is the following. Since the means
introduced in Tab. 1 have the component g(.) strictly increasing except the harmonic mean,
if we consider the linear function φ(xj, xi) = α(xj − xi), the system converges to χ̂(x(0))1
for α > 0 except for the harmonic mean where we need α < 0. When we deal with means
different from the arithmetic one we also need that xi(0) > 0 for all i ∈ Γ, since g(y) may
not even be defined for y ≤ 0.

The results to communication networks whose topology switches within set of directed graphs
that are connected and balanced can be easily extended via a common Lyapunov function
approach, see [31].

5 Penalty Functions and Optimal Protocols

In this section, we adopt a mechanism design perspective. We discuss whether we can make
the agents asymptotically reach consensus on the group decision value by assigning to each
agent an individual objective function to optimize (Problem 2).

Unfortunately, solving Problem 2 is a difficult task. Our idea is then to translate it into
a sequence of more tractable problems (Problem 3). At each discrete time tk, the receding
horizon control scheme of Problem 3 optimizes over an infinite planning horizon T → ∞,
and executes the controls over a one-step action horizon δ = tk+1 − tk. The neighbors’ state
whose evolution is unpredictable, are kept constant over the planning horizon (Assumption
2) [29,30]. At time tk+1 each agent re-optimizes its controls based on the new information on
neighbors’ state which has become available. To find an approximate solution to Problem 2
we then take the limit for δ → 0 of the given receding horizon solution.

The receding horizon update times are tk = t0 + δk, where k = 0, 1, . . .. The cost of agent i
depends on his state and others’ state trajectories as well. Let us denote with x̂i(τ, tk) and
x̂(i)(τ, tk), τ ≥ tk respectively the predicted state of agent i and of his neighbors.

Problem 3 (Receding Horizon) For all agents i ∈ Γ and times tk, k = 0, 1, . . ., given the
initial state xi(tk), and x(i)(tk) find

û⋆
i (τ, tk) = argminJi(xi(tk), x

(i)(tk), ûi(τ, tk)),
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where

Ji(xi(tk), x
(i)(tk), ûi(τ, tk)) = lim

T−→∞

T
∫

tk

(

F(x̂i(τ, tk), x̂
(i)(τ, tk)) + ρû2

i (τ, tk)
)

dτ (11)

subject to

˙̂xi(τ, tk)= ûi(τ, tk) (12a)
˙̂xj(τ, tk)= ûj(τ, tk) := 0, ∀j ∈ Ni, (12b)

x̂i(tk, tk)= xi(tk) (12c)

x̂j(tk, tk)= xj(tk), ∀j ∈ Ni. (12d)

In the above problem, equations (12a) and (12b) predict respectively the evolution of the
state of agent i and of his neighbors, and conditions (12c) and (12d) represent the initial
state at time tk. Note that whereas agent i may predict with a certain approximation the
evolution of its state as described by (12a), nothing can he know about the evolution of the
states of his neighbors (12b). In this context, agent i at time tk, k = 0, 1, . . . assumes that the
states of his neighbors are constant over the planning horizon, that is x̂(i)(τ, tk) = x(i)(tk),
∀τ > tk (naive assumption).

According to the standard receding horizon scheme, the agents update the receding horizon
control policy when a new initial state update x(i)(tk+1) is available. As a result, for all i ∈ Γ,
we have the following closed-loop system

ẋi = uiRH
(τ), τ ≥ t0,

where the applied receding horizon control law uiRH
(τ) satisfies

uiRH
(τ) = û⋆

i (τ, tk), τ ∈ [tk, tk+1).

Once we assume (12b) we have x̂(i) constant in (11) and the receding horizon problem (Prob-
lem 3) reduces to one dimension (in fact, n one-dimensional problems). This is evident, if
we explicit dependence of F(.) only on the state x̂i(τ, tk), and simplify the expression of the
individual objective function (11) as

Ji = lim
T−→∞

T
∫

tk

(

F(x̂i(τ, tk)) + ρû2
i (τ, tk)

)

dτ. (13)

Hence, the problem reduces to determine the control ûi(τ, tk) that optimizes (13).

11



Now, to verify that a given control ûi(τ, tk) is optimal, we use the Pontryagin Minimum
Principle. To do this, first, we must construct the Hamiltonian function (for sake of simplicity
dependence on τ and tk is dropped)

H(x̂i, ûi, pi) = (F(x̂i) + ρû2
i ) + piûi. (14)

Second, we must impose the Pontryagin necessary conditions.

Optimality condition:
∂H(x̂i, ûi, pi)

∂ûi

= 0 ⇒ pi = −2ρûi. (15)

Multiplier condition: ṗi = −
∂H(x̂i, ûi, pi)

∂x̂i

. (16)

State equation: ˙̂xi =
∂H(x̂i, ûi, pi)

∂pi
⇒ ˙̂xi = ûi. (17)

Minimality condition:
∂2H(x̂i, ûi, pi)

∂û2
i

∣

∣

∣

∣

∣

x̂i=x̂∗
i
,ûi=û∗

i
,pi=p∗

i

≥ 0 ⇒ ρ ≥ 0. (18)

Boundary condition: H(x̂∗
i , û

∗
i , p

∗
i ) = 0. (19)

This last condition requires that the Hamiltonian must be null along any optimal path
{x̂∗

i (t), ∀t ≥ 0} (see, e.g., [26], Section 3.4.3).
We recall that the Pontryagin Minimum Principle provides necessary but not sufficient op-
timality conditions [26]. The above conditions become also sufficient to identify a unique
optimal solution if also the following condition holds [26].

Uniqueness condition: F(xi) is convex. (20)

The following theorem states sufficient conditions on the structure of F(xi) that allow us to
determine analytically a unique optimal control policy ûi(.) .

Theorem 4 Consider an agent i with first-order dynamics, at times tk = 0, 1, . . ., assign it
an objective function as (11) whose penalty function is

F(x̂i(τ, tk)) = ρ





1
dg

dxi

∑

j∈Ni

(ϑ(xj(tk))− ϑ(x̂i(τ, tk)))





2

(21)

where g(.) is increasing, ϑ(.) is concave, and 1
dg(y)
dy

is convex. Then the following control policy

is the unique optimal solution to Problem 3

û⋆
i (τ, tk) = ui(xi(τ)) = α

1
dg

dxi(τ)

∑

j∈Ni

(ϑ(xj(tk))− ϑ(xi(τ))), α = 1. (22)
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Proof. We first show that the problem of minimizing (13) is well posed by proving that,
given a penalty function as in (21), there exists at least a control policy for which objec-
tive (13) converges. Second we certificate the optimality of control policy (22) via Pontryagin
Minimum Principle and, finally, we prove the uniqueness of the optimal solution by showing
that F(.) is convex.
To prove that the problem is well posed, let us start by showing that there exists at least
one reachable state x∗

i under a stationary control policy function only of local information
(xi, x

(i)) in which both the penalty (21) and the control itself are null. Now, the penalty (21)
is null in a state x̂∗

i such that
∑

j∈Ni
(ϑ(xj(tk)) − ϑ(x∗

i )) = 0. From the latter we also have

x∗
i = ϑ−1

(

∑

j∈Ni
ϑ(xj(tk))

|Ni|

)

which means that x∗
i can be determined on the basis of the local

information (x̂i(τ, tk), x
(i)(tk)) available to agent i. Therefore there trivially exists a control

policy that is null in x∗
i and makes the objective function (13) converge.

Now, to certificate the optimality of control policy (22) with α = 1, let us show that it satis-
fies conditions (15)-(20) imposed by the Pontryagin Minimum Principle. Our hypothesis on
the agent dynamics and on the structure of the agent objective function trivially satisfy (17)
and (18). By computing ṗi from (15) and substituting the obtained value in (16) we have

2ρ ˙̂ui =
∂H(x̂i, ûi, pi)

∂x̂i

. (23)

In (17), we can write ˙̂ui =
∂ûi

∂x̂i

˙̂xi =
∂ûi

∂x̂i
ûi. Hence condition (23) becomes 2ρ∂ûi

∂x̂i
ûi =

∂H(x̂i, ûi, pi)
∂x̂i

.
Integrating and imposing condition (19) we obtain that a possible solution of (23) must
satisfy

ρû2
i = F(x̂i). (24)

It is immediate to verify that ûi(τ, tk) =
1
dg

dx̂i

∑

j∈Ni
(ϑ(xj(tk))−ϑ(x̂i(τ, tk))) satisfies the above

condition.
Finally, to prove that control policy (22) is the unique optimal solution, let us show that F(x̂i)

is convex. To do this, let us write F = F3(F1(x̂i),F2(x̂i)) where function F1(x̂i) =
(

∂g

∂xi

)−1
,

function F2(x̂i) =
∑

j∈Ni
(ϑ(xj(tk))−ϑ(x̂i)) and F3 = (F1(x̂i) ·F2(x̂i))

2. With F3(.) being non
decreasing in each argument, function F3(.) is convex if both functions F1(.) and F2(.) are

also convex [32]. Function F1(.) is convex as
(

dg

dx̂i

)−1
is convex by hypothesis. Analogously,

F2(.) is convex as ϑ(.) is concave. 2

The above theorem holds trivially for α = −1 if dg

dxi
< 0 for all xi(0).

Note that the optimal control policy (22) is a feedback policy with respect to the only state
x̂i whereas is an open-loop one with respect to the neighbors’ states.

Then, an immediate consequence of Theorem 4 and of the above assumption is the following
corollary.

Corollary 1 Consider a network G = (Γ, E) of dynamic agents with first-order dynamics,
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at times tk = 0, 1, . . ., assign it an objective function as (11) whose penalty function is

F(x̂i(τ, tk)) = ρ





1
dg

dxi

∑

j∈Ni

(ϑ(xj(tk))− ϑ(x̂i(τ, tk)))





2

(25)

where g(.) is increasing, ϑ(.) is concave, and 1
dg(y)
dy

is convex. If the update time interval

δ −→ 0 then the following conditions hold

i) the penalty function

F(xi(τ, tk)) −→ F (xi, x
(i)) = ρ





1
dg

dxi

∑

j∈Ni

(ϑ(xj)− ϑ(xi))





2

(26)

ii) the applied receding horizon control law

u⋆
iRH

(τ) −→ ui(xi, x
(i)) =

1
dg

dxi

∑

j∈Ni

(ϑ(xj)− ϑ(xi)). (27)

From the above corollary it is straightforward to derive a solution to the mechanism de-
sign problem (Problem 2). Indeed, a supervisor can make the agents asymptotically reach
consensus on the group decision value χ̂(x) = f(

∑

i∈Γ g(xi)) by assigning them an individual
objective function (3) with penalty function (26) to optimize, provided that g(.) is increasing,

1
dg(y)
dy

is convex and the update time interval δ is “sufficiently” small in comparison with the

speed of variation of state x(.).

It is worth to observe that, in general, control (27) cannot be proved to be optimal for (3)
if the naive expectation assumption is dropped. However, to the best of authors’ knowledge,
even in presence of more information about the evolution of x(i)(t), it would be difficult to
determine the optimal control for the generic agent i as conditions (15)-(20) are in general
difficult to solve. A notable exception is when dg

dxi
= 1 and ϑ(xi) = xi for all i ∈ Γ. In this

case, agents asymptotically reach consensus on the arithmetic mean of the values of their
initial states and it is immediate to verify that control (27) is optimal even when the naive
expectation assumption is dropped (see, e.g., linear quadratic differential games in [23], ch. 6).

6 Simulation Studies: Vertical Alignment Maneuver for UAVs

We consider a team of 4 UAVs in longitudinal flight and initially at different heights. Each
UAV controls the vertical rate without knowing the relative position of all UAVs but only of
neighbors according to the communication network topology depicted in Fig. 1. For instance,
the 4th UAV knows the position of only the 1st UAV, and the 1st UAV knows the position of
the 4th and 2nd UAV and so on. In the above partial information context, we are interested
in determining a suitable distributed vertical rate control strategy that allows the UAVs to
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v1 v3 v4 

v2 

Fig. 1. The information flow in a network of 4 agents

align their paths according the formation center at time 0 that we assume expressed as the
generic agreement function of the initial UAVs heights. In particular, in the four simulated
vertical alignment maneuvers, the position of the formation center is defined respectively as
the i) arithmetic mean, ii) geometric mean, iii) harmonic mean, iv) mean of order 2 of the
initial positions of all UAVs. The initial height is x(0) = (5, 5, 10, 20)T . We stress once again
that the challenging aspect is that the UAVs know the heights of only their neighbors and
are required to align their paths according to the path of the formation center, which in turns
depend on the unknown position of all UAVs.
In case i), (see e.g., [1,3,13]) the UAVs are given an individual objective (3) with penalty

F (xi, x
(i)) =

(

∑

j∈Ni
(xj − xi)

)2
and consequently implement the optimal linear protocol

u(xi, x
(i)) =

∑

j∈Ni

(xj − xi) (28)

15



to asymptotically align on the arithmetic mean of x(0). Notice that, the approximate objective
function (13) converges even if the neighbors are not aligned, since both the above integrand
penalty F (xi, x̄

(i)) and the control (28) are null when xi is equal to the arithmetic mean
computed over the only neighbors’ states. Figure 2 a) shows the simulation of the longitudinal
flight dynamics.

In case ii) the UAVs are given an individual objective F (xi, x
(i)) =

(

xi

∑

j∈Ni
(xj − xi)

)2
and
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Fig. 2. Longitudinal flight dynamics converging to a) the arithmetic mean under protocol (28);
b) the geometric mean under protocol (29); c) the harmonic mean under protocol (30); d) the mean
of order 2 under protocol (31).

implement the optimal protocol

u(xi, x
(i)) = xi

∑

j∈Ni

(xj − xi) (29)

to asymptotically align on the geometric mean of x(0). Figure 2 b) shows the simulation of
the longitudinal flight dynamics.

In case iii) the UAVs are given an objective function F (xi, x
(i)) =

(

x2
i

∑

j∈Ni
(xj − xi)

)2
and

implement the optimal protocol

u(xi, x
(i)) = −x2

i

∑

j∈Ni

(xj − xi) (30)
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to asymptotically align on the harmonic mean of x(0). Figure 2 c) shows the simulation of
the longitudinal flight dynamics.

Finally, in case iv) the UAVs are given a function F (xi, x
(i)) =

(

1
2xi

∑

j∈Ni
(xj − xi)

)2
and

implement the optimal protocol

u(xi, x
(i)) =

1

2xi

∑

j∈Ni

(xj − xi) (31)

to asymptotically align on the mean of order 2 of x(0). Figure 2 d) shows the simulation of
the longitudinal flight dynamics.
Protocols (28)-(31) are characterized by different converging times (see Figs. 2). These dif-
ferences are due to the fact that the protocols multiply the common term

∑

j∈Ni
(xj − xi)

for different powers of xi, respectively 1, xi, −x2
i and 1

2
x−1
i . Being xi ≥ 1 for all i ∈ Γ and

t ≥ 0, the lower the power, the higher the converging time. Consider the vertical alignment
to the mean of power 2. To obtain a converging time comparable with the one of the vertical
alignment to the arithmetic mean, we modify the protocol so that it turns to be a ratio
between polynomials whose numerator is of an order greater than the denominator as in the
arithmetic mean case. As an example, in Fig. 3 a) results are reported with the protocol (31)
modified as

u(xi, x
(i)) =

1

2xi

∑

j∈Ni

(x2
j − x2

i ). (32)

An analogous result can be obtained if we multiply the protocol (31) by twice an upper bound
of maxi∈Γ{xi(0)}. The resulting scaled protocol is

u(xi, x
(i)) =

maxi∈Γ{xi(0)}

2xi

∑

j∈Ni

(xj − xi) (33)

and the corresponding longitudinal dynamics is displayed in Fig. 3 b). Unfortunately both
protocols (32) and (33) have some drawbacks. In (32), the function ϑ(xi) = x2

i is not concave,
whereas to implement protocol (33) the UAVs must have an a-priori knowledge or at least a
bound of maxi∈Γ{xi(0)}.

An example of vertical alignment maneuver under protocol (33) is displayed in Fig. 4.

7 Conclusions and Discussion

In this paper we have considered a set of agents with a simple first-order dynamics and we
have faced the problem of making the agents’ states reach consensus on a group decision
value of interest. For group decision values with a quite general structure as established in
Assumption 1, we have shown that the agents can reach consensus using a distributed and
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Fig. 3. Longitudinal flight dynamics converging to the mean of order 2: a) under protocol (32);
b) under protocol (33).
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Fig. 4. Vertical alignment to the mean of order 2 on the vertical plane.

stationary linear or non-linear protocol, provided that the networks defined by the communi-
cation links between agents is time-invariant and connected Also, we have proposed a game
theoretic approach to solve consensus problems. Under this perspective, consensus is the re-
sult of a mechanism design. A supervisor imposes individual objectives. Then, the agents
reach asymptotically consensus as a side effect of the optimization of their own individual
objectives on a local basis.

Among the limitations of Assumption 1 on the structure of function χ̂(x) = f(
∑

i∈Γ g(xi)),
we stress the requirements regarding the permutation invariance of functions g(.) and their
definition on only each agent state xi and not on the states of the neighboring agents x(i).
Such limitations on function g(.) turn useful in proving the negativity of the derivative of
Lyapunov function V (η) considered in Theorem 2. In turn the non positivity of V̇ (η) allows
us to show that protocol (8) makes the agents asymptotically converge to the desired group
decision value.
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If we consider a more general function gi(x,x
(i)) for each agent, following a line of rea-

soning as in Section 3, we can prove that, e.g., a protocol with component ui(x,x
(i)) =

1
∑

j∈Ni∪{i}

∂gi
∂xj

∑

j∈Ni
(xj − xi), for all i ∈ Γ, leaves the value χ̂(x) time-invariant. Also, we can

show that the same protocol makes the agents asymptotically converge to the group decision
value if ∂gi

∂xj
> 0, for all j ∈ Ni∪{i}. However, in this case, we are able to prove the analogous

of Theorem 2 only making use of a Lyapunov function that takes into account of the struc-
ture of the network G. Hence, the proof of convergence is not generalizable to networks with
switching topology. This last negative result should not surprise as, in case of a switching
topology, functions gi(.) should be redefined at each switching instant as they are defined not
only on the value of xi but also on the value of x(i) and hence they depend on the topology
of the network G.

As an example, consider a system with xi(0) > 0, for all i ∈ Γ, for which the desired consensus

value is χ̂(x(0)) = 1
n

∑

i∈Γ

∑

j∈Ni
aij

√

xi(0)xj(0) where aij > 0 and
∑

j∈Ni
aij = 1, for all

i ∈ Γ, j ∈ Ni. Then a possible consensus protocol on a fixed network is ui = 2

∑

j∈Ni
(xj−xi)

∑

j∈Ni

√

xi
xj

+
xj

xi

.
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