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Optimal Impulse Control Problems and Linear Programming

Dario Bauso

Abstract— Optimal impulse control problems are, in general,
difficult to solve. A current research goal is to isolate those
problems that lead to tractable solutions. In this paper, we
identify a special class of optimal impulse control problems
which are easy to solve. Easy to solve means that solution
algorithms are polynomial in time and therefore suitable to the
on-line implementation in real-time problems. We do this by
using a paradigm borrowed from the Operations Research field.
As main result, we present a solution algorithm that converges
to the exact solution in polynomial time. Our approach consists
in approximating the optimal impulse control problem via a
binary linear programming problem with a totally unimodular
constraint matrix. Hence, solving the binary linear program-
ming problem is equivalent to solving its linear relaxation. It
turns out that any solution of the linear relaxation is a feasible
solution for the optimal impulse control problem. Then, given
the feasible solution, obtained solving the linear relaxation, we
find the optimal solution via local search.

I. INTRODUCTION

This paper is one of the several recent attempts [2],

[3], [4], [5], [6], [10], [20] to apply the tools of combi-

natorial optimization to hybrid optimal control problems.

Such problems are, in general, difficult to solve (see, e.g.,

[8], [10], [21] and references therein). Furthermore, due to

the generality and complexity of the models addressed, no

theoretical approach is available to study the difficulty of the

problems and the computational complexity of the available

solution algorithms.

For this reason, a current research goal is to isolate those

problems that lead to tractable solutions [8]. According to

this, the aim of this paper is to identify among the larger

set of hybrid optimal control problems dealt in [10], a

special class of optimal impulse control problems which are

easy to solve. Easy to solve means that, not only discrete

optimization techniques can be applied, but also that solution

algorithms are polynomial in time and therefore suitable to

the on-line implementation in real-time problems. We do

this by using a paradigm borrowed from the Operations

Research field. For the level of abstractness chosen in our

approach, impulsively controlled systems and operations

research models are linked together in their simplest form.

Any extensions of the presented results to more complex

classes of systems is beyond the scope of this work.

As main result, we present a solution algorithm that

converges to the exact solution in polynomial time. The
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system considered is a continuous-time system subject to

controlled impulses [8], [10], i.e., the state jumps in response

to a control command with an associated cost. In particular,

the system is an integrator subject to impulsive resets and can

describe any storage system in the economic and financial

world [13], [15], [16], [17] (see, e.g., [7] for an exhaustive

list of applications).

The decision problem (henceforth also optimal impulse

control problem) consists in finding the optimal schedule of

the impulses to drive and keep the system in a safe operating

interval, while minimizing a function related to the cost of

the resets. The decision variables are thus binary (whether

to reset the state at a given time instant or not). We link

the approach to the Input to State Stabilizability (ISS) of

impulsively controlled systems, according to the definition

provided in [14]. In particular, we focus on ISS systems with

dwell time and reverse dwell time.

The decision problem is solved in two steps. First, a related

problem is considered, which can be formulated as a binary

linear program [9], [19] whose constraints are described by

an interval matrix [19]. The cost function is linear and the

problem can be solved by linear programming (LP), even if

binary variables are involved (see, e.g., a previous efficient

solution approach based on linear programming in [11]).

Then, a local search algorithm [1] is applied to obtain the

solution of the original problem by exploiting the solution

of the related one. The LP is solved in polynomial time

and the local search is shown to have linear complexity

w.r.t. the length of the problem horizon. Thus, the total

complexity is polynomial, while a “brute-force” approach has

a combinatorial complexity because of the binary variables.

Numerical illustrations of a queuing system [12], [18] are

provided.

This paper is organized as follows. In Section II, we intro-

duce the problem. In Section III, we discuss total unimodu-

larity and connections with (reverse) dwell time conditions.

In Section IV, we derive the local search algorithm. Finally,

in Section V, we draw some conclusions and discuss future

works.

II. IMPULSIVELY-CONTROLLED SYSTEM

Equation (1) describes an impulsively-controlled system

where function f : R
n ×R

m 7→ R
n is the dynamics of x(t),

function h(x(t),d(t)) is the reset value at time t+, i.e., at the

time instant after an impulse has occured at time t, variable

u(t) is the impulse control law returning impulses whenever

u(t) is set to one, variable d(t) is a disturbance:

ẋ(t) = f (x(t),d(t)) if u(t) = 0

x(t+) = h(x(t),d(t)) if u(t) = 1.
(1)



Let c(x(t), t) = K(t)+Ψ(x(t)) be the cost of control u(t)
for all t ≥ 0, where Ψ(·) is a function of the state x(t) and

K(·) is a function of time. Denote by u(·) the values of u(t)
for all t ≥ 0 and call it (time based) control law. Then, after

denoting δ (t) a function returning a Dirac impulse at any

time t where u(t) = 1, the cost associated to a given control

law u(·) is

J(u(·)) =
∫ ∞

0
c(x(t), t)δ (t)dt. (2)

Here dependence of J(u(·)) on the initial state is omitted.

The cost functional (2) sums the costs c(x(τi),τi) at the times

t = τi, i = 1,2, . . . , where impulses occur. Then, if we assume

both costs and number of impulses bounded, convergence of

(2) is not an issue.

Assumption 1: Assume that i) function f (·, ·) satisfies
∂ fi
∂x j

> 0 for all i 6= j, and ii) h(x(t),d(t)) ≤ x(t) component-

wise where the last inequality holds strictly for at least one

component, and iii) function Ψ(·) satisfies Ψ(η) ≥ 0 for all

η ∈ R
n and ∂Ψ

∂x j
≤ 0 for all j.

Assumption i) and ii) mean that dynamics f (·, ·) makes

the state x in the positive orthant to diverge from zero while

impulses drive x near to zero. This is typical of systems

with an unstable dynamics subject to stabilizing impulses.

Assumption iii) is used only to facilitate the local search

procedure discussed later on (see, e.g., the proof of Lemma

1).

Problem 1: Find an impulse control law u(·) that mini-

mizes the cost (2) and such that system (1) is input to state

stable (ISS) according to the definition of [14].

Note that cost (2) is non linear and the control law u(·) is

discontinuous. The idea is then to reformulate the problem

in a receding horizon framework.

A. Receding horizon

Let a finite set of times {r0, . . . ,rh} be arbitrarily chosen

and consider a receding horizon from time ri to time ri+1,

with i = 0, . . . ,h − 1. Optimization is carried out on each

interval [ri,ri+1] at a time (control and prediction horizons

coincide). In particular, take a sample interval ∆t =
ri+1−ri

N

with the number of samples N chosen arbitrarily and extract

the associated discrete times ri + k∆t with k = 0, . . . ,N. Let

the discrete time continuous state be ξ (k), with the initial

condition ξ (0) = x(ri). Also, assume that control impulses

can occur only at discrete times and let the discrete time

control µ(k) and disturbance γ(k) be obtained by sampling

u(t) and d(t) at time ri + k∆t, i.e., µ(k) = u(ri + k∆t) and

γ(k) = d(ri + k∆t).
Then, for k = 0, . . . ,N − 1, the sampled counterpart of

system (1) is

ξ (k +1) = ξ (k)+w(ξ (k),γ(k))+
+ (h(ξ (k),γ(k))−ξ (k))µ(k), ξ (0) = x(ri)

µ(k) ∈ {0,1},
(3)

where we denote by

w(ξ (k),γ(k)) =
∫ ri+(k+1)∆t

ri+k∆t
f (x(t),d(t))dt. (4)

Feasible solutions for fixed horizon [ri,ri+1], are u, d, x,

and w(x,d), such that system (3) is ISS where we define

u = [µ(0), . . . ,µ(N −1)] d = [γ(0), . . . ,γ(N −1)]

x = [ξ (0), . . . ,ξ (N)] .

For a compact description, define the feasible solution set

F (x(ri)) = {u,d,x ∈ {0,1}N ×R
N×m ×R

(N+1)×n :

system (3) is ISS}.

Note that the feasible solution set depends on x(ri) because

of the initial conditions on the discrete time state ξ in (3).

Also x(ri) is measured and full known at the beginning of

the horizon and therefore it can be dealt with as known

parameter.

Now, given the set H = {0,1,2, . . . ,N} of possible values

of the index k spanning over the horizon window, consider a

generic set of subsets {C1, . . . ,Cm} such that
⋃

j C j = H and

each C j is made by consecutive elements of H, i.e., given any

pair y,z ∈ C j with y < z this implies v ∈ C j for any integer

number y < v < z and for all j = 1, . . . ,m. Sets C j’s may

overlap one each other.

We claim that in a number of cases there exists a specific

set of subsets {C1, . . . ,Cm} with m ≤ N such that system (3)

is ISS under certain linear conditions on the binary controls

and on the initial states x(ri) of the horizon. Some of these

cases are based on the notions of dwell time and reverse

dwell time [14] and will be discussed in Section III-A and

III-B.

At the initial time ri of the horizon, the aforementioned

conditions take on the form

∑
k∈C j

µ(k) ≥ l j(x(ri)), for all j = 1, . . . ,m (5)

where function l j : R
n →{0,1} models some logical condi-

tions for x(ri).
Then, we can get rid of x,w(x,d) and rewrite the feasible

solution set in a simplified manner as shown below

F (x(ri)) = {u ∈ {0,1}N : conditions (5) satisfied}.

Rewriting the solution set as above requires sets C j’s to

be a priori known and has the advantage of converting the

original dynamic problem (because of the presence of the

state variable) into a static one. This is possible as in a

receding horizon setting, variable x(ri) once measured at time

ri enters as parameter in the right-hand side of (5).

To complete the formulation of the receding horizon

problem, let the following vectors of sampled costs (index

s means “sampled”) and approximated costs (“tilde” means

approximate) be given

cs = [cs(0), . . . ,cs(N −1)], cs(k) = K(ri + k∆t)+ (6)

Ψ(ξ (k)),∀k

c̃s = [c̃s(0), . . . , c̃s(N −1)], c̃s(k) = K(ri + k∆t),∀k (7)

The receding horizon problem with exact costs is then

min
u∈F (x(ri))

csu, (8)



which we next approximate by solving the simpler problem

with state independent costs

min
u∈F (x(ri))

c̃su. (9)

Finally, let µ(0), . . . ,µ(N−1) be the optimal sequence of

discrete controls, we need to reconstruct the continuous time

controls u(t). We can do this through the following function

θ : {0,1}N 7→ {u(t),ri ≤ t < ri+1} returning, for each interval

[ri + k∆t,ri +(k + 1)∆t), the control u(ri + k∆t) = µ(k) and

u(t) = 0 for all t ∈ (ri + k∆t,ri +(k +1)∆t).

III. TOTAL UNIMODULARITY

There is an important aspect that needs to be emphasized

and represents the main result of this work (see also [2]).

The set of feasible solutions F (x(ri)) is a discrete set in the

sense that it contains only integer points. However we can

replace the integrality constraints u ∈ {0,1}N by the relaxed

and more tractable constraints 0 ≤ u ≤ 1 and consider the

resulting polytope

F (x(ri)) = {u ∈ R
N :

∑
k∈C j

µ(k) ≥ l j(x(ri)), ∀ j = 1, . . . ,m, 0 ≤ u ≤ 1} .

We clarify this aspect more in details next. Let us rewrite

the inequalities (5) in matrix form. We can do this by using

a matrix A ∈ {0,1}m×N , with only entries 0 and 1, one row

for each inequality of type (5), one column for each time k.

Observe that the constraint matrix is an interval matrix, i.e.,

it has 0-1 entries and each row is of the form

(0, . . . ,0 1, . . . . . . . . . ,1
︸ ︷︷ ︸

0, . . . ,0).

consecutive 1’s

It is well known from the literature [19] that each interval

matrix is totally unimodular where we remind here that a

matrix is totally unimodular if the determinant of any square

sub-matrix is equal to −1, 0 or 1.

This means that the polyhedron obtained from Pro j(F )
by replacing the integrality constraints u ∈ {0,1}N with the

linear constraint 0 ≤ u ≤ 1 is an integral polyhedron. As

a consequence we have that the linear relaxation of the

receding horizon problem (9) has an integral optimal solution

as established in the next theorem. Let the vector of logical

conditions be defined as l = [l1(x(ri)), . . . , lm(x(ri))]
T .

Theorem 1: Solving the receding horizon problem (9) is

equivalent to solving the linear programming problem

min
u

c̃su (10)

s.t. Au ≥ l (11)

0 ≤ u ≤ 1. (12)

Proof: Apply a standard technique in linear program-

ming to turn the constraints (11) into equalities of type

[A I]

[
u

s

]

= l (13)

where s ∈ R
m is the surplus vector and I ∈ R

m×m is the

identity matrix. From the properties of total unimodular

matrices one knows that if A is totally unimodular then also

[A I] is totally unimodular. Then, take a generic square sub-

matrix R ∈ R
m×m and observe that det(R) ∈ {0,±1}. Any

feasible base solution of (13) is of the form v̄ = R−1l =
ad j(R)
det(R) l where ad j(R) is the adjoint matrix of R. Hence,

because of the integrality of l and det(R) we have that v̄

is integer. This means that constraints (11)-(12) define an

integral polyhedron, and that the optimal solution of the

linear programming problem (10)-(12) is also integer.

A. Dwell time

In [14] it has been shown that for a number of systems

Problem 1 can be solved by any impulse control law u(t)
satisfying some so-called dwell time conditions. A typical

dwell time condition requires that intervals between consec-

utive impulses must be no shorter than T time units.

Consider the sampled counterpart (3) starting at time ri,

take for simplicity ∆t = 1, and assume that ri − k̂ is the time

of the last switch. The following linear programming prob-

lem of type (10)-(12) returns a switching control satisfying

the above dwell time condition:

minu c̃u, s.t. 0 ≤ u ≤ 1,




b
︷ ︸︸ ︷

1 . . . . . .1 0 . . .0

0 . . . . . .0 1 . . .1





︸ ︷︷ ︸

A






µ(0)
...

µ(N −1)






︸ ︷︷ ︸

u

≥

[
0

1

]

︸ ︷︷ ︸

l

, (14)

where b = T − k̂. The above problem derives from taking

C1 = {0, . . . ,T − k̂}, and C2 = {(T − k̂) + 1, . . . ,N}. Note

that the above constraint matrix A does not exclude multiple

switchings between (T − k̂)+1 and N which possibly violate

the dwell time condition. However such solutions though

feasible, are not optimal for problem (10)-(12) as multiple

switchings increase the cost.

The receding horizon process repeats at time ri+1 = ri +
(N −1)∆t (regular starting times) or at time ri+1 = ri +(k̂ +
1)∆t where k̂ is the last switching time returned by the

problem solved at time ri (time-varying starting times).

B. Reverse dwell time

On the contrary, a typical reverse dwell time condition

requires that intervals between consecutive impulses must be

no longer than T time units. We can generalize the approach

by considering m different dwell times of T1, T2, . . . ,Tm over

the horizon. We expand more on this topic next.

Consider the sampled counterpart (3) starting at time ri,

take for simplicity ∆t = 1, and assume that ri −1 is the time

of the last impulse. The following linear programming prob-

lem of type (10)-(12) returns a switching control satisfying

the above reverse dwell time condition:



minu c̃u, s.t. 0 ≤ u ≤ 1,









T1
︷ ︸︸ ︷

1 . . .1 0 . . .0 . . .

Tm
︷ ︸︸ ︷

0 . . .0

01 . . . . . . . . .1 . . . 0 . . .0
...

. . .
...

0 . . .0 0 . . .0 . . . 1 . . .1










︸ ︷︷ ︸

A






µ(0)
...

µ(N −1)






︸ ︷︷ ︸

u

≥






1
...

1






︸ ︷︷ ︸

l

.

(15)

The above problem derives from taking C1 = {0, . . . ,T1},

C2 = {1, . . . ,2 + T2}, . . ., Ci = {i− 1, . . . , i + Ti}, . . ., Cm =
{m−1, . . . ,N}.

IV. LOCAL SEARCH

Back to Problem (8), we can use the solution of the

linear programming problem (10)-(12), as initial solution and

improve it via local search. We will prove that such a solution

dominates a number of other solutions (see Lemma 2) and

this facilitates (reduces the number of computations in) the

search for the optimal solution. The local search algorithm

solves a sequence of the following subproblems on a moving

horizon.

Let set C j = {α,α + 1, . . . ,β − 1,β} be given with 1 ≤
α ≤ β ≤ N. We can redefine Problem (8) over the interval

[α,β ] as follows

min
u∈F j(x(ri))

c j
su, (16)

ξ (k) := ξ0,

with pre-assigned ξ0 ∈ R
n and where c

j
s = [cs(k)]k∈C j

and

F j(x(ri)) = {u ∈ {0,1}|C j | : ∑
k∈C j

µ(k) ≥ l j(x(ri))}.

Now, let µ̃[α,β ] = (µ̃(α), . . . , µ̃(β )) be the solution re-

turned by the linear programming problem (10)-(12) re-

stricted to the interval [α,β ]. The solution may be not

unique only in pathological situations, for instance, when

cs(k) = cs(k + 1) for a given pair k and k + 1 of successive

time instants. In this case an impulse at time k or k + 1

returns the same cost. Nevertheless, as it will be clearer later

on, the existence of multiple solutions does no compromise

the validity of the approach as we can take any of the

multiple solutions to initialize the local search. Note that

A is now simply a row vector as we are considering just

one set C j. Also, observe that the above solution must have

only one non null component in addition to the first one,

that is µ̃[α,β ] = (1,0, . . . . . . . . . ,0,1,0 . . .0). This is evident

as any other solution with additional non null components

(1,0, . . . ,0,1,0, . . . ,0,1,0 . . .0) provides a higher cost for the

linear programming problem. When this happens, we say that

this last solution is dominated by µ̃[α,β ]. Let µ̃(i) be the non

null component, then, we can state the following lemma.

Denote by µ[α,β ] = (µ̃(α),µ(α + 1), . . . ,µ(i), µ̃(i +
1), . . . , µ̃(β )) for all µ(α +1), . . . ,µ(i)∈ {0,1}× . . .×{0,1}

the sequences of controls that keep unchanged the last

µ̃(i+1), . . . , µ̃(β ) control components.

Lemma 1: Solution µ̃[α,β ] dominates any other solution of

type µ[α,β ] .

Proof: This proof is based on Assumption II. Actually, it

holds cs(k) = K(ri +k∆t)+Ψ(ξ (k))≥ c̃s(k) = K(ri +k∆t) for

all k. Now, if the index i gives the minimum to the cost with

c̃s(k), then it gives also the minimum to the cost with cs(k),
because the sequence Ψ(ξ (k)) is decreasing for increasing

ξ (k).

The interpretation of the above lemma is that no benefits

derive from resetting before time i.

As a consequence of the above lemma, the optimal

solution for the subproblem must be found among so-

lutions of type (µ̃(α), . . . , µ̃(i − 1),µ(i), . . . ,µ(β )) for all

µ(i), . . . ,µ(β ) ∈ {0,1} × . . . × {0,1}. In other words, the

solutions candidate for the optimum have the components

α to i−1 unchanged and equal to µ̃(α), . . . , µ̃(i−1). Then,

in the search for the optimum it suffices to let the rest of the

components from i to β be varying. In particular, the optimal

solution, if different from µ̃[α,β ], can be found by shifting

the non null component forward in time. It makes sense

then to define a neighborhood as follows. Given a solution

(µ(α), . . . ,1,0, . . . ,µ(β )) with just one non null component,

the neighbor solution is (µ(α), . . . ,0,1, . . . ,µ(β )) obtained

by shifting the non null component at the next time instant.

In the space of solutions with one null component, we define

the distance ‖x−y‖ between two solutions as the number of

shifting forward operations to obtain y from x or viceversa.

Searching the optimum has worst-case complexity linear in

N as remarked next.

Remark 1: We can solve Problem (16) in polynomial time

by first solving the associated linear programming problem

to obtain an initial solution µ̃[α,β ] and then by improving the

initial solution via shifting forward operations until we obtain

the optimal solution µ∗
[α,β ]. Furthermore, shifting forward

operations are at most O(β − i) as ‖µ∗
[α,β ] − µ̃[α,β ]‖ ≤ β − i.

Let µ∗
[0,γ] = (µ∗(0),µ∗(1), . . . ,µ∗(γ)) and µ∗

[γ+1,ζ ] =

(µ∗(γ + 1), . . . ,µ∗(ζ )) be the optimal solutions of Prob-

lem 16 restricted to the interval [0,γ] and [γ + 1,ζ ], and

associated to the sets C1 = {0, . . . ,γ} and C2 = {γ +1, . . . ,ζ}.

In particular, the two problems above are related according

to equation (1) which gives ξ (γ + 1) as a function of ξ (γ)
and µ∗(γ).

Also, denote by µ[0,ζ ] = (µ∗
[0,γ],µ∗

[γ,ζ ]) the solution obtained

merging the two optimal solutions.

Lemma 2: The solution µ[0,ζ ] is optimal for Problem (16)

defined in the interval [0,ζ ].

Proof: The optimal solution in the interval [0,ζ ], call it

µ∗
[0,ζ ], is obtainable by merging the optimal solution in the

two consecutive intervals [0,γ] and [γ +1,ζ ], where the initial

state for the latter interval ξ (γ +1) depends on controls µ∗
[0,γ].

Now, if ξ (γ +1) is set according to (1), ξ (γ) and µ∗(γ), we

match the initial condition defined in Problem (16). Then, the

problem of finding the optimal solution in the interval [γ +
1,ζ ] is exactly Problem (16) from which we can conclude



the thesis.

With all previous results in mind, we can go back to

Problem (8) and derive the following local search algorithm.

At each iteration j, Problem (16) is to be solved with respect

to the interval [α( j),β ( j)] and set C j = {α( j), . . . ,β ( j)}
where the two extreme elements of the cover α( j) and β ( j)
are now function of j. The value of α( j) depends on the

solution of iteration j− 1 as it is explained more formally

next (we initialize α(0) := 0).

(1) Assign j := 1; solve Problem (16) for C1

to obtain the optimal solution

µ∗
[0,l] =(µ∗(0),0, . . . ,0,µ∗(α(1)−1)

︸ ︷︷ ︸

=1

,0, . . . ,0,µ∗(β (1))).

Let the new non null component be

µ∗(α(1)−1) = 1 and assign j := j +1.

(2) Let µ∗(α( j)−1) be the non null

component at the jth iteration,

(2.a) if there exists C j = {α( j), . . . ,β ( j)},
then solve Problem (16) for C j

obtaining

µ∗
[α( j),β ( j)] = (µ∗(α( j)),0, . . . ,0,µ∗(α( j +1))

︸ ︷︷ ︸

=1

,

0, . . . ,0,µ∗(β ( j))),

and combine the latter solution

with previous solutions to obtain

µ∗
[0,β ( j)] =

(

µ∗
[0,α( j)−1],µ∗

[α( j),β ( j)]

)

;

(2.b) otherwise set µ(k) := 0 for all

α( j) ≤ k ≤ N (no other impulses

until the end of the horizon) and

STOP the algorithm.

The local search algorithm converges to the optimal solu-

tion in linear time as remarked next.

Remark 2: The above local search algorithm finds the

optimal solution to Problem (8) in the worst-case in O(N).

This is evident as the worst-case is when we have a minimal

cover C = {1, . . . ,N}, for which we must compare all the

N −1 shifting forward operations.

V. CONCLUSIONS

Using a paradigm borrowed from the Operations Research

field, we have identified a special class of hybrid optimal

control problems which are easy to solve. We have done

this, by finding a solution algorithm that converges to the

exact solution in polynomial time.

The system described in this paper is an integrator subject

to impulsive resets. The decision problem consists in finding

the optimal schedule of the impulses to maintain the system

in a safe operating interval, while minimizing a function

related to the cost of the resets. The decision variables are

thus binary (whether to reset the state at a given time instant

or not).

The optimal impulse control problem is solved in two

steps. First, a related problem is considered, which can

be formulated as a binary programming problem whose

constraints are described by an interval matrix. The cost

function is linear and the problem can be solved by linear

programming (LP), even if binary variables are involved, be-

cause of its particular structure (the interval matrix is totally

unimodular). Then, a local search algorithm is applied to

obtain the solution of the original problem by exploiting the

solution of the related one. The LP is solved in polynomial

time and the local search is shown to have linear complexity

w.r.t. the length of the problem horizon. Thus, the total

complexity is polynomial, while a “brute-force” approach has

a combinatorial complexity because of the binary variables.

Future research will extend the use of cutting planes

algorithms to all those impulse control problems whose

binary linear reformulation does not benefit from total uni-

modularity. In all these cases, we can no longer solve the

linear relaxation and obtain binary solutions. So, cutting

planes are introduced iteratively with the aim of eliminating

fractional solutions. As done in this paper, cutting planes

will be derived by exploiting the structure, if any, of the

optimal impulse control problems. With “structure” we mean

any type of conditions, as, for instance, the (reverse) dwell

time conditions, that may lead to a simplified binary linear

program.
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