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Optimization of Long-run Average-Flow Cost In
Networks with time-varying unknown demand

D. Bauso, F. Blanchini and R. Pesenti

Abstract— We consider continuous-time robust network flows the flow plays the role of the adjustable variables in the ARC

with capacity constraints and unknown but bounded time- set up and in most cases the strategy is affine in the uncertainty
varying demand. We consider the problem of designing a control as in AARC problems.

strategy, to regulate the flow on-line with no knowledge off— . .
line of the demand realization. We address both the case of In this paper, we address both the casesatvorks without

systems without and with buffers. The main novelty in this work  buffers and networks with buffersif no buffer are present,

is that we consider a convex cost which is a function of the incoming and outcoming flows at each site are equal since
long-run average—flows and average-demand. We distinguish athere is no stored inventory. In this case we also say that
worst-case scenario where the demand is the worst-one from af5\vs palance the demand. In the case of networks with

deterministic scenario where the demand has a neutral behavior. buff . ¢ late at th ducti it It
The resulting strategies are called min-max or deterministically PUN€rs, INventory accumulate at thé production sites as resu

optimal respectively. The main contribution are constructive Of the discrepancy between incoming and outcoming flows.
methods to design either min-max or deterministically optimal According to existing work in the control literature [13], [14],

strategies. We prove that while the min-max optimal strategy is [15], [16], [17], [21], buffers’ dynamics is described by linear
memoryless, i.e., it is a piece-wise affine function of the current continuous-time differential equations.

demand, deterministically optimal strategy must keep memory
of the average flow up to the current time. In our model there are two types of _flows the contr_olled
one and the uncontrolled one. For brevity, these we will use
the terms “flow” to mean the controlled one and “demand”
. INTRODUCTION to mean uncontrolled one, although there are many realistic

. - situations in which an uncontrolled flow is not a demand. We
We frame this work within the several recent attempts {0 S )
assume that both flow and demand lie in pre-defined polytopes.

apply the tools of robust optimization to network flows [1], The basic problem is that of designing ofi-line a strategy

[2], [10], [11], [18], [23.]’ [24]. . . r}amely a control law for the flow. The flow will be computed
Network flows describe flows of materials between different . ; ;
n-line, on the basis of the measured buffer levels (if any)

production/distribution sites (see, e.g., [25]). The problem is o .
design a strategy that returns the controlled flow as afunctigrqdl. dem andf t;]y means OT the proyllde:j §trart1egy. The actual
of the uncertain and time-varying demand. realization of the demand is not available in the design stage.

Robust optimization is a relatively recent technique that dlrl networks with buffers, we impose the buffer level to reach a
P y d scribed level in finite time up to an assigned toleransd.

, . ; e r
scribes uncertainty via sets and optimizes the worst-case 1 associated strategy is calledtabilizing (this problem is
over those sets (see, e.g., the introduction to the special isgys% know as “target set reachability” see [8], [9])

[6]). Generally speaking, robust optimization aims at achieving . : . .
. I nsider | str. i f differen . Precisel
the best cost under the worst uncertainty conditions. Some o%Ne considercausal strategies of different types. Precisely

o . . e consider the case in which the flow is i) a function of the
the existing works (in particular [2], [11]) are centered aroun\gurrent demandnfemorylessstrategy), i) a function of the

the idea of “adjusting” some of the variables to the outcome rent and past demand (strategh memory, ii) a function

of the uncertainty. In other words some variables are decid%?irthe buffer levels and past demanteddbackstrategy)

before the uncertainty re_ahz_atlon while the rest are decu_jg(rj]d iv) a function of the buffer levelsnemoryless feedback
after the uncertainty realization. Such a problem formulatloq

) . wn 1 Strategy).
is known under different names such as “Adjustable Robus{We deal with both a worst-case (call it algtn-may and a

Cpunterpart S,ARC) problem, Two-sta}ge Robust c.)pt'mlzat'oﬂeterministicscenario. In the min-max (pessimistic) approach
with recourse”. In many cases the adjustable variables are 85 realization maximizes the value of the given cost. In
pressed affinely on the uncertainty and the problem is renan‘{ﬁg :

Affinely Adjustable Robust Counterpart (AARC) problem, .det.ermlnlstlc scenario, the demand is just any arbitrary
. tealization. Depending on the approach, the resulting strategy

ARC and AARC formulations are currently a hot topic in o A : .
said min-maxor deterministically optimalespectively.

) : ; |
the mathematlcal programming and operatlon_s research f'EFdThe main novelty of this work is that we aim at optimizing
There are interesting connections between this paper and r,ghe

- 1 . ; convex cost function of the long-run average-flow and
notions of “adjustable variables” in ARC, AARC. For mstancedemand [19]. To be more clear, in contrast with most existing

Dip. di Ingegneria Informatica, Universitdi Palermo, Viale delle Scienze, literature, we are not conS|der|ng the average cost of the flows
1-90128 Palermo, Italy, dario.bauso@unipa.it (see for instance [26]) buhe cost of the average flonGlearly

Dip. di Matematica e Informatica, Univeraitdi Udine, Via delle Scienze there is no distinction between the two concepts cost-of-the-
206, 33100 Udine, blanchini@uniud.it — Corresponding Author . . .

Dip. di Matematica Applicata, UniversitCa’ Foscari Ca’ Dolfin - Dorso- average and average-cost in the case of linear functionals (see,

duro 3825/E - 30123 Venezia, ltaly, pesenti@unive.it e.g., [4]).



Motivations of this choice may derive from technical reaGiven a piecewise-continuous functioh: IRt — IR" we
sons, contracts or agreements. For instance, technical reastamote by
or contracts may establish the long-run exploitation level of
the machineries. So, over or under-utilization of machineries
can be tolerated only temporarily and not persistently. In
different situation, long-term agreements may establish priv-
ileged sources for each destination. So, a mismatch between
pnwleged sources and destinations is acceptable only in C[['ﬁ'e finite-horizon and infinite-horizon average values. The
ical and rare cases. . N .

As a basic result we provide a constructive method to desiirqn pler notationf will be often pref_erred where the meaning
a piecewise affine strategy which is min-max optimal. Th clear from the context. In a §|m|Iar \ivaﬁ given a sequence
method is based on the fact that the min-max problem arisipg,” . ' » We denote byf = limie ¢ 3y f(K). In the

P chlowmg, we assume that the average is defined for any

when flow and demand are time-varying is equivalent to tf}e : . .
. . i nction we considerWe generically denote b a strategy
min-max problem in which flow and demand are constan

vectors (one-shot decisions) and not functions of time. Of the form o .
The obtained strategy is memoryless and such a result u=®(-,w(t)), 4

allows us to conclude that memory is not required whegnere the missing argumef represents any set of auxiliary

min-max optimality is considered. We initially derive thesgiaples. For instance we admit strategies of the form
results for networks without buffers, and then extend them to

networks with buffers. ut) = (&), w(t).t),

In the second part of the work, we show that the provided E(t) = D(&(1),u(t),w(t),t),
min-max optimal strategy is not deterministically optimal, that .
is, it does not return the minimal cost for any given realizatioWher_eE IS th.e controller state vectpr. We 0,'0 hot assume any
of the demand. Actually we show that static strategies ayRccial requirement for the domain §fwhich can be any
not deterministically optimal at all (even for networks withouf!nctional space ane, can be any operator. The following
buffers). The second main contribution of the paper is @ssumption clarifies the information available to the network
show that, under some smoothness assumptions on the deapager.
functional, an easily implementable deterministically optimal Assumption 1
strategy can be derived. Such a strategy is achieved by keeping The valuew(t) is available on-line at timewithout delay.
memory of the average flow (from the initial to the current « The realizationw is not known in advance so the strategy
time) and by choosing, among the admissible inputs, the can rely on the memory of the past valueér), 1 <t,
instantaneous minimizer of the Lyapunov derivative of the cost  but there is no forecast about the future.
of the partial average (i.e. from the beginning to the currel{e will have a special attention for the simple case of static
time). strategies according to the next definition.

The structure of the paper is as follows. In Section II, Definition 1: The strategy® is called memorylessf it is
we describe the problem for a network without buffers. Ia function of the current demand only(t) = ®(-,w(t)) =
Section I, we determine a min-max optimal strategy. I@(w(t)). Otherwise, the strategyp(-,w(t)) is called with
Section IV, we extend the study to networks with buffergnemory
In Section V, we design a deterministically optimal strateglyet ¥(u,w) be a real-valued function representing a cost.

f_T:AvT[f]i% /OT F(t) dt

f = AV[f] = lim Avrf]

(%)

under proper assumptions on the cost. In this paper we consider different concepts of optimality
as specified next. Henceforth, we use th&-maxnotation
Il. PROBLEM DESCRIPTION (rather thaninf-sup as we will prove that the problems of

iégerests always admit a minimum and a maximum.
efinition 2: A strategy® is min-max optimal(or worst-
if it is a solution of the problem

Consider a network where at each time the flow balanc
the demand. Both the flow and the demand are bounded irP imal
assigned polytopes. A simple description of such a system‘:@Se optimal)

But) = w(t), W, 1) mincpmquxN(,) l4—’(Av£zt;],Av[vw])
ut) e #, W, ) st ;(J()t)_: \/(\)(’t\;\/,(t))vf, A (6)
W<t) e v, W, 3) W(t) ew, Vvt

Definition 3: A strategy® is deterministically optimalf,

whereB is the full-row rank matrix representing the networl?or any realization ofw(-), it is a solution of the problem

topology, u(t) is the (controlled)flow andw(t) is the demand

(uncontrolled flow) and% C IR™ and# C IR" are assigned ming W(AV[U],Avw])

polytopes foru and w respectively. To let system (1)-(3) be st. u(t) =o(,wt)) e, W, 7
feasible, that is to admit at least a flat) for any realization Bu(t) = w(t), Vt, )

of w(t), we must assume that (see [5] for details) the following wt)ew, W

condition holds Remark 1:It is easy to observe that deterministically opti-

W CBY. mal strategy, if it exists, is also both min-max optimal.



Given the scalar valuesy, fork=1,2,... K we write w; is supplied in the long run by the corresponding flaws

K Now, take for instanceyj = 6 andwj = 7.2
c.C. oy, to mean thatay, >0 z o =1 If for a periodws(t) exceeds the value 6, then is forced
K=1 to supply an extra resource. When this occurs, we can say,

roughly speaking, thati, is over exploited andiz is under
exploited. So, in general, a peak of demamdmight require
the exploitation of flows not directly associated to that demand.

The underlying idea is to find a mechanism to balance the
exploitation ofup, andus by chargingus(t) more than strictly
necessary whews(t) is low. This goal can be seen as a long-
run optimization problem with cost

so that, given any set of vectors®), we write any convex
combination as

K
w=Yy aw®, cc. ay.
=1

Consider the following assumption f&¥.
Assumption 2:FunctionW is conve} namely for any set
(U, W) in % x # and c.c.a

W (Z ™,y akvv(k)) <Y oW (u(k>,w(k>) .
Under convexity assumption we consider the following tw@he additional term is motivated by the fact that we might
problems. be also interested in avoiding high flows in the other arcs,

Problem 1: Robust Problem Determine if it exists a static although our theory works witlp = 0 as well.
min-max optimal strategy.

Problem 2: Deterministic Problem Determine if it exists 1
a deterministically optimal strategy.

As we will see both problems are solvable, but the strategy!n this section we consider three versions of the robust
solution of the Deterministic Problem cannot be static. problem . The first one is formulated without restrictions on

In the current formulation, the system has no buffers, $8€ type of strategy which can have a Memory (hence the
no backlog or surplus is admitted. In Sections IV and V, weubscript M).

3
WEw) =3 (% - G)? + pl 0% 8)

. MIN-MAX OPTIMALITY

generalize the results to networks with buffers. Wy = mingmax,, W(AVu],Avw))
st. u(t) =®(,wt)) ez, W, )
A. A motivating example Bu(t) = w(t), Vt,

Example 1:Consider a resource distribution network whose wit)ye”, Wt
graph is representem Fig. 1, with unknown but bounded |n the second version only static strategies are admitted (i.e.
demandw; <w <w;", i=1,2,3 and bounded flow & ui < Memoryless, hence the subscript ML).
u", i=1,...,12. Constraints (1) establish a relation between

Wue = mingmax,., W(AVU],AvViw])
st. ut)=d(w(t)) e %, W, (10)
u, u, U3 Bu(t) =w(t), Wt,
w(t)ew, Wt
The third is a pure static one in whisk andu are constant
Ws = mingmaXyey Y(u,w)
st. u=dw) e, (11)
Bu=w.

The main result of this section is to prove that the problems of

interests always admit a minimum and a maximum, and that

Wy = WuL = Ws. The static version of the problem will enable

Fig. 1. The network for the example us to determine a min-max optimal strategy. It is intuitive
that the worst-casw for the static strategy is assumed on the

demand and flow. In this examplB,is the 6x 12 (i.,e.n=6 vertices. What we will show that this is true also for the time-

andm= 12) incidence matrix of the network withh= 6 nodes varying problem, precisely that the worst-cagfé) assumes

andm= 12 (solid) arcs. its values on the vertices.

It is obvious that a hecessary condition for the existence of a

balancing flow for any admissible demand is that the maximum . . .

incoming flOw Unax — UI +u§r +uj is greater than or equal A. Solution to the static version of Problem 1

to the maximum demangimax=wj +wj +wj. Assume that  Let us denote byert{#'} the set of vertices of/" and

the network manager assigns the privileged sourde each by 7" = {1,2,...,K} the set of indices of the vertices. The

demandw;, i = 1,2,3, that is, he wishes that each demangtatic version of Problem 1 can be easily solved as follows.

1the considered concept is often referred to as “joint convexity”; note that?Franco: e’ un errore parlare di power perche nel caso elettrico non e’
we are not requiring just tha¥ is convex in both arguments separately possibile regolare la potenza in ogni arco — I'ho sosrituita con resource



For eachw® ¢ vert{#'}, solve the following static convex H G
optimization problems

u® = argmin, W(u,wk)
st. u=owh) ez, (12) D C

Bu=w®.

This first lemma introduces a piecewise-affine function inter- E F
polating the pairgu®, w) which will be proved min-max
optimal.
Lemma 1:Let wK) the vertices of# and ut® € R™ as-
signed values, fok € ¢ and letp be its relative dimension. A B
There exists a partition o¥” into simplices’”] each having
non-empty relative interiér and each couple of simplicesFig. 2. Partition of a cube in 4 simplices.
intersects at most on p— 1-dimensional facet (see Example
2). There also exists a functigh(w) which is affine on each
#; and such thatb(wK) = i, for eachk € .7 Proof: Since thew in the static problem (11) can
For a proof see [20] (see also [12]). always be set as a vertax=w®, it is obvious thatWs >
The piecewise affine strategy mentioned in the previda@Xer {W(u® , w)} (we remind thatu® € % are the
ous lemma can be derived as follows. Denote g = optimal values).
{idi5,....iL 1} =C # set of the indices associated with the We show now that¥'s < mavie » {(u),w)}. Consider

jth simplex#;. Then forw € #;, wherew = ¥c aw(@, any pointw € % also included in thgth simplex of #, that
K is, we #j. Then, denoting by#j C %" the subset of indices

c.c. aj, . o :
[ U= DpaW) — Sicx, ). (13) identifying the vertices of/;,
For any simplex#] the valuesay are uniquely determined, W= z aw®, c.c. ay.
by the following set ofp+ 1 equations ke
a W =w, Z ai=1 Take u = ®pywa(W), the piecewise-affine strategy (13). Then
icX icX]
thus the strategy is well-defined. Note that to compute the W(u,w) = W( > au®, > GkW(k)> <
function we need to detect the sector includim@) and then ke7] ke%j
solving a linear system. Note that the matrices associated to a W (u“‘),w“‘)) < max{lv (u<k),w(k))} <
these system can be inverted off-line to achieve an explicit &% ke A
expression (see [7], [12] for further detail's on this type of ®) )
strategies). Q?}({w(” W )}’

Example 2: Assume that the demands in Example 1 is. . .
bounded in a parallelepiped, namely <w; <w', i=1,2,3, with c.c. ak(t). Note that the last inequality compares the
This box belongs to the sut;spavxe: 0i_a é 6 the7n ’the maximum over all vertices o#; with the maximum over all

relative dimension igp = 3,. Such a box can be partitionedvert.ices Of.y/' . .

in 4 simplices as in Fig. 2 (precisely (A—C—D—H) (A—C—F—An immediate consequence of the above theorem is that the

H), (A—B—C—F) and (H—C—G—F)). Denote Isjx ...’<DH the Strategy®pwa(w) in (13) is min-max optimal for the static

optimal values ofu in problem (12) corresponding tev on problem (11) as it guarantees that

the verticeswa...wy. Then the interpolating affine function W(Dpya(W), W) < LIJ((DPWA(W("))’WU)) - Lp(u(r)7w(r))7

u= ®(w) can be computed as follows. If, for instanee,s

in the sector (A—C—D—H), then wherew(") is the worst demand. Note that this strategy is not
unique since all the strategies in the set

®(W) = apaPa + acPc + apPp + ay Py,
Q = (®w): BOW =w

whereap, ac, ap and ay are (uniquely) determined by W(Dd(W), W) < W(@pWA(W(”),vv(”),Vwe 78,
OAWA + OCWC + ADWD + QHWH = W, _ _ _ (15)
Oa+Oc+Optay = 1 ?r: Sr?elpér?r?éuodp;;nlilefc;rtgti static problem (11). In particular,
Lemma 1 introduces the following theorem concerning thg1 9y
solution of the static version of Problem 1. Psopr(W) = argmin{¥P(u,w) : Bu=w, Ywe %'}  (16)
Theorem 1:The cost of (11) is uew
Ws = max W(u®,wh). 14) Remark 2:Note that theu selgcted by (16) is Qetermlnls—
ket tically optimal for the pure static problem only, in the sense

thatW(® w),w) < W(u,w) for all we # andu € %, not
3a simplex in IR is a polytope withn+ 1 vertices; its relative interior is ( SOPT( )’ ) n ( ’ ) N <

the interior within the smallest subspace includi#g the dimensionp <n optlma! for Qur prObIem- BOtm)SOPTgW) and q)PWA(W) are
of such a subspace is the relative dimension max-min optimalin the game-theoretic language the “demand



plays first” [3]), in the sense that the flow is taken as a functidhwe take the limit over an infinite horizon by continuity we
of w which, in turn, maximizes the co$¥(dsopt(w),w) in  have

one of the vgrt|ce3N(f>. So an !nterpretanon pf our result W(AVU], Aviw]) < Ws

is that to design a min-max optimal strategff-line we can

solve a max-min probleron-ling, i.e., (find minimizing flow or, which is the sameWy, < Ws and therefore we can

for given demand). conclude thatVy, = Ws.
Proof of the claim Wy = Wy.. Memoryless strategies are
B. Main theorem special cases of the strategies with memory, and cannot do any

. . . . better, thugdy < Wy . We only have to show th&#y > Wy
We are in a position to prove that the optimal min-max Coﬂgain we assume that(t) =w("), the worst-case demand. The
is equal in the three versions (9)-(11) of the Robust Proble timal strategy is, again, to téke: 4" Indeed for each
Basically we prove that thevorst-case demantbr the static and anyu(t) € % ' ’
problem, namely the valug(") € # on which the maximum
(14) is assumed, is indeed the worst-case demand for the time- 1 /T 1 /T ")
varying problem we are considering. W </o u(t)dt,f/o w dt)

T.
Theorem 2:The following equalities hold
94 = w(Aavrw) > (WOwW0), @

Wy =Wy =Ws. a7

) ) ) where the last inequality comes from the fact that the average
Furthermore, as the inf-sup optimal values are achieved Wﬁ_l? € % andu(” is optimal by construction. Thety > Ws—
strategy®pwa(w) in all the three problems (9), (10) and (11)LPML and thereforé¥y = Wy, . T m

trt]e? Lp"{" :PM'- and s are min-max optt|_mall v:tzllutes and the 'pomark 3: The minimizer in the Robust Problems (9)-(11)
sta '(;’DS ra;_egl]_fPWA(Wz 'S Ii ”."”;max 02 imai strategy. chooses strategies and not flows (the min is ake) and not
root. € proot spiits in two parts. u(-)) and this justifies the fact that, as the worst demand is on

H — r
Proof of the claim Wy = Ws. Let W) € vert{y/'} the a vertex, then the optimal flow turns out to be a function
worst-case demand for the static problem (11), andufet i interpolates the optimatluesul”) = ®(w') associated

the corresponding (optimal) flow. Let= ®(w) any arbitrary i the verticesw!". Clearly u”) need not to be a vertex
memoryless strategy. Assume that the demand is const

w(t) =w" and leti'= ®(w")). Sinceu andw are constant

. ' So far, we have assumed that the average values of the
the average cost is

realization ofw and the flow computed by the strategy

Yow) = wa,w") > wu W) = wg always exist. The following remark points out that we may
_ drop such an assumption.
by construction, so we havéu > W¥s. Remark 4:1n view of (20), it is always possible to prove
We now proveWy < Ws. For arbitraryw(t) andu(t) = that
®pwa(W(t)), consider the averagesr = Avr[u] and ur = .
Avr[w] the associated cost is I|stggLP(Aw[u},AvT W) < s,
W(ur,wr) = (18) Therefore if we rewrite the Robust Problem in the “lim-sup
1 /T 1 /T version” we achieve that
Wl S ak(t)u“‘)dt,? / Y akt)wdt | =
0 W& = Wis = minmax lim sup W(Avr [u], Avr [w]),
T T We T—e
w( u 3/ aydt, 5w 1/ ax)dt | = st.  ®(,wt)e%, Bu=w
KEH T Jo KEH T Jo

is equal toWs no matter which type of strategy is chosen.
W u® @ (T), > w® @ (T) (19)  The following remark generalizes the results of this section
kext kex to the discrete-time case. It will turn useful later on when we

with c.c. ax(t). Note that in (19) the sums are extended to afitudy networks with buffers.

vertices of # but, at each time, only the non-zemg(t) are Remark 5: Theorem 2 still holds if we state problems (9)
those associated with current “active simpléx?, i.e. the one and (10) in discrete-time with=0,1,2,....

for which w(t) € #j. It is obvious that the numbers

Gi(T) = % /‘T ax(t)dt IV. THE CASE OF NETWORKS WITH BUFFERS

70 The first part of this work is based on the assumption that at
are c.c.. Consider insid& x %’ the polytope having vertices gach time the flow balances the demand. We now drop such an
(U<k)7w(k)>- SinceW is convex, it reaches the maximum orassumption and assume that the unbalanced flow is stored at
its vertices then for alll the node buffers. We wish to find a min-max optimal strategy
that steers the buffer levels to an arbitrarily small set in finite

- = K W)
W(ur,wr) < max¥ (u< ) wi )) =Ws. (20)  time, and keeps them bounded in the small set from that time

ket



on. Then, the new formulation (Buffer problem) is identical We are now in a position to establish the main result of

to that of Problem 1 if we replace (9) by this section which says that problem (22) is equivalent to
We — mingmax. . WAVUl. AVw problem (10) and therefore to problems (9) and (11). It is
B st u(t)mz q?é"’(x)(t) \Sv(t)[)]é 42 ) vt apparent that, given the presence of buffers and no constraints
- w(t) cW Vit ’ ’ on the initial valuex(0) of their levels, a strategy as in
X(t) = Bult) —w(t), W, (22) Definition 1 can solve problem (22§ince buffer level feed-

cr W back is necessary. To this end, let us introduce the following
VN definitions.

Definition 4: The strategy is of theure feedback fornif
where the vectok(t) describes the buffer levels, the boundingyt) — @(., x(t)), namely it requires no information about the
set.2" is convex and compact and includes the origin as &rrent value ofw(t). The strategy is of thenemoryless pure
interior point, and the arbitrarily small set?’, with € >0, feedback formif u(t) = ®(x(t)), namely it is function only of
is the set within whichx must be driven in finite time. the current value of the buffer levest).

Henceforth, given a generic set C R" and beingA a positive The following theorem states that there exist strategies with a
scalar, we denote bj.«/ = {Aa:ac «/}. The strategiesP  gimple structure that solve problem (22).
considered are of the form

U(t) = CD(E(t),X(t),W(t),t),
() = oEOx0uwe.y, & We = Wi (26)

again, with no restrictions of the type of domain of th¢urthermore, min-max optimal strategies can be obtained

variables. Before presenting the solution of problem (22), vegther adding a memoryless pure feedback component to a

need to discuss certain feasibility conditions for it and somgatic strategy, that i®(x(t),w(t)) = ®1(w(t)) + Da(x(t)), or

technical assumptions for a “nice” description of the boundin@rough a pure feedback strategy-, x(t)).*

sets.Z'. Proof: We first prove (26) under the assumption thét)
Problem (22) is feasible if and only if the following condi-is known on-line. To do this, consider the following strategy

tion holds [14]

(

X(t)
X(t) e ez, vt>t; for somet; >0,

Theorem 3:The following property holds

W Cint{B%}, (24)  u(t) = B(X(t),w(t)) = Pr(w(t)) + P(x(t)), forallt>0,

whereint{B% } means the interior part of sBtZ. The above where®;(w(t)) is any static strategy, for instandgya(w(t)),
condition is stronger than conditio®’ C B% considered in which solves problem (10), artb,(x) is a stabilizing term that
the first part of this work. We also assume, without restrictiomye define later on. Note that
that

0c# and Ocint{%} (25) Bdy(w(t)) =w(t) € (1-0)B%

(we can always apply a proper translation to meet this aken if we substitutei(t) in the state equation in problem (22)
sumption). As an immediate consequence of (24)-(25), we cae get
affirm that there exists a scalar> 0 such that X(t) = BD(x,w) —w(t) = Bdy(x).

W (1-0){BU).

Regards to the description of the bounding 26t we assume

Now take d,(x) equal to the continuous function

Dy (x) = say|—B'X],

the following
Assumption 3:There exists a gauge functiap which is  \yhereB' is any right inverse oB and the saturation function
smooth forx # 0 and such that is defined as follows

2 ={x:1¢(x) <1}
Let us remind that gauge functions are positive definite,
convex, and positively homogeneous of order 1, i.e., such thgtn
Y(éx) = EY(x) for & > 0 [22]. Special gauge functiong A(x) = max{j\ >0: —AB'xe ouY.
are||x|| or more in general|Fx||2p with F full column rank -
and integemp > 1. Note that norms of the typFx|| may be Note that this assures tha(x,w) = ®;(w) + Pp(X) € %.
arbitrarily closely approximated byFx||o, for p large. Then, Since 0% includes 0 as an interior point we have that the
non-smooth polytopic sets of the for®t™ = {x: Fx < 1}, Lyapunov derivative ofy is negative forx # 0. Indeed, since
wherel=[1 1...1]" defined by functions of the type for gauge function€ly(x)x = Y(x) holds forx 0, we have

saty;[-B'x] = —A (x)B'x,

Y(x) =max Fex, P (x) = OP(x)BP,(x) = —OW(x)BBA (x)x = —A (X)@(X) < O

whereFy is thekth row of F, can be approximated by smoothygr x £ 0. Therefore,
setsZ” defined by functions of the type x(t) — 0

1/p
P(x) = (max{ Fex, O})p . “this means that on-line “who play first” betweerandw does not make
any difference if buffers are present



(see [14] for details). Note that this means that, by continuitierm ®, € 07, first note that the latter equation together with
®,(x(t)) converges to zero and thus it has zero mean. TH32) yields
also means that

z(k+1)1) = x(kr)+ 1BD(2(KT),X(KT))
AVu(t)] = AvPq(w(t))]. = x(KT) + 1BD1(z(kT),X(KT)) + TBD2(2(KT))
It remains to prove that this strategy solves problem (22). = zkn)+ TB(DZ( k7)),
Consider the average then, selectb,(z(kt)) according to
T . . . .
AVU] = Tlmo% | uwdt @7)  bo(zkT)) { grg Mieor Y(2(kT) +TBY) 'I‘; Z’ég .
1

=lim = /T ®1(w(t))dt+ Iim e /T ®,(x(t))dt(28) Note that if we usap(z(kr)) as discrete-time Lyapunov func-
0 = tion, the condition @ int{7% } guarantees thap(z(k+1)7) —
— lim = / Py (wi(t))dt + fim / ®(x(t))dt(29) ¥ (ZK)T) < —B <O until the rest conditiory(z(kr)) =0 is
Toe T reached for some large enough but firkteAs a consequence
— lim = / D1 (W(t)) = AVDL (W(D))]. (30) x(kt) = z(kt) — TW(KT) is ultimately bounded in the set?".
T T By assumingr small enough we can drivekr) inside &2’
Then by repeating exactly the same arguments of the previdei¥en this, since(kr) =0 for anyk > k, the feedback strategy
section we have that the first part of the theorem is proved?2(2(KT)) is equal to zero theAV[((z(kT))] = 0. Now,
We now show that a pure feedback robust strate@y = consider the average value oft)

®(-,x(t)) exists, i.e., a robust strategy that does not require AViu] = (33)
the knowledge of the current value wft). This can be done

T (k+1)T
by sampling the system at small intervals. Actually, tet O = lim 1 / u(t)dt = I|m — Z)/ t)dt (34)
and consider the following equation T==T Jo K=o KT
kt kt — - -
x(kt) = x((k—1)T) + B u(t)dt— / witdt. (31) K"EL Z a(z +K"L“m Z 2(z(k)) (35)
(k-1)1 (k-1
= AV[®1(z(k), x(K))]. (36)

Let us now introduce the discrete-time variabldefined as
ke We have just proved that we can choose a strategy such
2(kt) = x((k—1)T) + B/ u(t)dt, (32) thatAvu] = Av[®y] = AV/®] where® is a memoryless strategy
J(k=1)1 solution of problem (10). Then, according to Remark 5, we
have thatWg < Wy.. It is left to prove thatWg > Wy, or,

equation (31) yields
d By which is the sameWg > Ws. To do this, let us denote by(")

k o the worst demand of the static problem (11). Assuming that

Z(kt) —x(kT) = /<k_1>r w(t)dt = TW(kr), w(t) =w("), an optimal strategy fau is to takeu(t) = ®1(w!")
as already shown by equation (21) in the proof of Theorem 2.

wherew(kt) € # is the average demand jitk— 1) 7, kz]. This u
means that we can derive the integravobver [(k—1)7,kT] Remark 6:In the developed theory we assumed that the
by simply computingz(kt) and measuring(kr). time required for state measurements and flow computation

The idea is now to apply a piecewise constant flow whigg negligible. If these operations introduce a delry we
takes on the following constant value within each samplingan provide a sample-data reformulation of the problem and
interval [kt, (k+1)1), our results still hold. In particular, we can guarantee practical

- A A stability within somee-ball with € depending ory.
u(t) = d(z(kt),x(kt)) = ®1(z(kt),x(KT)) + P2(2(kT)),

kt <t < (k+1)T, where®; is meant to compensate the past V. DETERMINISTIC VERSUS MINMAX OPTIMALITY

demand andp, € 0% is a feedback action. In particular, the |n this section, we tackle the case where the demand is

term @, is chosen in such a way that a generic one and not the worst one as formulated in the
- ~ Deterministic Problem. In particular, we remind that we wish

1B®y(2(kT), x(kr)) = TW(kT) = Z(kT) =X(kT), U1 €(1-0)%. {4 fing a strategy®(-,w(t)) that for any realization of the

The above condition is satisfied by demand solves the problem

R N ®p = ming W(AVU],AvW])
®1(z(K), x(k)) = P(W(kT)), st. u(t) =o(,w(t)) e %, W, 37
where ®(w) is any memoryless strategy which solves prob- Evl({(()t )6:7}\/ (t)% w, 0

lem (10) in its discrete-time version as defined in Remark 5.
We just have to assume that the demand valéy for The index D stands for “deterministic’. The main result of
t=0,1,2,... are equal tow(kr) for kT =t. To specify the this section is to prove tha®pwa(w(t)), and in general



®sopr(w(t)) are not deterministically optimal. In particular,at the price of a much harder exposition (see for instance [12]).
we find a strategy with memory that performs strictly better We provide a simple example showing that the strategy (38)
than the strategybsopt(W(t)) € Q as in (16) for a simple works better than thebsopr(w(t)) which means that static
counterexample wher®#(Av{u]) is a function of Avu] only strategies may be min-max optimal but they are not determin-
and is positively homogeneous. Conversely we will preseistically optimal in general.
a theorem which shows that to achieve the deterministicco
optimality we must resort to strategies with memory, i.e. Example 3:Let us consider the simple example proposed
given by differential equations, notwithstanding the fact that [5], Example 7, with one node and two arcs. The system is
our model is described by algebraic equations. We prove aigscribed by
results under the following assumption. Up (t) + Up(t) = w(t)

Assumption 4:Function¥ depends orAv{u] only and it is _ _ _
convex and positive semidefinite. Furthermébeis continu-  With flow and demand subject to constrairt2 < u; < 3,
ously differentiable in all pointsi for which W(u) > 0.
Before providing the counterexample and the theorem, we u )
would like to provide the following comments about the 2 C
previous assumption. D -

« Given any convex function which is positive semidefinite,
we can always approximate it by a smooth one over )
an arbitrarily large compact set as we have seen in =
Section 1V. O E u,

« The requirement tha® is a function only ofu is not H .
a restriction. Indeed, we can makeé implicitly depend -
on w by reviewingw as additional components of as ) ‘K
expressed below G

Bu— 0, A B

W.

[t B )

« We can generalize the cost in a significant way by
translating u and Considering costs that are positivéig- 3. Flow space ofi;-up for the system of Example 3. The rectangle
. .S . . C e A-B-C-D defines the set/.
semidefinite with respect to a nominal flaw satisfying

the nominal demandsp, namely of the formP(u—uo). _, Up < 1 and|w| < 2.8.

We consider a strategy with memouyt) = ®(& (t), w(t)) Figure 3 displays the flow space of andu,. The rectangle
as in (23) wher€ (t) and the strategyp are defined as A-B-C-D defines the se. Let the cost function bey =
£(t) = u(0) t=0 o o= &) L u) |AV[uy] —Av.[uz]'\, as we wish to have t'he same d_egree of. long-

= %]S u(t)dr t>0 -7 t ° term exploitation ofu; and uz. All points for which W(.) is

zero are described by the dashed line intersecting pAiarsd
Us(t) = @(E (1) w(t) =arg_ min W (E()v. (38) O,
T Consider a realization such thaft) = 2.8 for (2k)@ <t <

As a first observation, note that the time derivativeto (t)), 2k + 1)@ and w(t) = —2.8 for (2k+1)© <t < (2k+2)6,

for the current value of (t), turns out to be for some dwell time® > 0, k= 0,1,.... In particular, as the
) . Et) u(t) realization is periodic, we can limit ourselves to study the
WE@M) =W (£1)E) =1 (&(1)) (_t t) evolution of the approximate cost in the first period (fet 0),

) . ) L _ . the latter including the intervals 9t < © wherew(t) = 2.8
therefore g is the point-wise minimizer of such a derivativegng @ < t < 20 wherew(t) = —2.8. We will show that in
The rationale of this choice .iS that it trivial_ly h(_)ldl.wr[u} = the first interval, we are not able to exploit thg and u,
¢(T) and therefore, at any tinte an approximatiot¥ (£(t))  at the same degree, as any feasible solution is suchughat
of the cost¥(Av{u)) is available. The approximation is baseqyorks harder tham. In the second interval, the strategy (38)
on the average up to tinterather than on the long run averagerecovers the mismatch by initially letting working harder
Now, we select a strategy that, at timechooses among all than ;.
possible flows that balance the current demaiid, the one 145 pe more precise, in the first interval, whavé) = 2.8,
that induces a maximum decrease for the approximated cQ$t must haveu +u, = 2.8 (.., the segmer-F in Fig. 3)
We will refer to this strategy as th@radient-based strategy 5nq strategy (38) returns; = 1 andu, = 1.8 (i.e., the point
(hence the G inbg). _ _ F, which is the closest one to the dashed line= u). During
In the case of a non-differentiab®’ we would have 10 tne interval functiort¥(£(t)) = 0.8t and at the end of the first
replace the Lyapunov derivative by the generalized de”Vat'W?terval, fort = ©, we haveW(&(t)) = 0.80.
. W(E[R)—W(E(t—dt In the second interval, whemne(t) = —2.8, we must have
DTW(E(1) = Aim_sup L) dt(é( 2 U+ U = —2.8 (i.e., the segmerﬁ(;-)H) and the strategy (38)




_ _ : : : \ Wy | Wo | W3 | Ug U Uz Uy Uipo | U1 | U2 \
retumsul =-2 and_ u; = —0.8 (i.e., the pointH) in order BT s5 113 213 401020020
to drive the approximate cost to zero as fastest as possibleg | 7 4| 717110l 6|20 ...] 21| 20| 20

Lett be the first instant wher@((t)) = 0. We have that for
@ <t <t the functionW(& (t)) = 220229 i we impose TABLE |

W(E(t)) — 0 in the latter equation we fintd = %@. In the LOWER BOUNDSLB AND UPPERBOUNDSUB OF DEMANDS AND FLOWS
remaining interval, namely far <t < 20, the function takes

on the value¥(&(t)) = 0 and the strategy (38) switches to the

o — 7 (noi o o
flow uy = up = —5 (point K). where the last terms goes to 0 in view of the continuity®f

As in t =20, W(&(t)) = 0 the above reasoning can beyng the boundedness ofand ug. Then for a propet large
applied fork =1 and so on. We have proved th#(&(t)) enough

is bounded, 0< W(&(t)) < %80 for all t > 0. This means W u(t) < W ) Ue (t
that W(&(t)) — O for t — . Since,W(§(t)) — W(AVU]) also o (E_G( )ul®) (fe(t)) Ua(t)
holds, we have shown th&t(Aviu]) = 0 and then the strategyin contradiction with (39). ]

(38) is deterministically optimal for this example. Conversely, Remark 7:1f W is linear, then®® (&(t)) is constant and
the cost associated t®sopr(W(t)) is strictly greater than therefore variable§ does not play any role. Then we can
zero which means thabsopr(w(t)) is not deterministically consider the memoryless strategy suggested in [4] for linear
optimal. Actually, whenw(t) = 2.8, the strategyPsopr(w(t)) COSts.

returnsu; = 1 andu, = 1.8 (i.e., the pointF), whereas when = Remark 8:Given the averagéviw] = w, the value

w(t) = —2.8, the strategyPsopt(W(t)) returnsu; = —1.4 and o .
uz(l —1.4 (i.e., the poin). Org tﬁu?average we have Pmin = BE—w 2 wE) (42)

Avui]=-02, AVw]=0.2, ®AVu],AVup]) =0.4. is a lower bound foHJ(A\i[uG_]). To see this, note thav{ug]
always satisfieBAVug] = w as well asAviug] € %, and

The deterministic optimality of (38) is proven next. . . : .
Theorem 4:Assume that¥ satisfies Assumption 4. AssumethereforeAv[uG] is a generic feasible solution of problem (42).

that the gradient-based strategy (38) produces the avagage “Also, by exploiting the definition of achievable flows in [5],

- ; . we can say that if the minimizer of (42) is an achievable
Av[ug]. Let U the average achieved by some arbitrary strate%w then the lower boundv— is tight in the sense that
such thatBu(t) = w(t) for all t. Then ’ mn 9

Wmin= W(AVug]). Differently, if the minimizer of (42) is not
W(lig) < W(0). an achievable flow, theWmin is not tighi as¥nin < Y(AVug)).

Furthermore, if we assume that is known then we can
adopt the linear strategy— ug = F(w—w) proposed [5].

Let us conclude with a brief comment on the case of
F_(Hatwork with buffers. In presence of buffers, we can achieve
the same results discussed in this section. To see this, it suffices
to split the strategy in two parts: the first part assuring stability

Proof: To prove that¥(ug) < W(0), we first note that
if W(ug) =0 the result is straightforward sin¢® is positive
semidefinite. Therefore assurigug) > 0. Denote byég(t)
the evolution of the integral variable with the gradient-bas
strategy. Sincelg is the minimizer we must have

W (&(t))ut) > (&s(t))ug(t) (39) and the second part deterministic optimality. Such a procedure
has already been illustrated in Section IV and therefore it will
for any otheru(t) €  such thatBu(t) = w(t). not be further discussed here.
Assume, by contradiction, that there exists a stratétlyc
% such thaBu(t) = w(t) and that¥(d) < W(ug). SinceV is VI. NUMERICAL EXAMPLE AND SIMULATIONS
convex, there exist§’ > 0 such that Consider again the network displayed in Fig. 1. We provide

— o = Y a comparison between the piecewise affine strategy (static
W (Ue)[0—Ue] < —B. “0)  in-max optimal strategy)Ppwa(w) defined in (13) and

Sinceu= Av{ug] andui'= A{u] are the average values, so thaihe gradient-based strategy (dynamic deterministically optimal

AVlu—ug] = G— U it turns out that for anyr > 0, no matter Stratégyla(t) = ®(&(t),w(t)) asin (38). In Table | we display

how large, and any @ B < B’ there existd > T such that ~ 10Wer and upper bounds of demands and flows.
The cost to minimize is (8) withp = 0.1. Note that, we

@ (Ug)[u(t) —ug(t)] < —B. (41) can make function¥(.) depend only onu as required in
Assumption 4, by simply replacing demands(t), w»(t) and
Consider now the expression ws(t) by three artificial flowsuss(t) = wi(t), uia(t) = wo(t)
andugs(t) = ws(t). Table Il summarizes the optimal balancing
W (&e(t))u(t) flows u® on each vertex®¥, k=1,...,8. Observe that, from
= @ (&(t))us(t)+ @ (&(t)) (ut) —ug(t)) = the network operator point of view, the co#fu®, w®) is
W (&5(t)us(t) + @ (Tg) (u(t) — us(t)) maximized inw(®). In other words, the worst demand is not
the maximal demand on each node.
<—p for t=r Now, denotepy the probability of being on vertew®), and
+ [ (&6(t) - (ug)] (u(t) —us(t)), consider a number of realizations with increasing probability

= ps from 0 to 1 andp, = ps = ps = Pe = p7 = ==, p1=0.
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K T [ 23] 456 78 2
wo s | s | s |5 |7 7] 7]7
w1 1| 4| 4 1 1| 4 | a
w [ 3 | 7 | 3| 7 | 3| 7| 3]|7 o
9 2 [a1]aa]5s5a] 4| 6 |63 7
W | 3| 3 | 36| 46| 3 | 3 |37]| 5
W | 4 | 58| 4| 6 | 4| 6 | 4| 6 10
W) | 17| 26| 25| 29| 29| 38| 37| 4 s
u(?” 04| 01]09|09|03| 0 |08]o09 .
u?k> 21| 37| 2 | 36| 21| 38| 20| 36
Wl 19| 12| 16| 15| 21| 15| 2 | 19
k
ugk> 03| 15| 18| 24| 1 | 21| 25| 29 o s
uw | 19| 21| 19| 24| 18| 21| 19| 23
A9 | 06| 16| 09| 21| 05| 15| 08 | 21
o | 14| 11 ]-07|-05]-18] -6 -1.2 | -1.0 R
k) 0 50 100 150 200 250 300 350 400 450 500
@9 | 02| 15| 00| 12| 02| 16| 00| 1.2 t
W(,) | 186 | 156 | 8.6 | 14.4 | 20.7 | 189 | 12.0 | 185

Fig. 4. Time plot of the errodW(t) := W(&(t)) — We for a set of six
TABLE Il realizations withps = 0.2,0.4,0.6,0.8,0.95,1. The error tends to zero for
increasingt.

opTimMAL FLows u® oN EacH VERTEXWK  k=1,...,8.

(solid) fori = 1,2,3 from top to bottom respectively. Note that
} uy(t) obtained from the piecewise strategy (13) (dashed line,
middle plot) follows the peaks ofv,(t) (solid line, middle
TABLE Il plot) while uz(t) does not. This is evident, for instance, in the
COST DIFFERENCEWpywa— WG FOR REALIZATIONS WITH DIFFERENTPs. interval fromt =10 tot = 15. This is due to the fact that arc
FOR ps = 1 (WORST REALIZATION), THE COST DIFFERENCE IS NULL 2 is over exploited for about= 8 where demandv,(t) =1
and the flow in arc 2 saturates at its lower valuygt) = 3.
The gradient-based strategy(t) (38) keeps memory of the
mis-match betweem(t) anduy(t) and fort =10 tot =15
Also, let Wpya= W(AV[®pwa(W)]) and W = W(AVug]) be the flowux(t) (dotted line, middle) is kept constant even if the
the average costs obtained with strateghegya(w) andug(t) demandws(t) has some peaks at its highest value.
respectively. For this example, we can comptigya(w) =
58 W (U wk) and deriveWg by simulations. In partic-

\ Ps 02 04]06]08] 095
[ Wewa—Ws | 45 | 55 | 53 | 43 | 16

Q|

ular, we simulate a set of six realizations fofrom 0 to 500, 8 ‘ ‘ ‘ ‘

with ps = 0.2,0.4,0.6,0.8,0.95,1. Whichever the realization, ¢ SRRV N Py

we expect a better performance of (38) as evidenced in Table*r ~ Ve e 1

lll, where we display the cost differenc&pywa— W for 2r ]

different realizations (differenps). o s m 15 2 -
Note that in correspondence to the worst realization, char- s

acterized byps = 1, the two strategiePpwa(w) and ug(t) ok ,

), w(t)

are equivalently optimal a¥’pywa— W = 0 (they provide the
same cosWpywa=We =1).

Furthermore, according to our expectation, we observe thato0 w w w w
W(&(t)) obtained with strategy (38) always convergesHg .
on the long run. This is evidenced in Figure 4 where we plot | —  — \ v/ |
the time evolution of the erroAW(t) := W(&(t)) — Wg for Lo NSNS\
each one of the six realizations. We can see that the error
tends to zero for increasingin all of the six plots. Note the .
straight line in zero which is associated to the worst realization ° 5 10 15 2 2
(ps = 1). In this case, the demand is the worst one at @ach
andAW(t) = 0 which also mean®¥(¢(t)) = We =1 for all t. Eg. 5. G{gdiegt-bhasded sg;'slte@nesétl)1 (3;8) (dtptted)Ianfpiecte—wisledstratggy

H w ashed) wi = 0.4. 1op: time plot orw: Soll an
NO'Fe that by .usmg artificial ﬂowels(t)’ u14(t) and ulS(t)’ th,e ulp(\tl\;A(ob)ta(inezj (With the) gradri)gnt-based gtratag;(?) (dotteld() )a$1d wi)th the
variable& (t) includes also the average demands up to timepjece-wise strategPpwa(w) (dashed); middle: time plot ofi»(t) (solid) and

Uz (t) (dotted and dashed); bottom: time plotwef(t) (solid) andus(t) (dotted
and dashed).

s

uG(t

N}
T

In Fig. 5, we simulate the gradient-based strategyt)
defined in (38) (dotted) and the piece-wise stratégya(w)
defined in (13) (dashed) for a realization of the demand with

ps = 0.4. In particular, we plot flowsi(t) and demands; (t) VIl. CONCLUSIONS
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Network flows have been dealt with under different pefis] A. Erera, J. Morales, and M. W. P. Savelsbergh, “Robust Optimization

spectives both in robust optimization and in control theory. gaiﬁnglztétifﬁﬁmggis)F/’éogb?'l‘:giggﬁfﬁmsslsﬁiegggﬁs/aPpeafv

The present work is an attempt to emphasize connections g £ khmelnitsky and M. Tzur, *Parallelism of continuous- and discrete-
analogies between the two contexts. time production planning problemsl|E Transactions vol. 36, 2004,

We have studied how to robust stabilize continuous—tin%z pp. 611-628.

. . . . . ?0] B. GrunbaumConvex Polytopeshiley, New York, NY, 1967.
networks Contm”mg flows with capacity constraints in th 1] O. Kostyukova and E. Kostina, “Robust optimal feedback for termi-

presence of demand which unknown but bounded within a nal linear-quadratic control problems under disturbancesithematical
polytope. A feature of this work is that the cost is a functiop _Programming Ser. B vol. 107, 2006, pp. 131-153.

2] D. LuenbergerOptimization via vector spaces methpdshn Wiley &
of the long-run average-flow and demand. We have seen t alSOnS’ 1997_9 P P Y

assuming for the demand a worst or a neutral behavior lede§ S. Mudchanatongsuk, F. Gbiez, and J. Liu, “Robust Solutions for

to different optimal strategies. In particular, in the first case Network Design under Transportation Cost and Demand Uncertainty”,
. P . 9 P ._Journal of the Operational Research Socjetyl. 59, 2008, pp. 652—662.

the resultm_g _straFegy is memoryless ar_]d can be computed ¥ig F oriez and J. Zhao, “Robust capacity expansion of network flow”,

convex optimization. On the contrary, in the second case we Network vol. 38, 2007, pp. 136-145.

must resort to strategies with mematg have proposed a[25] E.A. Silver and R. Pe_terso_meusmn System for Inventory Management

. 9 . p P and Production PlanningWiley, New York, N.Y., 1985.
solution based on a Lyapunov approach, in which the contig; s sethi, H. zhang, and Q. Zangverage cost control of stochastic

is selected on—line, among the feasible flows, as the point—wise manufacturing systemSpringer, 2004.
minimizer of the gradient of the cost of the average.
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