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Optimization of Long-run Average-Flow Cost in
Networks with time-varying unknown demand

D. Bauso, F. Blanchini and R. Pesenti

Abstract— We consider continuous-time robust network flows
with capacity constraints and unknown but bounded time-
varying demand. We consider the problem of designing a control
strategy, to regulate the flow on-line with no knowledge off–
line of the demand realization. We address both the case of
systems without and with buffers. The main novelty in this work
is that we consider a convex cost which is a function of the
long-run average–flows and average–demand. We distinguish a
worst-case scenario where the demand is the worst-one from a
deterministic scenario where the demand has a neutral behavior.
The resulting strategies are called min-max or deterministically
optimal respectively. The main contribution are constructive
methods to design either min-max or deterministically optimal
strategies. We prove that while the min-max optimal strategy is
memoryless, i.e., it is a piece-wise affine function of the current
demand, deterministically optimal strategy must keep memory
of the average flow up to the current time.

I. I NTRODUCTION

We frame this work within the several recent attempts to
apply the tools of robust optimization to network flows [1],
[2], [10], [11], [18], [23], [24].

Network flows describe flows of materials between different
production/distribution sites (see, e.g., [25]). The problem is to
design a strategy that returns the controlled flow as a function
of the uncertain and time-varying demand.

Robust optimization is a relatively recent technique that de-
scribes uncertainty via sets and optimizes the worst-case cost
over those sets (see, e.g., the introduction to the special issue
[6]). Generally speaking, robust optimization aims at achieving
the best cost under the worst uncertainty conditions. Some of
the existing works (in particular [2], [11]) are centered around
the idea of “adjusting” some of the variables to the outcome
of the uncertainty. In other words some variables are decided
before the uncertainty realization while the rest are decided
after the uncertainty realization. Such a problem formulation
is known under different names such as “Adjustable Robust
Counterpart” (ARC) problem, “Two-stage Robust optimization
with recourse”. In many cases the adjustable variables are ex-
pressed affinely on the uncertainty and the problem is renamed
Affinely Adjustable Robust Counterpart (AARC) problem.
ARC and AARC formulations are currently a hot topic in
the mathematical programming and operations research field.
There are interesting connections between this paper and the
notions of “adjustable variables” in ARC, AARC. For instance,
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the flow plays the role of the adjustable variables in the ARC
set up and in most cases the strategy is affine in the uncertainty
as in AARC problems.

In this paper, we address both the cases ofnetworks without
buffers and networks with buffers. If no buffer are present,
incoming and outcoming flows at each site are equal since
there is no stored inventory. In this case we also say that
flows balance the demand. In the case of networks with
buffers, inventory accumulate at the production sites as result
of the discrepancy between incoming and outcoming flows.
According to existing work in the control literature [13], [14],
[15], [16], [17], [21], buffers’ dynamics is described by linear
continuous-time differential equations.

In our model there are two types of flows the controlled
one and the uncontrolled one. For brevity, these we will use
the terms “flow” to mean the controlled one and “demand”
to mean uncontrolled one, although there are many realistic
situations in which an uncontrolled flow is not a demand. We
assume that both flow and demand lie in pre-defined polytopes.

The basic problem is that of designing off-line a strategy,
namely a control law for the flow. The flow will be computed
on-line, on the basis of the measured buffer levels (if any)
and demand by means of the provided strategy. The actual
realization of the demand is not available in the design stage.
In networks with buffers, we impose the buffer level to reach a
prescribed level in finite time up to an assigned toleranceε > 0.
The associated strategy is calledε-stabilizing(this problem is
also know as “target set reachability” see [8], [9]).

We considercausalstrategies of different types. Precisely
we consider the case in which the flow is i) a function of the
current demand (memorylessstrategy), ii) a function of the
current and past demand (strategywith memory), iii) a function
of the buffer levels and past demand (feedbackstrategy),
and iv) a function of the buffer levels (memoryless feedback
strategy).

We deal with both a worst-case (call it alsomin-max) and a
deterministicscenario. In the min-max (pessimistic) approach
the realization maximizes the value of the given cost. In
the deterministic scenario, the demand is just any arbitrary
realization. Depending on the approach, the resulting strategy
is saidmin-maxor deterministically optimalrespectively.

The main novelty of this work is that we aim at optimizing
a convex cost function of the long-run average-flow and
demand [19]. To be more clear, in contrast with most existing
literature, we are not considering the average cost of the flows
(see for instance [26]) butthe cost of the average flows. Clearly
there is no distinction between the two concepts cost-of-the-
average and average-cost in the case of linear functionals (see,
e.g., [4]).
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Motivations of this choice may derive from technical rea-
sons, contracts or agreements. For instance, technical reasons
or contracts may establish the long-run exploitation level of
the machineries. So, over or under-utilization of machineries
can be tolerated only temporarily and not persistently. In a
different situation, long-term agreements may establish priv-
ileged sources for each destination. So, a mismatch between
privileged sources and destinations is acceptable only in crit-
ical and rare cases.

As a basic result we provide a constructive method to design
a piecewise affine strategy which is min-max optimal. The
method is based on the fact that the min-max problem arising
when flow and demand are time-varying is equivalent to the
min-max problem in which flow and demand are constant
vectors (one-shot decisions) and not functions of time.

The obtained strategy is memoryless and such a result
allows us to conclude that memory is not required when
min-max optimality is considered. We initially derive these
results for networks without buffers, and then extend them to
networks with buffers.

In the second part of the work, we show that the provided
min-max optimal strategy is not deterministically optimal, that
is, it does not return the minimal cost for any given realization
of the demand. Actually we show that static strategies are
not deterministically optimal at all (even for networks without
buffers). The second main contribution of the paper is to
show that, under some smoothness assumptions on the cost
functional, an easily implementable deterministically optimal
strategy can be derived. Such a strategy is achieved by keeping
memory of the average flow (from the initial to the current
time) and by choosing, among the admissible inputs, the
instantaneous minimizer of the Lyapunov derivative of the cost
of the partial average (i.e. from the beginning to the current
time).

The structure of the paper is as follows. In Section II,
we describe the problem for a network without buffers. In
Section III, we determine a min-max optimal strategy. In
Section IV, we extend the study to networks with buffers.
In Section V, we design a deterministically optimal strategy
under proper assumptions on the cost.

II. PROBLEM DESCRIPTION

Consider a network where at each time the flow balances
the demand. Both the flow and the demand are bounded in
assigned polytopes. A simple description of such a system is

Bu(t) = w(t), ∀t, (1)

u(t) ∈ U , ∀t, (2)

w(t) ∈ W , ∀t, (3)

whereB is the full-row rank matrix representing the network
topology,u(t) is the(controlled)flow andw(t) is the demand
(uncontrolled flow). andU ⊂ IRm andW ⊂ IRn are assigned
polytopes foru and w respectively. To let system (1)-(3) be
feasible, that is to admit at least a flowu(t) for any realization
of w(t), we must assume that (see [5] for details) the following
condition holds

W ⊂ BU .

Given a piecewise-continuous functionf : IR+ → IRn we
denote by

f̄T = AvT [ f ]
.
=

1
T

∫ T

0
f (t) dt

and
f̄ = Av[ f ]

.
= lim

T→∞
AvT [ f ]

the finite-horizon and infinite-horizon average values. The
simpler notationf̄ will be often preferred where the meaning
is clear from the context. In a similar way, given a sequence
f : N → IRn, we denote byf̄ = limk→∞

1
T ∑T

k=0 f (k). In the
following, we assume that the average is defined for any
function we consider. We generically denote byΦ a strategy
of the form

u = Φ(·,w(t)), (4)

where the missing argument(·) represents any set of auxiliary
variables. For instance we admit strategies of the form

u(t) = Φ(ξ (t),w(t), t),
ξ̇ (t) = Φξ (ξ (t),u(t),w(t), t),

(5)

whereξ is the controller state vector. We do not assume any
special requirement for the domain ofξ which can be any
functional space andΦξ can be any operator. The following
assumption clarifies the information available to the network
manager.

Assumption 1:

• The valuew(t) is available on–line at timet without delay.
• The realizationw is not known in advance so the strategy

can rely on the memory of the past valuesw(τ ), τ ≤ t,
but there is no forecast about the future.

We will have a special attention for the simple case of static
strategies according to the next definition.

Definition 1: The strategyΦ is called memorylessif it is
a function of the current demand only, u(t) = Φ(·,w(t)) ≡
Φ(w(t)). Otherwise, the strategyΦ(·,w(t)) is called with
memory.
Let Ψ(u,w) be a real-valued function representing a cost.
In this paper we consider different concepts of optimality
as specified next. Henceforth, we use themin-maxnotation
(rather thaninf-sup) as we will prove that the problems of
interests always admit a minimum and a maximum.

Definition 2: A strategyΦ is min-max optimal(or worst-
case optimal) if it is a solution of the problem

minΦ maxw(·) Ψ(Av[u],Av[w])
s.t. u(t) = Φ(·,w(t)) ∈ U , ∀t,

Bu(t) = w(t), ∀t,
w(t) ∈ W , ∀t.

(6)

Definition 3: A strategyΦ is deterministically optimalif,
for any realization ofw(·), it is a solution of the problem

minΦ Ψ(Av[u],Av[w])
s.t. u(t) = Φ(·,w(t)) ∈ U , ∀t,

Bu(t) = w(t), ∀t,
w(t) ∈ W , ∀t.

(7)

Remark 1: It is easy to observe that deterministically opti-
mal strategy, if it exists, is also both min-max optimal.
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Given the scalar valuesαk, for k = 1,2, . . . ,K we write

c.c. αk, to mean that αk ≥ 0
K

∑
k=1

αk = 1

so that, given any set of vectorsw(k), we write any convex
combination as

w =
K

∑
k=1

αkw
(k), c.c. αk.

Consider the following assumption forΨ.
Assumption 2:Function Ψ is convex1 namely for any set

(u(k),w(k)) in U ×W and c.c.αk

Ψ
(

∑αku
(k),∑αkw

(k)
)

≤∑αkΨ
(

u(k),w(k)
)

.

Under convexity assumption we consider the following two
problems.

Problem 1: Robust Problem Determine if it exists a static
min-max optimal strategy.

Problem 2: Deterministic Problem Determine if it exists
a deterministically optimal strategy.
As we will see both problems are solvable, but the strategy
solution of the Deterministic Problem cannot be static.

In the current formulation, the system has no buffers, so
no backlog or surplus is admitted. In Sections IV and V, we
generalize the results to networks with buffers.

A. A motivating example

Example 1:Consider a resource distribution network whose
graph is representedin Fig. 1, with unknown but bounded
demandw−

i ≤ wi ≤ w+
i , i = 1,2,3 and bounded flow 0≤ ui ≤

u+
i , i = 1, . . . ,12. Constraints (1) establish a relation between

u5u4 u6

u1 u
2

u
3

w w2 w3
1

u7 u9 u108u
u11

u12

Fig. 1. The network for the example

demand and flow. In this example,B is the 6×12 (i.e.n = 6
andm= 12) incidence matrix of the network withn= 6 nodes
andm= 12 (solid) arcs.

It is obvious that a necessary condition for the existence of a
balancing flow for any admissible demand is that the maximum
incoming flow umax = u+

1 + u+
2 + u+

3 is greater than or equal
to the maximum demandwmax= w+

1 +w+
2 +w+

3 . Assume that
the network manager assigns the privileged sourceui to each
demandwi , i = 1,2,3, that is, he wishes that each demand

1the considered concept is often referred to as “joint convexity”; note that
we are not requiring just thatΨ is convex in both arguments separately

wi is supplied in the long run by the corresponding flowsui .
Now, take for instance,u+

3 = 6 andw+
3 = 7.2

If for a periodw3(t) exceeds the value 6, thenu2 is forced
to supply an extra resource. When this occurs, we can say,
roughly speaking, thatu2 is over exploited andu3 is under
exploited. So, in general, a peak of demandwi might require
the exploitation of flows not directly associated to that demand.

The underlying idea is to find a mechanism to balance the
exploitation ofu2 andu3 by chargingu3(t) more than strictly
necessary whenw3(t) is low. This goal can be seen as a long-
run optimization problem with cost

Ψ(ū, w̄) =
3

∑
i=1

(w̄i − ūi)
2 +ρ‖ū‖2. (8)

The additional term is motivated by the fact that we might
be also interested in avoiding high flows in the other arcs,
although our theory works withρ = 0 as well.

III. M IN-MAX OPTIMALITY

In this section we consider three versions of the robust
problem . The first one is formulated without restrictions on
the type of strategy which can have a Memory (hence the
subscript M).

ΨM = minΦ maxw(·) Ψ(Av[u],Av[w])
s.t. u(t) = Φ(·,w(t)) ∈ U , ∀t,

Bu(t) = w(t), ∀t,
w(t) ∈ W , ∀t.

(9)

In the second version only static strategies are admitted (i.e.
Memoryless, hence the subscript ML).

ΨML = minΦ maxw(·) Ψ(Av[u],Av[w])
s.t. u(t) = Φ(w(t)) ∈ U , ∀t,

Bu(t) = w(t), ∀t,
w(t) ∈ W , ∀t.

(10)

The third is a pure static one in whichw andu are constant

ΨS = minΦ maxw∈W Ψ(u,w)
s.t. u = Φ(w) ∈ U ,

Bu= w.
(11)

The main result of this section is to prove that the problems of
interests always admit a minimum and a maximum, and that
ΨM = ΨML = ΨS. The static version of the problem will enable
us to determine a min-max optimal strategy. It is intuitive
that the worst-casew for the static strategy is assumed on the
vertices. What we will show that this is true also for the time-
varying problem, precisely that the worst-casew(t) assumes
its values on the vertices.

A. Solution to the static version of Problem 1

Let us denote byvert{W } the set of vertices ofW and
by K = {1,2, . . . ,K} the set of indices of the vertices. The
static version of Problem 1 can be easily solved as follows.

2Franco: e’ un errore parlare di power perche nel caso elettrico non e’
possibile regolare la potenza in ogni arco — l’ho sosrituita con resource
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For eachw(k) ∈ vert{W }, solve the following static convex
optimization problems

u(k) = argminu Ψ(u,w(k))

s.t. u = Φ(w(k)) ∈ U ,

Bu= w(k).

(12)

This first lemma introduces a piecewise-affine function inter-
polating the pairs(u(k),w(k)) which will be proved min-max
optimal.

Lemma 1:Let w(k) the vertices ofW and ũ(k) ∈ IRm as-
signed values, fork∈ K and let p be its relative dimension.
There exists a partition ofW into simplicesW j each having
non-empty relative interior3 and each couple of simplices
intersects at most on ap−1-dimensional facet (see Example
2). There also exists a functionΦ(w) which is affine on each
W j and such thatΦ(w(k)) = ũ(k), for eachk∈ K .
For a proof see [20] (see also [12]).

The piecewise affine strategy mentioned in the previ-
ous lemma can be derived as follows. Denote byK j =

{i j
1, i

j
2, . . . , i

j
p+1} =⊂ K set of the indices associated with the

jth simplexW j . Then for w ∈ W j , wherew = ∑i∈K j
α iw(i),

c.c. α i ,
u = ΦPWA(w) = ∑i∈K j

α iu(i). (13)

For any simplexW j the valuesαk are uniquely determined,
by the following set ofp+1 equations

∑
i∈K j

α i w(i) = w, ∑
i∈K j

α i = 1.

thus the strategy is well-defined. Note that to compute the
function we need to detect the sector includingw(t) and then
solving a linear system. Note that the matrices associated to
these system can be inverted off-line to achieve an explicit
expression (see [7], [12] for further detail’s on this type of
strategies).

Example 2:Assume that the demands in Example 1 is
bounded in a parallelepiped, namelyw−

i ≤wi ≤w+
i , i = 1,2,3.

This box belongs to the subspacewi = 0, i = 4,5,6, then the
relative dimension isp = 3,. Such a box can be partitioned
in 4 simplices as in Fig. 2 (precisely (A–C–D–H), (A–C–F–
H), (A–B–C–F) and (H–C–G–F)). Denote byΦA . . .ΦH the
optimal values ofu in problem (12) corresponding tow on
the verticeswA . . .wH . Then the interpolating affine function
u = Φ(w) can be computed as follows. If, for instance,w is
in the sector (A–C–D–H), then

Φ(w) = αAΦA +αCΦC +αDΦD +αHΦH ,

whereαA, αC, αD andαH are (uniquely) determined by

αAwA +αCwC +αDwD +αHwH = w,

αA +αC +αD +αH = 1.
Lemma 1 introduces the following theorem concerning the

solution of the static version of Problem 1.
Theorem 1:The cost of (11) is

ΨS = max
k∈K

Ψ(u(k),w(k)). (14)

3a simplex in IRn is a polytope withn+1 vertices; its relative interior is
the interior within the smallest subspace includingW ; the dimensionp≤ n
of such a subspace is the relative dimension

B

E F

H G

CD

A
Fig. 2. Partition of a cube in 4 simplices.

Proof: Since the w in the static problem (11) can
always be set as a vertexw = w(k), it is obvious thatΨS ≥
maxk∈K {Ψ(u(k),w(k))} (we remind thatu(k) ∈ U are the
optimal values).

We show now thatΨS≤ maxk∈K {Ψ(u(k),w(k))}. Consider
any pointw∈ W also included in thejth simplex ofW , that
is, w∈ W j . Then, denoting byK j ⊂ K the subset of indices
identifying the vertices ofW j ,

w = ∑
k∈K j

αkw
(k), c.c. αk.

Takeu = ΦPWA(w), the piecewise-affine strategy (13). Then

Ψ(u,w) = Ψ

(

∑
k∈K j

αku
(k), ∑

k∈K j

αkw
(k)

)

≤

∑
k∈K j

αk Ψ
(

u(k),w(k)
)

≤ max
k∈K j

{

Ψ
(

u(k),w(k)
)}

≤

max
k∈K

{

Ψ
(

u(k),w(k)
)}

,

with c.c. αk(t). Note that the last inequality compares the
maximum over all vertices ofW j with the maximum over all
vertices ofW .
An immediate consequence of the above theorem is that the
strategyΦPWA(w) in (13) is min-max optimal for the static
problem (11) as it guarantees that

Ψ(ΦPWA(w),w) ≤ Ψ(ΦPWA(w
(r)),w(r)) = Ψ(u(r),w(r)),

wherew(r) is the worst demand. Note that this strategy is not
unique since all the strategies in the set

Q = {Φ(w) : BΦ(w) = w,

Ψ(Φ(w),w) ≤ Ψ(ΦPWA(w(r)),w(r)), ∀w∈ W }
(15)

are min-max optimal for the static problem (11). In particular,
the setQ includes the strategy

ΦSOPT(w) = arg min
u∈U

{Ψ(u,w) : Bu= w, ∀w∈ W } (16)

Remark 2:Note that theu selected by (16) is determinis-
tically optimal for the pure static problem only, in the sense
thatΨ(ΦSOPT(w),w)≤ Ψ(u,w) for all w∈W andu∈U , not
optimal for our problem. BothΦSOPT(w) and ΦPWA(w) are
max-min optimal(in the game-theoretic language the “demand
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plays first” [3]), in the sense that the flow is taken as a function
of w which, in turn, maximizes the costΨ(ΦSOPT(w),w) in
one of the verticesw(r). So an interpretation of our result
is that to design a min-max optimal strategyoff-line we can
solve a max-min problemon-line, i.e., (find minimizing flow
for given demand).

B. Main theorem

We are in a position to prove that the optimal min-max cost
is equal in the three versions (9)-(11) of the Robust Problem.
Basically we prove that theworst-case demandfor the static
problem, namely the valuew(r) ∈ W on which the maximum
(14) is assumed, is indeed the worst-case demand for the time-
varying problem we are considering.

Theorem 2:The following equalities hold

ΨM = ΨML = ΨS. (17)

Furthermore, as the inf-sup optimal values are achieved with
strategyΦPWA(w) in all the three problems (9), (10) and (11),
then ΨM, ΨML and ΨS are min-max optimal values and the
static strategyΦPWA(w) is a min-max optimal strategy.

Proof: The proof splits in two parts.
Proof of the claim ΨML = ΨS. Let w(r) ∈ vert{W } the

worst-case demand for the static problem (11), and letu(r)

the corresponding (optimal) flow. Letu = Φ(w) any arbitrary
memoryless strategy. Assume that the demand is constant
w(t) ≡ w(r) and let û = Φ(w(r)). Sinceu and w are constant,
the average cost is

Ψ(ū,w(r)) = Ψ(û, w̄(r)) ≥ Ψ(u(r), w̄(r)) = ΨS

by construction, so we haveΨML ≥ ΨS.
We now proveΨML ≤ ΨS. For arbitraryw(t) and u(t) =

ΦPWA(w(t)), consider the averages ¯uT = AvT [u] and ūT =
AvT [w] the associated cost is

Ψ(ūT , w̄T) = (18)

Ψ

(

1
T

∫ T

0
∑

k∈K

αk(t)u
(k)dt,

1
T

∫ T

0
∑

k∈K

αk(t)w
(k)dt

)

=

Ψ

(

∑
k∈K

u(k) 1
T

∫ T

0
αk(t)dt, ∑

k∈K

w(k) 1
T

∫ T

0
αk(t)dt

)

=

Ψ

(

∑
k∈K

u(k) α̂k(T), ∑
k∈K

w(k) α̂k(T)

)

(19)

with c.c. αk(t). Note that in (19) the sums are extended to all
vertices ofW but, at each time, only the non-zeroαk(t) are
those associated with current “active simplex”W j , i.e. the one
for which w(t) ∈ W j . It is obvious that the numbers

α̂k(T) =
1
T

∫ T

0
αk(t)dt

are c.c.. Consider insideU ×W the polytope having vertices(

u(k),w(k)
)

. SinceΨ is convex, it reaches the maximum on
its vertices then for allT

Ψ(ūT , w̄T) ≤ max
k∈K

Ψ
(

u(k),w(k)
)

= ΨS. (20)

If we take the limit over an infinite horizon by continuity we
have

Ψ(Av[u],Av[w]) ≤ ΨS

or, which is the same,ΨML ≤ ΨS and therefore we can
conclude thatΨML = ΨS.

Proof of the claim ΨM = ΨML. Memoryless strategies are
special cases of the strategies with memory, and cannot do any
better, thusΨM ≤ΨML. We only have to show thatΨM ≥ΨML.
Again we assume thatw(t)≡w(r), the worst-case demand. The
optimal strategy is, again, to takeu = u(r). Indeed for eachT
and anyu(t) ∈ U

Ψ
(

1
T

∫ T

0
u(t)dt,

1
T

∫ T

0
w(r)dt

)

= Ψ
(

AvT [u],w(r)
)

≥ Ψ
(

u(r),w(r)
)

, (21)

where the last inequality comes from the fact that the average
ūT ∈U andu(r) is optimal by construction. ThenΨM ≥ΨS=
ΨML and thereforeΨM = ΨML.

Remark 3:The minimizer in the Robust Problems (9)-(11)
chooses strategies and not flows (the min is overΦ(·) and not
u(·)) and this justifies the fact that, as the worst demand is on
a vertex, then the optimal flowΦ turns out to be a function
which interpolates the optimalvaluesu(r) = Φ(wr) associated
with the verticesw(r). Clearly u(r) need not to be a vertex
of U .
So far, we have assumed that the average values of the
realization of w and the flow computed by the strategyΦ
always exist. The following remark points out that we may
drop such an assumption.

Remark 4: In view of (20), it is always possible to prove
that

lim sup
T→∞

Ψ(AvT [u],AvT [w]) ≤ ΨS.

Therefore if we rewrite the Robust Problem in the “lim-sup
version” we achieve that

ΨLS
.
= min

Φ
max
w∈W

lim sup
T→∞

Ψ(AvT [u],AvT [w]),

s.t. Φ(·,w(t)) ∈ U , Bu= w

is equal toΨS no matter which type of strategy is chosen.
The following remark generalizes the results of this section

to the discrete-time case. It will turn useful later on when we
study networks with buffers.

Remark 5:Theorem 2 still holds if we state problems (9)
and (10) in discrete-time witht = 0,1,2, . . . .

IV. T HE CASE OF NETWORKS WITH BUFFERS

The first part of this work is based on the assumption that at
each time the flow balances the demand. We now drop such an
assumption and assume that the unbalanced flow is stored at
the node buffers. We wish to find a min-max optimal strategy
that steers the buffer levels to an arbitrarily small set in finite
time, and keeps them bounded in the small set from that time
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on. Then, the new formulation (Buffer problem) is identical
to that of Problem 1 if we replace (9) by

ΨB = minΦ maxw(·) Ψ(Av[u],Av[w])
s.t. u(t) = Φ(·,x(t),w(t)) ∈ U , ∀t,

w(t) ∈ W , ∀t,
ẋ(t) = Bu(t)−w(t), ∀t,
x(t) ∈ X , ∀t,
x(t) ∈ εX , ∀t ≥ t f for somet f > 0,

(22)

where the vectorx(t) describes the buffer levels, the bounding
set X is convex and compact and includes the origin as an
interior point, and the arbitrarily small setεX , with ε > 0,
is the set within whichx must be driven in finite time.
Henceforth, given a generic setA ⊆R

n and beingλ a positive
scalar, we denote byλ A = {λ a : a ∈ A }. The strategiesΦ
considered are of the form

u(t) = Φ(ξ (t),x(t),w(t), t),
ξ̇ (t) = Φξ (ξ (t),x(t),u(t),w(t), t),

(23)

again, with no restrictions of the type of domain of the
variables. Before presenting the solution of problem (22), we
need to discuss certain feasibility conditions for it and some
technical assumptions for a “nice” description of the bounding
setsX .

Problem (22) is feasible if and only if the following condi-
tion holds [14]

W ⊂ int{BU }, (24)

whereint{BU } means the interior part of setBU . The above
condition is stronger than conditionW ⊂ BU considered in
the first part of this work. We also assume, without restriction,
that

0∈ W and 0∈ int{U } (25)

(we can always apply a proper translation to meet this as-
sumption). As an immediate consequence of (24)-(25), we can
affirm that there exists a scalarσ > 0 such that

W ⊂ (1−σ){BU }.

Regards to the description of the bounding setX , we assume
the following

Assumption 3:There exists a gauge functionψ which is
smooth forx 6= 0 and such that

X = {x : ψ(x) ≤ 1}.
Let us remind that gauge functions are positive definite,
convex, and positively homogeneous of order 1, i.e., such that
ψ(ξ x) = ξψ(x) for ξ ≥ 0 [22]. Special gauge functionsψ
are ‖x‖ or more in general‖Fx‖2p with F full column rank
and integerp≥ 1. Note that norms of the type‖Fx‖∞ may be
arbitrarily closely approximated by‖Fx‖2p for p large. Then,
non-smooth polytopic sets of the formX = {x : Fx ≤ 1̄},
where1̄ = [1 1. . .1]T defined by functions of the type

ψ(x) = max
k

Fkx,

whereFk is thekth row of F , can be approximated by smooth
setsX̂ defined by functions of the type

ψ̂(x) =

[

∑
k

(max{Fkx,0})
p

]1/p

.

We are now in a position to establish the main result of
this section which says that problem (22) is equivalent to
problem (10) and therefore to problems (9) and (11). It is
apparent that, given the presence of buffers and no constraints
on the initial valuex(0) of their levels, a strategy as in
Definition 1 can solve problem (22),since buffer level feed-
back is necessary. To this end, let us introduce the following
definitions.

Definition 4: The strategy is of thepure feedback formif
u(t) = Φ(·,x(t)), namely it requires no information about the
current value ofw(t). The strategy is of thememoryless pure
feedback formif u(t) = Φ(x(t)), namely it is function only of
the current value of the buffer levelsx(t).
The following theorem states that there exist strategies with a
simple structure that solve problem (22).

Theorem 3:The following property holds

ΨB = ΨML. (26)

Furthermore, min-max optimal strategies can be obtained
either adding a memoryless pure feedback component to a
static strategy, that isΦ(x(t),w(t)) = Φ1(w(t))+Φ2(x(t)), or
through a pure feedback strategyΦ(·,x(t)).4

Proof: We first prove (26) under the assumption thatw(t)
is known on-line. To do this, consider the following strategy

u(t) = Φ(x(t),w(t)) = Φ1(w(t))+Φ2(x(t)), for all t ≥ 0,

whereΦ1(w(t)) is any static strategy, for instanceΦPWA(w(t)),
which solves problem (10), andΦ2(x) is a stabilizing term that
we define later on. Note that

BΦ1(w(t)) = w(t) ∈ (1−σ)BU

then if we substituteu(t) in the state equation in problem (22)
we get

ẋ(t) = BΦ(x,w)−w(t) = BΦ2(x).

Now takeΦ2(x) equal to the continuous function

Φ2(x) = satσ [−B†x],

whereB† is any right inverse ofB and the saturation function
is defined as follows

satσ [−B†x] = −λ (x)B†x,

with
λ (x)

.
= max{λ̃ ≥ 0 : −λ̃ B†x∈ σU }.

Note that this assures thatΦ(x,w) = Φ1(w) + Φ2(x) ∈ U .
Since σU includes 0 as an interior point we have that the
Lyapunov derivative ofψ is negative forx 6= 0. Indeed, since
for gauge functions∇ ψ(x)x = ψ(x) holds forx 6= 0, we have

ψ̇(x) = ∇ ψ(x)BΦ2(x) = −∇ ψ(x)BB†λ (x)x = −λ (x)ψ(x) < 0

for x 6= 0. Therefore,
x(t) → 0

4this means that on-line “who play first” betweenu andw does not make
any difference if buffers are present
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(see [14] for details). Note that this means that, by continuity,
Φ2(x(t)) converges to zero and thus it has zero mean. This
also means that

Av[u(t)] = Av[Φ1(w(t))].

It remains to prove that this strategy solves problem (22).
Consider the average

Av[u] = lim
T→∞

1
T

∫ T

0
u(t)dt (27)

= lim
T→∞

1
T

∫ T

0
Φ1(w(t))dt+ lim

T→∞

1
T

∫ T

0
Φ2(x(t))dt (28)

= lim
T→∞

1
T

∫ T

0
Φ1(w(t))dt+ lim

T→∞

1
T

∫ θ

0
Φ2(x(t))dt (29)

= lim
T→∞

1
T

∫ T

0
Φ1(w(t)) = Av[Φ1(w(t))]. (30)

Then by repeating exactly the same arguments of the previous
section we have that the first part of the theorem is proved.

We now show that a pure feedback robust strategyu(t) =
Φ(·,x(t)) exists, i.e., a robust strategy that does not require
the knowledge of the current value ofw(t). This can be done
by sampling the system at small intervals. Actually, letτ > 0
and consider the following equation

x(kτ ) = x((k−1)τ )+B
∫ kτ

(k−1)τ
u(t)dt−

∫ kτ

(k−1)τ
w(t)dt. (31)

Let us now introduce the discrete-time variablez defined as

z(kτ ) = x((k−1)τ )+B
∫ kτ

(k−1)τ
u(t)dt, (32)

equation (31) yields

z(kτ )−x(kτ ) =

∫ kτ

(k−1)τ
w(t)dt

.
= τ ŵ(kτ ),

whereŵ(kτ )∈W is the average demand in[(k−1)τ ,kτ ]. This
means that we can derive the integral ofw over [(k−1)τ ,kτ ]
by simply computingz(kτ ) and measuringx(kτ ).

The idea is now to apply a piecewise constant flow which
takes on the following constant value within each sampling
interval [kτ ,(k+1)τ ),

u(t) = Φ̂(z(kτ ),x(kτ )) = Φ̂1(z(kτ ),x(kτ ))+ Φ̂2(z(kτ )),

kτ ≤ t < (k+1)τ , whereΦ̂1 is meant to compensate the past
demand and̂Φ2 ∈ σU is a feedback action. In particular, the
term Φ̂1 is chosen in such a way that

τBΦ̂1(z(kτ ),x(kτ ))= τ ŵ(kτ )= z(kτ )−x(kτ ), u1∈ (1−σ)U .

The above condition is satisfied by

Φ̂1(z(k),x(k)) = Φ(ŵ(kτ )),

where Φ(w) is any memoryless strategy which solves prob-
lem (10) in its discrete-time version as defined in Remark 5.
We just have to assume that the demand valuesw(t) for
t = 0,1,2, . . . are equal to ˆw(kτ ) for kτ = t. To specify the

termΦ̂2 ∈ σU , first note that the latter equation together with
(32) yields

z((k+1)τ ) = x(kτ )+ τBΦ̂(z(kτ ),x(kτ ))

= x(kτ )+ τBΦ̂1(z(kτ ),x(kτ ))+ τBΦ̂2(z(kτ ))

= z(kτ )+ τBΦ̂2(z(kτ )),

then, selectΦ̂2(z(kτ )) according to

Φ̂2(z(kτ )) =

{
argminu∈σU ψ(z(kτ )+ τBu) if z 6= 0
0 if z= 0

.

Note that if we useψ(z(kτ )) as discrete-time Lyapunov func-
tion, the condition 0∈ int{U } guarantees thatψ(z(k+1)τ )−
ψ(z(k)τ ) ≤ −β < 0 until the rest conditionψ(z(k̃τ )) = 0 is
reached for some large enough but finitek̃. As a consequence
x(kτ ) = z(kτ )− τ ŵ(kτ ) is ultimately bounded in the setτW .
By assumingτ small enough we can drivex(kτ ) insideεX .
Given this, sincez(kτ ) = 0 for anyk≥ k̃, the feedback strategy
Φ̂2(z(kτ )) is equal to zero thenAv[Φ̂2(z(kτ ))] = 0. Now,
consider the average value ofu(t)

Av[u] = (33)

= lim
T→∞

1
T

∫ T

0
u(t)dt = lim

K→∞

1
Kτ

K−1

∑
k=0

∫ (k+1)τ

kτ
u(t)dt (34)

= lim
K→∞

1
K

K−1

∑
k=0

Φ̂1(z(k),x(k))+ lim
K→∞

1
K

K−1

∑
k=0

Φ̂2(z(k)) (35)

= Av[Φ̂1(z(k),x(k))]. (36)

We have just proved that we can choose a strategy such
thatAv[u] = Av[Φ̂1] = Av[Φ] whereΦ is a memoryless strategy
solution of problem (10). Then, according to Remark 5, we
have thatΨB ≤ ΨML. It is left to prove thatΨB ≥ ΨML, or,
which is the same,ΨB ≥ ΨS. To do this, let us denote byw(r)

the worst demand of the static problem (11). Assuming that
w(t)≡w(r), an optimal strategy foru is to takeu(t)≡Φ1(w(r))
as already shown by equation (21) in the proof of Theorem 2.

Remark 6: In the developed theory we assumed that the
time required for state measurements and flow computation
is negligible. If these operations introduce a delayτd, we
can provide a sample-data reformulation of the problem and
our results still hold. In particular, we can guarantee practical
stability within someε-ball with ε depending onτd.

V. DETERMINISTIC VERSUS MIN-MAX OPTIMALITY

In this section, we tackle the case where the demand is
a generic one and not the worst one as formulated in the
Deterministic Problem. In particular, we remind that we wish
to find a strategyΦ(·,w(t)) that for any realization of the
demand solves the problem

ΦD = minΦ Ψ(Av[u],Av[w])
s.t. u(t) = Φ(·,w(t)) ∈ U , ∀t,

Bu(t) = w(t), ∀t,
w(t) ∈ W , ∀t.

(37)

The index D stands for “deterministic”. The main result of
this section is to prove thatΦPWA(w(t)), and in general
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ΦSOPT(w(t)) are not deterministically optimal. In particular,
we find a strategy with memory that performs strictly better
than the strategyΦSOPT(w(t)) ∈ Q as in (16) for a simple
counterexample whereΨ(Av[u]) is a function ofAv[u] only
and is positively homogeneous. Conversely we will present
a theorem which shows that to achieve the deterministic
optimality we must resort to strategies with memory, i.e.
given by differential equations, notwithstanding the fact that
our model is described by algebraic equations. We prove our
results under the following assumption.

Assumption 4:FunctionΨ depends onAv[u] only and it is
convex and positive semidefinite. FurthermoreΨ is continu-
ously differentiable in all pointsu for which Ψ(u) > 0.
Before providing the counterexample and the theorem, we
would like to provide the following comments about the
previous assumption.

• Given any convex function which is positive semidefinite,
we can always approximate it by a smooth one over
an arbitrarily large compact set as we have seen in
Section IV.

• The requirement thatΨ is a function only ofu is not
a restriction. Indeed, we can makeΨ implicitly depend
on w by reviewingw as additional components ofu as
expressed below

Bu− ũ = 0,

ũ = w.

• We can generalize the cost in a significant way by
translating u and considering costs that are positive
semidefinite with respect to a nominal flowu0 satisfying
the nominal demandw0, namely of the formΨ(u−u0).

We consider a strategy with memoryu(t) = Φ(ξ (t),w(t))
as in (23) whereξ (t) and the strategyΦ are defined as

ξ (t) =

{
u(0) t = 0
1
t

∫ t
0 u(τ )dτ t > 0

⇔ ξ̇ (t) = −
ξ (t)

t
+

u(t)
t

,

uG(t) = Φ(ξ (t),w(t)) = arg min
v∈U :Bv=w(t)

∇Ψ (ξ (t))v. (38)

As a first observation, note that the time derivative ofΨ(ξ (t)),
for the current value ofξ (t), turns out to be

Ψ̇(ξ (t)) = ∇Ψ (ξ (t)) ξ̇ (t) = ∇Ψ (ξ (t))

(

−
ξ (t)

t
+

u(t)
t

)

.

therefore,uG is the point-wise minimizer of such a derivative.
The rationale of this choice is that it trivially holdsAvT [u] =
ξ (T) and therefore, at any timet, an approximationΨ(ξ (t))
of the costΨ(Av[u]) is available. The approximation is based
on the average up to timet rather than on the long run average.
Now, we select a strategy that, at timet, chooses among all
possible flows that balance the current demandw(t), the one
that induces a maximum decrease for the approximated cost.
We will refer to this strategy as theGradient-based strategy
(hence the G inΦG).

In the case of a non-differentiableΨ we would have to
replace the Lyapunov derivative by the generalized derivative

D+Ψ(ξ (t)) = lim
dt→0+

sup
Ψ(ξ (t))−Ψ(ξ (t −dt))

dt

at the price of a much harder exposition (see for instance [12]).
We provide a simple example showing that the strategy (38)

works better than theΦSOPT(w(t)) which means that static
strategies may be min-max optimal but they are not determin-
istically optimal in general.

co
Example 3:Let us consider the simple example proposed

in [5], Example 7, with one node and two arcs. The system is
described by

u1(t)+u2(t) = w(t)

with flow and demand subject to constraints−2 ≤ u1 ≤ 3,

C

O

A B

K
G

H

E

F

u

D
u

1

2

Fig. 3. Flow space ofu1-u2 for the system of Example 3. The rectangle
A-B-C-D defines the setU .

−2≤ u2 ≤ 1 and|w| ≤ 2.8.
Figure 3 displays the flow space ofu1 andu2. The rectangle

A-B-C-D defines the setU . Let the cost function beΨ =
|Av[u1]−Av[u2]|, as we wish to have the same degree of long-
term exploitation ofu1 and u2. All points for which Ψ(·) is
zero are described by the dashed line intersecting pointsA and
O.

Consider a realization such thatw(t) = 2.8 for (2k)Θ≤ t <
(2k+ 1)Θ and w(t) = −2.8 for (2k+ 1)Θ ≤ t < (2k+ 2)Θ,
for some dwell timeΘ > 0, k = 0,1, . . .. In particular, as the
realization is periodic, we can limit ourselves to study the
evolution of the approximate cost in the first period (fork= 0),
the latter including the intervals 0≤ t < Θ wherew(t) = 2.8
and Θ ≤ t < 2Θ where w(t) = −2.8. We will show that in
the first interval, we are not able to exploit theu1 and u2

at the same degree, as any feasible solution is such thatu2

works harder thanu1. In the second interval, the strategy (38)
recovers the mismatch by initially lettingu2 working harder
thanu1.

To be more precise, in the first interval, wherew(t) = 2.8,
we must haveu1 +u2 = 2.8 (i.e., the segmentE-F in Fig. 3)
and strategy (38) returnsu1 = 1 andu2 = 1.8 (i.e., the point
F , which is the closest one to the dashed lineu1 = u2). During
the interval functionΨ(ξ (t)) = 0.8t and at the end of the first
interval, for t = Θ, we haveΨ(ξ (t)) = 0.8Θ.

In the second interval, wherew(t) = −2.8, we must have
u1 +u2 = −2.8 (i.e., the segmentG-H) and the strategy (38)
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returnsu1 = −2 and u2 = −0.8 (i.e., the pointH) in order
to drive the approximate cost to zero as fastest as possible.
Let t̄ be the first instant whereΨ(ξ (t)) = 0. We have that for
Θ≤ t < t̄, the functionΨ(ξ (t)) = 0.8Θ−1.2(t−Θ)

t . If we impose
Ψ(ξ (t)) = 0 in the latter equation we find̄t = 5

3Θ. In the
remaining interval, namely for̄t ≤ t < 2Θ, the function takes
on the valueΨ(ξ (t)) = 0 and the strategy (38) switches to the
flow u1 = u2 = −7

5 (point K).
As in t = 2Θ, Ψ(ξ (t)) = 0 the above reasoning can be

applied for k = 1 and so on. We have proved thatΨ(ξ (t))
is bounded, 0≤ Ψ(ξ (t)) ≤ 0.8

t Θ for all t ≥ 0. This means
that Ψ(ξ (t)) → 0 for t → ∞. Since,Ψ(ξ (t)) → Ψ(Av[u]) also
holds, we have shown thatΨ(Av[u]) = 0 and then the strategy
(38) is deterministically optimal for this example. Conversely,
the cost associated toΦSOPT(w(t)) is strictly greater than
zero which means thatΦSOPT(w(t)) is not deterministically
optimal. Actually, whenw(t) = 2.8, the strategyΦSOPT(w(t))
returnsu1 = 1 andu2 = 1.8 (i.e., the pointF), whereas when
w(t) = −2.8, the strategyΦSOPT(w(t)) returnsu1 = −1.4 and
u2 = −1.4 (i.e., the pointK). On the average we have

Av[u1] = −0.2, Av[u2] = 0.2, Φ(Av[u1],Av[u2]) = 0.4.

The deterministic optimality of (38) is proven next.
Theorem 4:Assume thatΨ satisfies Assumption 4. Assume

that the gradient-based strategy (38) produces the average ¯uG =
Av[uG]. Let û the average achieved by some arbitrary strategy
such thatBu(t) = w(t) for all t. Then

Ψ(ūG) ≤ Ψ(û).

Proof: To prove thatΨ(ūG) ≤ Ψ(û), we first note that
if Ψ(ūG) = 0 the result is straightforward sinceΨ is positive
semidefinite. Therefore assumeΨ(ūG) > 0. Denote byξG(t)
the evolution of the integral variable with the gradient-based
strategy. SinceuG is the minimizer we must have

∇Ψ (ξG(t))u(t) ≥ ∇Ψ (ξG(t))uG(t) (39)

for any otheru(t) ∈ U such thatBu(t) = w(t).
Assume, by contradiction, that there exists a strategyu(t)∈

U such thatBu(t) = w(t) and thatΨ(û) < Ψ(ūG). SinceΨ is
convex, there existsβ ′ > 0 such that

∇Ψ (ūG)[û− ūG] < −β ′. (40)

Sinceū= Av[uG] and û= Av[u] are the average values, so that
Av[u−uG] = û− ū it turns out that for anyτ > 0, no matter
how large, and any 0< β < β ′ there existst ≥ τ such that

∇Ψ (ūG)[u(t)−uG(t)] < −β . (41)

Consider now the expression

∇Ψ (ξG(t))u(t)

= ∇Ψ (ξG(t))uG(t)+ ∇Ψ (ξG(t))(u(t)−uG(t)) =

= ∇Ψ (ξG(t))uG(t)+ ∇Ψ (ūG)(u(t)−uG(t))
︸ ︷︷ ︸

<−β for t≥τ

+ [∇Ψ (ξG(t))− ∇Ψ (ūG)] (u(t)−uG(t))
︸ ︷︷ ︸

→0

,

w1 w2 w3 u1 u2 u3 u4 . . . u10 u11 u12
LB 5 1 3 2 3 4 0 . . . 0 -20 -20
UB 7 4 7 7 10 6 20 . . . 20 20 20

TABLE I

LOWER BOUNDS LB AND UPPERBOUNDS UB OF DEMANDS AND FLOWS.

where the last terms goes to 0 in view of the continuity of∇Ψ
and the boundedness ofu and uG. Then for a propert large
enough

∇Ψ (ξG(t))u(t) < ∇Ψ (ξG(t))uG(t)

in contradiction with (39).
Remark 7: If Ψ is linear, then∇Ψ (ξ (t)) is constant and

therefore variableξ does not play any role. Then we can
consider the memoryless strategy suggested in [4] for linear
costs.

Remark 8:Given the averageAv[w] = w̄, the value

Ψmin = min
Bξ =w̄, ξ∈U

Ψ(ξ ) (42)

is a lower bound forΨ(Av[uG]). To see this, note thatAv[uG]
always satisfiesBAv[uG] = w̄ as well asAv[uG] ∈ U , and
thereforeAv[uG] is a generic feasible solution of problem (42).
Also, by exploiting the definition of achievable flows in [5],
we can say that if the minimizer of (42) is an achievable
flow, then the lower boundΨmin is tight in the sense that
Ψmin = Ψ(Av[uG]). Differently, if the minimizer of (42) is not
an achievable flow, thenΨmin is not tight asΨmin < Ψ(Av[uG]).

Furthermore, if we assume that ¯w is known, then we can
adopt the linear strategyu−uG = F(w− w̄) proposed [5].

Let us conclude with a brief comment on the case of
network with buffers. In presence of buffers, we can achieve
the same results discussed in this section. To see this, it suffices
to split the strategy in two parts: the first part assuring stability
and the second part deterministic optimality. Such a procedure
has already been illustrated in Section IV and therefore it will
not be further discussed here.

VI. N UMERICAL EXAMPLE AND SIMULATIONS

Consider again the network displayed in Fig. 1. We provide
a comparison between the piecewise affine strategy (static
min-max optimal strategy)ΦPWA(w) defined in (13) and
the gradient-based strategy (dynamic deterministically optimal
strategy)uG(t)= Φ(ξ (t),w(t)) as in (38). In Table I we display
lower and upper bounds of demands and flows.

The cost to minimize is (8) withρ = 0.1. Note that, we
can make functionΨ(.) depend only onu as required in
Assumption 4, by simply replacing demandsw1(t), w2(t) and
w3(t) by three artificial flowsu13(t) = w1(t), u14(t) = w2(t)
andu15(t) = w3(t). Table II summarizes the optimal balancing
flows u(k) on each vertexw(k), k = 1, . . . ,8. Observe that, from
the network operator point of view, the costΨ(u(k),w(k)) is
maximized inw(5). In other words, the worst demand is not
the maximal demand on each node.

Now, denotepk the probability of being on vertexw(k), and
consider a number of realizations with increasing probability
p5 from 0 to 1 andp2 = p3 = p4 = p6 = p7 = 1−p5

6 , p1 = 0.
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k 1 2 3 4 5 6 7 8

w(k)
1 5 5 5 5 7 7 7 7

w(k)
2 1 1 4 4 1 1 4 4

w(k)
3 3 7 3 7 3 7 3 7

u(k)
1 2 4.1 4.4 5.4 4 6 6.3 7

u(k)
2 3 3 3.6 4.6 3 3 3.7 5

u(k)
3 4 5.8 4 6 4 6 4 6

u(k)
4 1.7 2.6 2.5 2.9 2.9 3.8 3.7 4

u(k)
5 0.4 0.1 0.9 0.9 0.3 0 0.8 0.9

u(k)
6 2.1 3.7 2 3.6 2.1 3.8 2.0 3.6

u(k)
7 1.9 1.2 1.6 1.5 2.1 1.5 2 1.9

u(k)
8 0.3 1.5 1.8 2.4 1 2.1 2.5 2.9

u(k)
9 1.9 2.1 1.9 2.4 1.8 2.1 1.9 2.3

u(k)
10 0.6 1.6 0.9 2.1 0.5 1.5 0.8 2.1

u(k)
11 -1.4 -1.1 -0.7 -0.5 -1.8 -1.6 -1.2 -1.0

u(k)
12 0.2 1.5 0.0 1.2 0.2 1.6 0.0 1.2

Ψ(·, ·) 18.6 15.6 8.6 14.4 20.7 18.9 12.0 18.5

TABLE II

OPTIMAL FLOWS u(k) ON EACH VERTEX w(k) , k = 1, . . . ,8.

p5 0.2 0.4 0.6 0.8 0.95 1
ΨPWA−ΨG 4.5 5.5 5.3 4.3 1.6 0

TABLE III

COST DIFFERENCEΨPWA−ΨG FOR REALIZATIONS WITH DIFFERENTp5.

FOR p5 = 1 (WORST REALIZATION), THE COST DIFFERENCE IS NULL.

Also, let ΨPWA = Ψ(Av[ΦPWA(w)]) and ΨG = Ψ(Av[uG]) be
the average costs obtained with strategiesΦPWA(w) anduG(t)
respectively. For this example, we can computeΨPWA(w) =

∑8
k=1 pkΨ(u(k),w(k)) and deriveΨG by simulations. In partic-

ular, we simulate a set of six realizations fort from 0 to 500,
with p5 = 0.2,0.4,0.6,0.8,0.95,1. Whichever the realization,
we expect a better performance of (38) as evidenced in Table
III, where we display the cost differenceΨPWA− ΨG for
different realizations (differentp5).

Note that in correspondence to the worst realization, char-
acterized byp5 = 1, the two strategiesΦPWA(w) and uG(t)
are equivalently optimal asΨPWA−ΨG = 0 (they provide the
same costΨPWA= ΨG = 1).

Furthermore, according to our expectation, we observe that
Ψ(ξ (t)) obtained with strategy (38) always converges toΨG

on the long run. This is evidenced in Figure 4 where we plot
the time evolution of the error∆Ψ(t) := Ψ(ξ (t))−ΨG for
each one of the six realizations. We can see that the error
tends to zero for increasingt in all of the six plots. Note the
straight line in zero which is associated to the worst realization
(p5 = 1). In this case, the demand is the worst one at eacht
and∆Ψ(t) = 0 which also meansΨ(ξ (t)) = ΨG = 1 for all t.
Note that by using artificial flowsu13(t), u14(t) andu15(t), the
variableξ (t) includes also the average demands up to timet.

In Fig. 5, we simulate the gradient-based strategyuG(t)
defined in (38) (dotted) and the piece-wise strategyΦPWA(w)
defined in (13) (dashed) for a realization of the demand with
p5 = 0.4. In particular, we plot flowsui(t) and demandswi(t)
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20

t

∆ 
Ψ
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Fig. 4. Time plot of the error∆Ψ(t) := Ψ(ξ (t))−ΨG for a set of six
realizations withp5 = 0.2,0.4,0.6,0.8,0.95,1. The error tends to zero for
increasingt.

(solid) for i = 1,2,3 from top to bottom respectively. Note that
u2(t) obtained from the piecewise strategy (13) (dashed line,
middle plot) follows the peaks ofw2(t) (solid line, middle
plot) while u3(t) does not. This is evident, for instance, in the
interval from t = 10 to t = 15. This is due to the fact that arc
2 is over exploited for aboutt = 8 where demandw2(t) = 1
and the flow in arc 2 saturates at its lower valueu2(t) = 3.
The gradient-based strategyuG(t) (38) keeps memory of the
mis-match betweenw2(t) and u2(t) and for t = 10 to t = 15
the flowu2(t) (dotted line, middle) is kept constant even if the
demandw2(t) has some peaks at its highest value.
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Fig. 5. Gradient-based strategyuG(t) (38) (dotted) and piece-wise strategy
ΦPWA(w) (13) (dashed) withp5 = 0.4. Top: time plot ofw1(t) (solid) and
u1(t) obtained with the gradient-based strategyuG(t) (dotted) and with the
piece-wise strategyΦPWA(w) (dashed); middle: time plot ofw2(t) (solid) and
u2(t) (dotted and dashed); bottom: time plot ofw3(t) (solid) andu3(t) (dotted
and dashed).

VII. C ONCLUSIONS
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Network flows have been dealt with under different per-
spectives both in robust optimization and in control theory.
The present work is an attempt to emphasize connections and
analogies between the two contexts.

We have studied how to robust stabilize continuous-time
networks controlling flows with capacity constraints in the
presence of demand which unknown but bounded within a
polytope. A feature of this work is that the cost is a function
of the long-run average-flow and demand. We have seen that
assuming for the demand a worst or a neutral behavior leads
to different optimal strategies. In particular, in the first case
the resulting strategy is memoryless and can be computed via
convex optimization. On the contrary, in the second case we
must resort to strategies with memory.We have proposed a
solution based on a Lyapunov approach, in which the control
is selected on–line, among the feasible flows, as the point–wise
minimizer of the gradient of the cost of the average.
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