This is an author produced version of *Temperature dependence of impact ionization in GaAs*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/897/

Article:

http://dx.doi.org/10.1109/TED.2003.816918
Temperature Dependence of Impact Ionization in GaAs

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees

Abstract—The temperature dependence of electron and hole impact ionization in gallium arsenide (GaAs) has been determined from photomultiplication measurements at temperatures between 20 K and 500 K. It is found that impact ionization is suppressed by increasing temperature because of the increase in phonon scattering. Temperature variations in avalanche multiplication are shown to decrease with decreasing avalanching region width, and the effect is interpreted in terms of the reduced phonon scattering in the correspondingly reduced ionization path length. Effective electron and hole ionization coefficients are derived and are shown to predict accurately multiplication characteristics and breakdown voltage as a function of temperature in p⁺in⁺ diodes with i-regions as thin as 0.5 μm.

Index Terms—Avalanche diodes, avalanche photodiodes, impact ionization, ionization coefficients, semiconductor materials measurements, temperature dependence.

I. INTRODUCTION

AVALANCHE multiplication resulting from impact ionization is an important process in several types of devices, such as transistors, where it limits the maximum operating power and in avalanche photodiodes (APDs), where it provides internal gain. The impact ionization process depends on temperature, largely via scattering from optical phonons of energy \(\hbar \omega \), whose population is given by

\[
 n = \frac{1}{\exp(\frac{\hbar \omega}{kT}) - 1}.
\]

Furthermore, despite heatsinking, power devices generally operate at temperatures above ambient while other devices, such as photon counting APDs, often require cooling to suppress dark count. It is therefore of interest to characterize the temperature dependence of impact ionization to predict accurately device behavior and optimize device design.

Impact ionization is conventionally described in terms of coefficients \(\alpha \) and \(\beta \) for electrons and holes respectively, which are the reciprocal of the mean distance between successive ionization events.

The recently renewed interest in measuring the temperature dependence of impact ionization in GaAs [1], [2] is due to the incomplete and conflicting data reported in earlier literature [3]–[6]. Chang and Sze [3] performed the first investigation into the temperature dependence of ionization coefficients in GaAs, in which coefficients were shown to change in a highly nonuniform way with temperature. Mars [4] followed up this work by predicting ionization coefficients as a function of temperature; however, the agreement between measured breakdown and predicted voltages was poor. Capasso and co-workers [5], [6] found \(\beta > \alpha \) at temperatures up to 470 K and \(\alpha > \beta \) and above at 470 K, in disagreement with other investigations at room temperature [7], [8].

In [1] and [2] electron multiplication was measured as a function of temperature at electric fields up to 400 kV/cm. However, in modern submicron devices the fields can be significantly higher. With increasing electric field strength \(F \) the distance over which a carrier must travel before its ionization coefficient comes into equilibrium with the electric field, termed the “dead space,” becomes an increasingly significant fraction of the mean ionization path length [9], [10]. This is because \(\alpha \) and \(\beta \) depend exponentially on inverse fields, while the dead space, given approximately at high fields by the ballistic ionization path length, varies as

\[
 d = \frac{E_{th}}{qF}.
\]

Here \(E_{th} \) is the ionization threshold energy and \(q \) is the electronic charge.

Harrison et al. [11] observed that in Al\(_{0.6}\)Ga\(_{0.4}\)As the temperature dependence of \(\alpha \) reduces with increasing field, essentially because carriers scatter less often during their correspondingly shorter ionization path lengths. In this paper, we examine the effect in GaAs. We report measurements of photomultiplication on a series of GaAs diodes with intrinsic region thicknesses ranging from \(w \sim 1 \) μm down to \(\sim 0.025 \) μm, over temperatures between 20 and 500 K. Both p⁺in⁺ and n⁺ip⁺ diodes were measured using both pure electron and pure hole injection in order to extract both \(\alpha \) and \(\beta \).

II. EXPERIMENTAL DETAILS

A series of GaAs p⁺in⁺ and n⁺ip⁺ diodes was grown using Be and Si as p- and n-type dopants respectively. Circular mesas with diameters of 100 to 400 μm, with annular top contacts to allow optical access, were fabricated by wet chemical etching. The nominal i-region thicknesses of the p⁺in⁺ diodes were \(w = 1, 0.5, 0.3, 0.1, 0.05 \), and 0.025 μm, respectively, while the n⁺ip⁺ diodes were grown with \(w = 1 \) and 0.1 μm. All diodes were grown by MBE, with the exception of the \(w = 0.5 \) μm p⁺in⁺ diode which was grown by MOVPE. The i-region

Manuscript received July 17, 2003. This work was supported in part by the EPSRC (U.K.). The review of this paper was arranged by C.-P. Lee.

C. Groves, J. P. R. David, and G. J. Rees are with the Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, U.K. (e-mail: c.groves@sheffield.ac.uk).

R. Ghin is currently with Agilent Technologies, Singapore Pte Ltd, Singapore.

Digital Object Identifier 10.1109/TED.2003.816918
thicknesses were estimated from capacitance–voltage (C–V)
and, in some cases, SIMS measurements, to be $w = 1.1$, 0.48,
0.28, 0.15, 0.049, and 0.023 μm, respectively, in the $p^+\text{in}^+$
diodes, and $w = 0.95$ and 0.005 μm in the $n^+\text{ip}^+$
diodes. These measurements also showed that the cladding doping
was high ($>10^{18}$ cm$^{-3}$) in comparison with the unintentional
doping in the i-region ($\sim 10^{16}$ cm$^{-3}$) in all cases.

All devices were checked for low dark current and sharp
breakdown. Pure electron (hole) initiated multiplication,
M_e (M_h) was achieved by illuminating the top surface of the
$p^+\text{in}^+$($n^+\text{ip}^+$) diodes with laser light of wavelengths 633, 594,
or 515 nm. The absorption coefficient of GaAs at 633 nm is
approximately 4×10^4 cm$^{-1}$ [12] and so we estimate that more
than 98% of the incident light is absorbed in the 1 μm $p^+\text{(n}^+$)
cladding region. The light spot was focussed down to less than
10 μm in diameter to avoid significant mesa edge injection.
The incident laser power was varied to provide photocurrents
between 0.1 and 10 μA to check that multiplication was
independent of primary photocurrent.

DC multiplication measurements were obtained by normaliz-
ing the measured dc photocurrent as a function of reverse bias
after subtracting the dark current. In cases where the dark cur-
cent was high, the incident light was chopped mechanically and
the resultant ac photocurrent detected with a lock-in amplifier.
The measured photocurrent was corrected for the bias-depen-
dent collection efficiency of the depletion region after Woods et
al. [13]. Photocurrent measurements were made on a number of
devices across the wafers to ensure reproducibility.

Low-temperature measurements were performed on all layers
by placing the devices bonded onto TO-5 headers in a closed
cycle He cryostat. High-temperature (>200 K) photomultipli-
cation measurements were performed on devices bonded onto
flat ceramic headers placed in a furnace. The breakdown voltage,V_{bd},
is defined here as the voltage for which the dark current in-
creases by more than an order of magnitude over a small voltage
increment (~ 100 mV). Where V_{bd} could not be determined re-
diably from dark current or photomultiplication measurements,
an estimate was obtained by fitting the measured multiplication
characteristic to the Miller expression [14], which is given below

$$M_e = \frac{1}{1 - (V/V_{bd})^s},$$

(3)

Here s is dimensionless constant. V_{bd} was measured at high
temperatures by dark current measurements on the $w = 1.1$ and
0.48 μm $p^+\text{in}^+$ diodes; “soft” breakdown behavior prevented
similar measurements on the other devices. V_{bd} was determined
on a number of devices to ensure reproducibility and that break-
down was not due to defects.

To check that temperature variation was not appreciably
affecting the electric field profile via carrier freeze-out in the
cladding layers, low-temperature C–V measurements were
made on the $w = 0.023$ μm $p^+\text{in}^+$ layer. The C–V profiles
at 290 and 77 K were identical, confirming that, to within the
resolution of the measurement, the electric field profile did not change.

![Dark current as measured on a $w = 1.1$ μm device at 20, 40, 60, 77, 100, 150, 200, 250, 290, 350, 400, 450, 550, and 500 K, respectively.](image1)

![Measured M_e for $w = 0.48$ μm device as a function of temperature (as in Fig. 1).](image2)

III. RESULTS AND DISCUSSION

Fig. 1 shows typical dark current characteristics for the
$w = 1.1$ μm $p^+\text{in}^+$ device at temperatures between 20 and
500 K. Breakdown appears abrupt for all curves shown, despite
increasing dark current with temperature. These curves are
typical of the other devices measured, with the exception of the
$p^+\text{in}^+$ diodes having $w = 0.48$ and 0.023 μm which showed
significantly increased dark current. It is clear that V_{bd} has a
positive temperature coefficient, confirming that breakdown is
due to avalanching rather than tunnelling.

Measurements of $M_e(M_h)$ were carried out at temperatures
between 20 and 290 K on $p^+\text{in}^+\text{(n}^+\text{ip}^+$) diodes of all thick-
nesses, and also between 290 and 500 K on the $w = 0.48$ μm
$p^+\text{in}^+$ diode. Fig. 2 shows M_e for a $w = 0.48$ μm $p^+\text{in}^+$
diode at temperatures between 20 and 500 K. As expected, increasing
the temperature causes the multiplication characteristic to shift
to higher voltages, since higher electric fields are required to
offset the increase in carrier cooling by phonon scattering and
maintain multiplication. Fig. 2 also shows that the temperature
dependence of multiplication is not uniform, since the multipli-
cation curves crowd together at low temperatures. This is prob-
ably due to the saturation of the phonon emission ($\sim n + 1$) and
absorption ($\sim n$) scattering rates at low temperatures where n
approaches zero [2].
Fig. 3. Measured M_e characteristics for the $w = 1.1, 0.49, 0.15, 0.049$, and $0.023 \mu m$ pi^n diodes at temperatures between 20 and 290 K (as in Fig. 1).

Fig. 4. Measured M_h characteristics for the $w = 0.95$ and $0.095 \mu m$ ni^+ diodes at temperatures between 20 and 290 K (as in Fig. 1).

Fig. 5. V_{i41} (including a 1.2 V built-in voltage) versus temperature normalized to the 290 K value for all pi^n (filled symbols) and ni^+ (hollow symbols) diodes.

Figs. 3 and 4 show similar multiplication characteristics for all pi^n (ni^+) diodes, respectively, displayed on a log scale, confirming that multiplication has been determined reliably down to levels of $M_e(M_h) = 1.01$ before noise begins to dominate. The $w = 0.28 \mu m$ pi^n diode is omitted for the sake of clarity. It is clear from this figure that the temperature dependence of $M_e(M_h)$ decreases markedly with thickness of the multiplication region, in agreement with the findings for Al$_{0.4}$Ga$_{0.6}$As [11]. This behavior also carries over into the breakdown voltage, V_{i41}, as shown in Fig. 5.

Fig. 6 compares the field dependence of M_e and M_h at various temperatures for the nominally $w = 1 \mu m$ pi^n and ni^+ diodes, normalized to the breakdown field at 290 K. It can be seen that M_e shifts in electric field with temperature at approximately the same rate as M_h (as w in the pi^n diode is slightly larger than in the ni^+ diode, M_h is expected to show a greater shift with temperature if it were measured on the pi^n diode). This implies that the rates at which α and β change with temperature are similar, in agreement with Zheng et al. [1].

IV. IONIZATION COEFFICIENTS

Deriving ionization coefficients for use over a wide field range is not straightforward. At low fields, the ionization coefficient depends only upon the local electric field and so coefficients derived on one structure can be used to accurately predict multiplication for an arbitrary structure. However, in devices where the electric field is high, or changing rapidly, the analysis is more complicated, as the ionization behavior at a particular point depends upon the carrier’s history; a property which is unique to the device upon which the measurement was made. In order to recover ionization coefficients that can be used on arbitrary structures, a model that implicitly accounts for a carrier’s history should be used [15]–[17]. These models have proven very successful in reproducing multiplication, breakdown, and noise characteristics of APDs, however, they are complex and not easily used.

In an effort to preserve simplicity, while also maintaining some ability to predict avalanche behavior in arbitrary structures, we follow the approach of Plummer et al. [18], [19] for deriving “effective” ionization coefficients, which can be used in simple analytical formulae [20] to predict multiplication and breakdown behavior. The approach involves deriving the dependence of ionization coefficients for a range of devices with different w using a local model and parameterizing the envelope to these resulting curves. Ionization coefficients derived by this method have been shown to be surprisingly effective at predicting multiplication in structures with thickness down to $w = 0.5 \mu m$ and breakdown behavior in devices as thin as $w = 0.2 \mu m$ [18], [19]. The reason why these coefficients work well, despite the exclusion dead space effects, is discussed in more detail elsewhere [18]. While this approach is not as accu-
Since the widths of the nominally w and n^+p^+ diodes are actually different, the technique described by David et al. [21] for deducing local ionization coefficients is used. This approach allows accurate determination of α and β from M_e and M_h without complementary multiplication curves measured on the same width of device, at the expense of a reduction in field range over which the ionization coefficient is determined. α and β at high fields were determined by considering the breakdown voltages of the $w = 0.18 \mu m$ and $0.15 \mu m$ p$^+i^+p$ devices. The data of Bulman et al. [7] were used to predict the α/β ratio at the breakdown field, which was then assumed to be independent of temperature (after Fig. 6 and [1]). This gave α and β at various fields which could be used to derive an expression for the effective ionization coefficient. The Chynoweth expression, given below, was chosen to describe the field dependence of the ionization coefficient

$$\alpha(F) = A \exp \left[- \left(\frac{B}{F} \right)^C \right].$$

A least squares fit to the calculated ionization coefficients was performed, treating A, B, and C as adjustable parameters. The coefficients obtained for all temperatures between 20 and 290 K are shown in Table I, and selected parameterizations are shown in Fig. 7. Owing to the lack of ionization coefficient data at high electric fields the parameterizations are not expected to work well for fields greater than 400 kV/cm$^{-1}$. At electric field strengths significantly in excess of 400 kV/cm$^{-1}$ ionization behavior is not significantly temperature dependent and so ionization coefficients determined at 290 K, for example [18], could be used at other temperatures.

As a test of the parameterized coefficients, Fig. 8 shows the predicted multiplication for an ideal $w = 0.48 \mu m$ p$^+i^+p$ diode, compared with the measured characteristic. It can be seen that the agreement is good, both at low and high multiplications. Only three temperatures are shown for the sake of clarity, all other temperatures show similar or better quality of fit. This agreement is not merely a check of self-consistency, as only the ionization coefficients at breakdown for the $w = 0.48 \mu m$ p$^+i^+p$ diode were considered when deriving the parameterizations. The agreement is expected to deteriorate at low multiplication values in thinner structures owing to the poor treatment of dead space effects. Nevertheless, Fig. 8 shows that the present parameterizations can be used to give reliable estimates of breakdown and multiplication in arbitrary structures.

V. CONCLUSION

The electric field dependence of the electron and hole ionization coefficients in GaAs has been measured at temperatures between 20 and 290 K. The results show that as the temperature is reduced the ionization coefficient is enhanced owing to a reduction in the phonon population. It has also shown that the temperature dependence of impact ionization reduces with reducing device thickness.

Effective ionization coefficients have been derived and have been shown to predict accurately multiplication and breakdown in devices with dimensions as small as 0.5 μm. The agreement is expected to deteriorate in thinner structures, however it has been shown that the temperature dependence of ionization in thin devices is small.

ACKNOWLEDGMENT

C. Groves thanks Bookham Technologies for a CASE award.
REFERENCES

C. Groves was born in Leeds, U.K., in 1980. He received the B.Eng. (with honors) degree in electronic engineering (solid-state devices) from the University of Sheffield, Sheffield, U.K., in 2001. He is currently pursuing the Ph.D. degree at the same university, examining various topics in impact ionization.

R. Ghin received the B.Eng. and Ph.D. degrees from the Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, U.K., in 1994 and 1999, respectively.

In 1999, he joined Agilent Technologies, Singapore, and began work on reliability of fiber optic communication components. He subsequently joined research and development in 2000 to work on high-speed DFB lasers and on the manufacture of optical components. His interests are in active devices used in fiber optic communication links.

J. P. R. David received the B.Eng. and Ph.D. degrees from the Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, U.K., in 1979 and 1983, respectively.

In 1983, he joined the Department of Electronic and Electrical Engineering, University of Sheffield, where he worked as a Research Assistant investigating impact ionization. In 1985, he became responsible for characterization within the SERC (now EPSRC) Central Facility for III–V semiconductors at the same university. His current research interests are piezoelectric III–V semiconductors and impact ionization in bulk and multi-layer structures.

G. J. Rees received degrees in physics and theoretical physics from Oxford University, Oxford, U.K., and Bristol University, Bristol, U.K.

He has since been a Professor with Rome Universita della Scienze, Rome, Italy, Imperial College London, London, U.K., and Caswell (now Bookham) Casswell, London, Lund University, Lund, Sweden, and Oxford University. He is currently a Professor at the University of Sheffield, Sheffield, U.K. His research interests are in the physics of semiconductors and devices.