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Abstract 

Geological carbon sequestration (GCS) has been identified as having the potential to reduce increasing 

atmospheric concentrations of carbon dioxide (CO2).  However, a global impact will only be achieved if 

GCS is cost-effectively and safely implemented on a massive scale.  This work presents a 

computationally efficient methodology for identifying optimal injection strategies at candidate GCS sites 

having uncertainty associated with caprock permeability, effective compressibility, and aquifer 

permeability.  A multi-objective evolutionary optimization algorithm is used to heuristically determine 

non-dominated solutions between the following two competing objectives: 1) maximize mass of CO2 

sequestered and 2) minimize project cost.  A semi-analytical algorithm is used to estimate CO2 leakage 

mass rather than a numerical model, enabling the study of GCS sites having vastly different domain 

characteristics.  The stochastic optimization framework presented herein is applied to a feasibility study 

of GCS in a brine aquifer in the Michigan Basin (MB), USA.  Eight optimization test cases are performed 

to investigate the impact of decision-maker (DM) preferences on Pareto-optimal objective-function values 

and carbon-injection strategies.  This analysis shows that the feasibility of GCS at the MB test site is 

highly dependent upon the DM’s risk-adversity preference and degree of uncertainty associated with 

caprock integrity.  Finally, large gains in computational efficiency achieved using parallel processing and 

archiving are discussed. 



 

1 Introduction 

Geological carbon sequestration (GCS) has been identified as a prominent technology to manage 

increasing atmospheric concentrations of carbon dioxide (CO2) (Nordbotten and Celia 2012, Pacala and 

Socolow 2004), however, the effective application of GCS will require a global implementation of large 

numbers of carbon injection projects.  While an individual large coal-fired power plant may emit up to 5-

10 megatonnes (Mt) of CO2 per year (Birkholzer et al. 2012), total annual global anthropogenic carbon 

emissions measured in mass of CO2 are approximately 30,000 Mt (Nordbotten and Celia 2012).  Results 

from Eccles et al. (2012) suggest that specific regions of a small number of candidate aquifers will 

provide the majority of low cost geological CO2 storage.  As the selection of the appropriate reservoir is 

crucial to the success of a GCS project (Bossie-Codreanu and Le Gallo 2004), many potential injection 

sites will need to be assessed world-wide for GCS suitability.  Therefore, the efficient preliminary 

characterization of candidate GCS injection sites has the potential for massive resource savings.  In 

addition, a comprehensive pre-screening effort will increase GCS storage reliability by eliminating “bad” 

and identifying “good” GCS reservoirs. 

 

Large-scale conjunctive preliminary project planning will involve the characterization, optimization, and 

risk assessment of several potential GCS sites.  There are, however, several difficulties associated with 

these tasks.  The first is that the large-scale, multiphase numerical modeling of several potential injection 

sites for the purpose of initial assessment is infeasible due to the effort involved in model construction 

and calibration.  Data characterizing the subsurface domain are typically scarce, which introduces 

parameter uncertainty and adds to the complexity of modeling GCS.  Also, because of their propensity to 

be computationally expensive (Espinet and Shoemaker 2013), the direct use of large-scale, multiphase 

numerical models would be unrealistic in simulating the high volume of realizations needed for risk 

assessment and optimization.  

 



The high computational cost associated with numerical models may be reduced by the use of data-based 

response surface methods (e.g. Box and Draper 2007).  However, it is the authors’ intent for the resulting 

framework to ultimately be used to optimize and compare large numbers of potential injection sites 

having vastly different domain characteristics.  Creating and calibrating each potential injection site’s 

numerical model, as well as training the resulting response surface would require user expertise and large 

investments of computational time.  This work has therefore chosen to use a semi-analytical multiphase 

flow model presented by Nordbotten et al. (2009) for multiphase subsurface flow simulation.  The semi-

analytical leakage algorithm is very general and can be applied to simplified computational models of the 

vast majority of potential injection sites. 

 

An additional difficulty associated with preliminary GCS project planning is that potential storage 

reservoirs typically exhibit a high degree of uncertainty associated with physical parameters.  Celia et al. 

(2011) identified abandoned (herein referred to as “passive”) well permeabilities as the most dominant 

uncertainty parameter when estimating fluid leakage due to GCS.  In North America, significant numbers 

of passive wells may perforate the caprock in formations suitable for GCS (Celia et al. 2009, Nogues and 

Dobossy 2012, Nordbotten and Celia 2012).  Most likely, very little information exists on the location 

and/or sealing properties of these wells.  However, several efforts have been made to investigate and 

account for the uncertainty associated with passive well permeability.  Watson and Bachu (2008; 2009) 

developed a passive well integrity scoring index based upon typically available information (e.g. 

completion date, regulatory requirements, etc.).  Crow et al. (2009) physically sampled and analyzed 

segments of a 30 yr. old passive well that had been continuously exposed to 96% CO2 finding that cement 

interfaces are more important than the cement matrix when quantifying migration pathways. 

 

Multiphase subsurface optimization problems are typically highly non-linear due to the irregular spatial 

location of preferential flow pathways and the multiphase flow (i.e. CO2 and brine) equations governing 

pressure response and CO2 plume migration.  Therefore, a robust global optimization tool is needed to 



find best performing injection strategies that maximize the mass of CO2 sequestered while minimizing 

project cost by selecting optimal injection well locations and injection rates.  In multi-objective problems, 

a Pareto-optimal, or non-dominated, solution outperforms all other solutions with respect to all objectives 

(Reed 2013).  Multi-objective evolutionary algorithms (MOEAs) have been shown to be effective in 

providing Pareto-optimal solutions for a large number of subsurface flow applications possessing several 

decision variables (Alzraiee et al. 2013, Baú 2012, Chen et al. 2007, Hansen et al. 2013, Kumphon 2013, 

Mantoglou and Kourakos 2006, Nicklow et al. 2010, Peralta et al. 2014, Reed and Kollat 2013, Singh 

2013, Singh 2014, Singh and Chakrabarty 2010, Tabari and Soltani 2012, Zheng, F., Zecchin 2014).  In 

particular, (Reed 2013) presents a comprehensive review of state-of-the-art MOEAs highlighting key 

algorithm advances which may be used to identify critical tradeoffs in water resources problems.  A non-

dominated sorting genetic algorithm (NSGA-II; Deb et al. 2002) with ε-dominance (Laumanns et al. 

2002) has been selected as the computational optimization tool because it is among the most reliable and 

best performing multi-objective optimization evolutionary algorithms (Cheng et al. 2009). 

 

If computationally feasible, stochastic methods should be applied in cases where parameter uncertainty is 

of significant concern.  A popular approach for accomplishing this is to apply a Monte Carlo (MC) 

method where simulation is performed for an ensemble of uncertain parameter sets to estimate the 

statistics of optimization objectives and constraints.  There are several examples in the literature where 

MOEAs are coupled with MC techniques to optimize groundwater problems having parameter 

uncertainty.  A multi-objective groundwater flow optimization problem with aquifer hydraulic 

conductivity uncertainty is solved by Baú (2012) using an NPGA.  Alzraiee et al. (2013) used a MC-

based Bayesian update scheme to approximate posterior uncertainty in hydraulic conductivity and head 

using an NSGA-II when performing multi-objective design of aquifer monitoring networks.  A MC 

approach was also used by Mantoglou and Kourakos (2006) when determining optimal remediation 

methods for groundwater aquifers having hydraulic conductivity uncertainty.  MC techniques are also 

used to investigate parameter uncertainty associated with GCS (Goda and Sato 2011, Oladyshkin et al. 



2011, Viswanathan et al. 2008, Wagner and Gorelick 1987, Wriedt et al. 2014).  In particular, Celia et al. 

(2011) applied a stochastic Monte Carlo approach to estimate leakage risk associated with passive well 

permeability uncertainty.  Nogues and Dobossy (2012) used a large-scale Monte Carlo method to explore 

the effects of caprock permeability uncertainty on fluid leakage estimation, finding that the amount of 

CO2 leakage from GCS is typically acceptable for climate change mitigation. 

 

Herein, several computational tools are integrated into a stochastic multi-objective optimization 

framework for the purpose of performing large-scale GCS site feasibility studies.  These tools include 1) a 

semi-analytical leakage algorithm to rank the performance of trial injection strategies; 2) a Monte Carlo 

procedure to quantify risk resulting from parameter uncertainty; and 3) a NSGA-II with ε-dominance 

(Deb et al. 2002) to heuristically determine Pareto-optimal solutions between competing objectives.  The 

paper begins with a detailed description of the stochastic optimization methodology including an 

overview of both the semi-analytical CO2 leakage algorithm and the NSGA-II with ε-dominance.  Next, a 

general description and GCS-specific characterization of a saline aquifer situated within the Michigan 

Basin (MB) is presented.  Following this is the formulation of the optimization case study at a MB test 

site  The framework is then used to investigate the following three goals regarding the stochastic 

optimization of the MB site: 1) quantify the impact of decision maker (DM) preferences on heuristically 

determined Pareto-optimal objective values (i.e. mass sequestered and project cost); 2) quantify the 

impact of DM preferences on carbon injection strategy (i.e. the selection of injection well flow rate and 

location), and; 3) assess the suitability of the MB test site for GCS.  Finally, gains in computational 

efficiency using parallel processing and simulation archiving are discussed. 

 



2 Methodology 

2.1 Semi-Analytical CO2 Leakage Estimation 

While other semi-analytical algorithms provide insight regarding specific processes, this work has chosen 

to use a modified version of the ELSA (Estimating Leakage Semi-analytically) multiphase subsurface 

flow model (Nordbotten et al. 2009, Celia et al. 2011).  This model has been used in several applications 

(Nogues and Dobossy 2012, Bielicki et al. 2013 & 2014) because it is the only semi-analytical model able 

to simulate multiphase flow in domains having multiple injection wells, geological layers, and passive 

wells (i.e. weak caprock areas).   

 

Figure 1 shows a schematic of the semi-analytical leakage model’s computational domain.  This domain 

is structured as a stack of L+1 caprock layers separated by L aquifer layers, perforated by M carbon 

injection wells and N passive wells.  Aquifers are assumed to be horizontally level, homogenous, and 

isotropic.  Caprock layers are assumed to be impermeable, except where perforated by passive wells.  

Injection wells are able to inject into any layer.  Initially, fluid is not flowing through any of the passive 

wells because the entire domain is assumed to be saturated with brine at hydrostatic pressure.  Additional 

assumptions made by this model include: a) aquifers exhibit horizontal flow; b) capillary pressure is 

negligible, resulting in a sharp CO2-brine interface; c) CO2 plume thickness at any given location is 

assumed to be the maximum plume thickness from all sources and sinks in the aquifer; d) pressure 

response from sources and sinks can be superimposed in each aquifer; and e) the injectivity of the 

formation remains constant.  Several of these processes are important (Cihan et al. 2013, Court et al. 

2012, Doster et al. 2013, Gasda et al. 2011, Gasda et al. 2012, Heße et al. 2013, Juanes et al. 2009) and 

should be included (Buscheck et al. 2012, Gasda et al. 2009, Huang et al. 2014, Nordbotten and Flemisch 

2012) when accuracy is more important that efficiency (e.g. final project design). 

 

 



At the start of injection, aquifer fluid pressures throughout the domain begin to change resulting in 

pressure differentials across caprock layers and fluid flux through passive wells.  It is therefore very 

important to understand aquifer fluid pressure response resulting from changes in the mass storage of CO2 

and brine.  A pressure response function for the injection of CO2 into a brine-filled confined aquifer was 

derived by Nordbotten and Celia (2005).  Celia et al. (2011) expresses this radial pressure response p 

[ML
-1

T
-2

] at the bottom of the aquifer where a single well injects CO2 as: 

 

𝑝 = 𝑝! + 𝜌! − 𝜌! ∙ 𝑔 ∙ 𝐻 ∙ ∆𝑝! (1)  

 

where p0 is the initial fluid pressures at the bottom of the aquifer, 𝜌! is fluid density [ML
-3

] (α denotes the 

phase type, b for brine and c for CO2), 𝑔 is gravitational acceleration [LT
-2

] and 𝐻 is aquifer thickness 

[L].  In Eqn (1), ∆𝑝! (/) is defined by: 
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where, 
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 (3)  



𝛤 =
2𝜋 𝜌! − 𝜌! 𝑔𝑘𝐻

!

𝜇!𝑄
 (4)  

𝜓 =
4.5𝜋𝐻𝜙𝑘 1 − 𝑆

!

!"#

𝜇!𝑐!""𝑄
	 (5)  

ℎ
!
=
ℎ(𝜒)

𝐻
=

1

𝜆 − 1

2𝜆

𝜒
− 1 	 (6) 

𝐹(ℎ′) =
−𝜆

𝜆 − 1
ℎ′ −

𝑙𝑛 𝜆 − 1 ℎ′ + 1

𝜆 − 1
	 (7)  

 

In Equations (2-7): B is aquitard thickness [L]; h is CO2 plume thickness [L]; h’ [/] is the CO2 plume 

thickness relative to the aquifer thickness H; 𝑆
!

!"# is the residual saturation of the brine [/]; t is time [T]; k 

is the aquifer permeability [L
2
]; µ is the dynamic viscosity [ML

-1
T

-1
]; φ is the aquifer porosity [/]; Q is the 

total volumetric well flux [L
3
T

-1
]; ceff is the effective compressibility of the fluid and solid matrix [M

-

1
LT

2
]; and r is the radial distance [L]. Also, F(h’) is an offset term related to the vertical pressure 

distribution (Celia et al. 2011) and the mobility ratio is defined as λ = λc/λb, where λα = kr,α/µα and kr,α is the 

relative permeability of phase α (α = b for brine or α = c for CO2). 

 

To determine the fluid overpressure at any given time throughout the aquifer system, Nogues and 

Dobossy (2012) applied superposition of effects derived from the application of Eqn (1) for all the 

volumetric sources and sinks corresponding to CO2 injection wells and passive wells. Consequently, the 

fluid pressure at any given time t, at the bottom of the generic aquifer l (l=1,2,..,L) and for each passive 

well j (j=1,2,..,N) can be expressed as: 

 



𝑝!,! = 𝑝!! + 𝜌! − 𝜌! ∙ 𝑔 ∙ 𝐻! ∙ ∆𝑝! 𝜒!",!,!

!

!"!!

+ ∆𝑝! 𝜒!,!,!

!

!!!

 (8)  

 

where 

𝜒!",!,! =
2𝜋𝐻!𝜙! 1 − 𝑆!,!

!"#
𝑟!",!
!

𝑄!",! ∙ 𝑡
 (9)  

 

 and 

 

𝜒!,!,! = 2𝜋𝐻!𝜙! 1 − 𝑆!,!
!"#

𝑟!,!
! 𝑄!,!−𝑄!,!!! ∙ 𝑑𝜏

!

!

 (10)  

 

 By following this approach, the fluid pressures at the bottom of each aquifer and at each passive well can 

be grouped into the N×L vector 𝐩: 

 

𝐩(t) = 𝐩 𝐏𝟏,𝐌(t)  (11)  

 

Eqn (11) shows that 𝐩(t) is a function of the array 

 

𝐏! ≡ 𝐇,𝛟,𝐤, 𝑺
!

!"#
, 𝐫 ,𝐐!", 𝜌!, 𝜌!,𝑔, 𝜆,𝜋, 𝜇!, 𝑐!""  (12)  

 

In Eqn (12): the L×1 vectors H, 𝛟, 𝑺
!

!"#
 and k include the thicknesses, porosities, brine residual 

saturations and permeabilities of all aquifers; 𝐐!" is M×L vector including the CO2 inflow rates for each 



aquifer l (l=1,2,..,L) for injection well iw (iw=1,2,..,M); and the (M+N)×(M+N) r matrix includes the 

relative distances between injection and passive wells. 

 

In addition, 𝐩(t) (Equation 9) is a function of the N×L vector 𝐌(t), whose generic component 𝑀!,!(𝑡) 

represents the net cumulative fluid mass transferred into aquifer l through passive well j. This mass is 

calculated as: 

 

𝑀!,! 𝑡 = 𝜌!"",!,! 𝜏 ∙ 𝑄!,! 𝜏 − 𝑄!,!!! 𝜏 ∙ 𝑑𝜏

!

!

 (13)  

 

where 𝜌!"",!,! 𝜏  is the effective fluid density in aquifer 𝑙, at passive well 𝑗 which is time-dependent since 

the leaking fluid composition is a function of the phase saturations of CO2 and brine, which vary based on 

the CO2 plume location. The effective fluid density is estimated as 𝜌!"",!,! = 𝜌! ∙ 𝑆!!,! + 𝜌! ∙ 1 − 𝑆!!,! .  

 

Since application of Eqn (11) requires knowing the temporal evolution of leakage rates through passive 

wells 𝑄!,!, Nogues and Dobossy (2012) propose to use the sum of the flow rates, 𝑄!!,!, for each phase α, 

calculated using the multiphase version of Darcy’s law across each confining layer l for each passive well 

j: 

 

𝑄!,! =  𝜋𝑟!"
!

!,!

𝑘!,!!,!
𝑘!"!,!

𝜇!𝐵!
𝑝!,!!! − 𝜌!𝑔𝐵! − 𝑔𝜌!𝐻!!! − 𝑝!,!

!!!,!

 (14)  

 

In Eqn (14), 𝑟!"!,!
 is the passive well radius and 𝑘!"!,!

 is the single phase passive well permeability for 

passive well j (j=1,2,..,N) and aquitard layer l. Note that in order to apply Eqn (14), fluid pressures 𝑝!,!  as 



well as CO2 relative thicknesses in passive well pathways, must be known to estimate pressure gradients, 

fluid saturations and relative permeability values. Given Eqn (14), the flow rates across each aquitard l 

(l=1,2,..,L) for each passive well j (j=1,2,..,N) can be can be grouped into the N×L vector 𝐐: 

 

𝐐(t) = 𝐐 𝐏𝟐,𝐩(t)  (15)  

 

where the array 𝐏! is given by: 

 

𝐏! ≡ 𝐁,𝐇, 𝐫!",𝐤!",𝐤!,!,𝐤!,!, 𝜌!, 𝜌!, 𝜇!, 𝜇!,𝑔  (16)  

 

In Eqn (16), the (L+1)×1 vector 𝐁 includes the aquitard thicknesses, the N×(L+1) matrices 𝐫!" and 

𝐤!" contain the passive well radii and permeabilities, and the N×(L+1) matrices 𝐤!,! and 𝐤!,! include the 

relative permeabilities of CO2 and brine at passive wells.  

 

By combining Equations (9) and (13), a set of N∙L non-linear equations in N∙L unknowns is obtained. 

These unknowns are the fluid pressures at the bottom of each aquifer and at each passive well (Equation 

8), and the flow rates (Equation 12) across each aquitard for each passive well. 

 

In an effort to increase computational efficiency, this work has chosen to neglect effects from upconing 

and apply an Iterative Global Pressure Solution (IGPS) modification where a fixed-point iteration scheme 

(Takahashi 2000) is applied to solve the system of non-linear equations introduced above at a generic 

time t given the solution at time t-Δt obtained at the previous time step.  The resulting CO2 leakage 

simulator is highly efficient, capable of simulating 50 years of injection into a domain with 100 passive 

wells and 4 aquifer/aquitard layers in less than 1 second on a standard laptop. 



 

2.2 Stochastic Multi-objective GCS Problem 

For any given potential GCS reservoir, a set of Pareto-optimal injection scenarios exist which (a) 

maximize the deterministic mass of CO2 injected, Massinj, and (b) minimize the stochastic project cost, C,: 

       𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑎 :         max Mass!"# 𝐐    (17)  

 

  𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑏 :         min 𝐶 𝐱,𝐐, 𝐬   (18)  

 

In Eqns (17-18), spatial position, x, and flow rate, Q, are the two decision variables comprising each 

injection strategy and 𝐬 is the set of stochastic state variables (i.e. aquifer pressure distribution and CO2 

plume locations and thicknesses) dependent on each simulation’s injection strategy and stochastic 

parameter set.  Massinj is simply the total mass of CO2 injected into the domain during simulation, and is 

calculated by multiplying the sum of injection well flow rates by the injection duration, tinj: 

 

Mass!"# = 𝑄!!" ∗ 𝑡!"#

!

!"!!

 (19)  

 

where M is the number of injection wells, and 𝑄!!"  is the CO2 mass injection rate for injection well iw.  

 

Note that the project cost, C, is a stochastic variable and is here estimated using a Monte Carlo (MC) 

simulation based on a stochastically generated parameter set.  In order to quantify the risk of CO2 leakage 

associated with uncertain aquifer permeability, effective compressibility, and passive-well segment 

permeability, an ensemble of NMC parameter set realizations [(𝐤(!), 𝐤(!), … , 𝐤(!!")), (𝐜
!""

(!)
, 𝐜

𝐞!!

(!)
, … , 

𝐜
!""

(!!")), (𝐤!"
(!)

, 𝐤!"
(!)

, … , 𝐤!"
(!!"))], with each having an equal probability of occurrence, is generated for 



each trial injection strategy.  For each parameter realization, aquifer permeabilities and effective 

compressibilities are assigned a value using log-normal distributions.  Each passive-well segment is 

assigned either an “intact” (low) or “degraded” (high) (Celia et al. 2011, Nogues and Dobossy 2012) 

permeability value.  This is accomplished using a simple bi-value probability distribution function (PDF).  

Passive-well segments have a Pintact chance of being assigned an “intact” permeability value and a (1 - 

Pintact) chance of being assigned a “degraded” permeability value.  The cost, Costi, associated with each 

MC realization, i (i = 1,2,…,NMC), consists of the summation of each injection well’s (iw) capital cost, 

Cap, operational cost, OP, surface maintenance cost, SurM, subsurface maintenance cost, SubM, and 

variable cost, Var, added to the cost associated with CO2 leakage, LC: 

 

Cost!(𝐐,Mass!"#$)

= Cap!" + OP!"(𝑡!"#) +  SurM!"(𝑡!"#) + SubM!"(𝑡!"#)

!

!"!!

+ Var!"(𝑄!", 𝑡!"#) + LC[Mass!"#$(𝐐, 𝐬!)] 

(20)  

 

where si is the set of state variables for each MC realization including the CO2 saturation and total flow 

rate in each passive-well segment. LC is estimated as: 

 

LC[Mass!"#$(𝐐, 𝐬!)] = 𝑐! ∙Mass!"#$(𝐐, 𝐬!)
!! (21)  

 

In Eqn (21), cL is the coefficient representing penalty cost per unit of CO2 leakage ($/kg) and rA is a risk 

adversity factor reflecting the preferences of the DM by exponentially increasing LC in relation to the 

mass of CO2 leakage.  The mass of CO2 leakage (kg), Massleak, is quantified numerically using the semi-

analytical leakage algorithm described in Section ‘Semi-analytical CO2 leakage estimation’ above as: 

 



Mass!"#$(𝐐, 𝐬!) = 𝜌! ∙ 𝑆!!,!
!
𝑡 ∙ 𝑄

!,!

(!)
(𝑡) ∙ 𝑑𝑡

!!"#

!

!

!!!

 (22) 

 

Empirical cumulative distribution functions (CDFs) of each injection strategy’s MC Cost (Cost1, Cost2, 

… , CostNMC
) are then compiled by first sorting the Cost vector in ascending order from i = 1…NMC, then 

assigning the non-exceedance probability of Costi as (i – 0.5)/NMC (Hahn and Shapiro 1967).  The 

stochastic cost objective, C, is finally assigned as the z
th

 percentile value, Pz, of the sorted Cost vector: 

 

𝐶 𝐱,𝐐, 𝐬 = 𝑃!(𝐂𝐨𝐬𝐭) (23) 

 

As discussed later in Section ‘NSGA-II parameter calibration’, larger NMC values are needed to accurately 

quantify C as z becomes farther from 50%.  Several constraints are included in this problem.  First, the 

number of injection wells is limited to a maximum integer value by constraining M to a value between 0 

and Mmax:  

 

0 ≤ 𝑀 ≤ 𝑀!"# (24)  

 

All candidate injection wells must be located horizontally within prescribed minimum and maximum 

spatial bounds representing the areal extent selected for the construction of GCS faculties: 

 

𝑥!"# ≤ 𝑥!" ≤ 𝑥!"# ;  𝑦!"# ≤ 𝑦!" ≤ 𝑦!"# ;  iw = 1, 2, . . ,𝑀 (25)  

 

 Also, each injection well’s flow rate must be between prescribed minimum and maximum flow rates Qmin 

and Qmax: 

 



𝑄!"# ≤ 𝑄!" ≤ 𝑄!"# ;  iw = 1, 2, . . ,𝑀 (26)  

 

In Eqn (26), Qmin and Qmax are physical constraints related to the technical capacity of injection pumps 

and wells.  Finally, down-hole fluid pressures at each injection well in each layer, piw,l, must not exceed 

each layer’s fracture fluid pressure, 𝑝!"#$!.  

 

𝑝!",! 𝐐, 𝐬 < 𝑝!"#$!  ;  iw = 1, 2, . . ,𝑀 ; 𝑙 = 1, 2, . . , 𝐿 (27)  

 

where 𝑝!"#$! is calculated by multiplying a specified fracture gradient (Celia et al. 2011) by the layer 

depth and piw,l is estimated for each injection well iw at the end of the injection duration at a small 

effective distance from the injection location.  The value for effective distance must be carefully selected 

as Eqn (1) is very sensitive to radial distance when estimating pressure changes nearby the injection 

location.  A conservative estimate for this value would be the injection well’s casing radius.  Note that 

because the left-hand side of Eqn (27) contains stochastic state variables, these stochastic constraints have 

to be transformed into deterministic. This is carried out using a chance-constraint approach (Wagner and 

Gorelick 1987) such that: 

 

Prob 𝑝!",! 𝐐, 𝐬 < 𝑝!"#$! ≥ 𝑆! ;  iw = 1, 2, . . ,𝑀 ; 𝑙 = 1, 2, . . , 𝐿 (28)  

 

Eqn (28) requires the probability of the fluid pressure at injection wells not exceeding the layer fracture 

pressure to be larger than or equal to a prescribed fracture safety probability, Sp. 

 

2.3 Multi-objective GCS Optimization Algorithm 

In order to solve the stochastic multi-objective optimization problem presented in Section ‘Stochastic 

Multi-objective GCS Problem’, the semi-analytical CO2 leakage algorithm (Section ‘Semi-Analytical CO2 



Leakage Estimation’) and the Monte Carlo procedure (Section ‘Stochastic Multi-objective GCS Problem’) 

are integrated into a NSGA-II with ε-dominance.  Each trial injection strategy is encoded into a 

“chromosome” (i.e. a unique sequence of binary numbers representing the values of each decision 

variable).  The first segment of the chromosome contains spatial location information for Mmax injection 

wells represented by Ncl predefined candidate injection-well location indices, thus intrinsically satisfying 

the spatial location constraint defined by Eqn (25).  The number of digits required to represent each 

injection well’s location is a function of the number of candidate locations, Ncl.  For example, if Ncl = 16 

for a potential GCS site, the locational information of each injection well for each injection strategy 

would require four binary digits (i.e. ‘0000’ = 1, ‘0001’ = 2, … , ’1111’=16).  In this case, the spatial data 

component of the chromosome has a length of M∙4.  The last segment of the chromosome represents the 

injection rate index of each candidate well.  Injection rate indices represent Nir prescribed discrete flow 

rate values within the constraints of Eqn (26).  For example, injection rate index values of 0, 1, 2, 3, and 4 

may represent injection rates of 0, 20, 30, and 40 kg/s, respectively (Nir = 4).  In this case, two binary 

digits would be used to encode each well’s injection index (‘00’ = 0, ‘01’ = 1, … , ’11’=3) bringing the 

total chromosome length to M∙4 + M∙2.  

 

The general procedure followed by the NSGA-II with ε-dominance is presented in Figure 2.  Once input 

files containing domain characteristics and algorithm parameters are read, an initial population of Npop 

trial injection scenarios, including the spatial location and flux rate for each injection well, is randomly 

generated.  In step (b), objective function values are calculated for each population member and 

simulation archiving keeps a record of simulation results, preventing the NSGA-II from recalculating 

objective values for identical scenarios.  As described in Section ‘Stochastic Multi-objective GCS 

Problem’, an ensemble of parameter set realizations are generated for each trial injection strategy in step 

(c).  After this, fitness values (i.e. an assessment of performance related to objective function values) are 

calculated for each injection strategy.  The semi-analytical leakage algorithm is used to estimate Massleak 



for each of these realizations in step (d), then objective values Massinj and 𝐶 are calculated using 

Equations (16-20). Also in step (d), if Eqn (28) is violated the injection strategy is deemed infeasible. 

 

 

Next, the NSGA-II is used to generate new injection strategy populations of size Npop using selection, 

crossover, and mutation operators.  In step (e), population members are first ranked (irank) as the number 

of solutions dominating population member i using the fast non-dominated sorting procedure (Deb et al. 

2002), and then assigned a crowding distance (idistance) as the largest cuboid in objective space enclosing 

the point i without including any other point in the population (Deb et al. 2002).  A partial order is 

established using the crowding comparison operator, ≥n (Deb et al. 2002). Population member i 

outperforms member j if the following conditions are met: 

  

𝑖 ≥!  𝑗      IF 𝑖!"#$ <  𝑗!"#$  OR 𝑖!"#$ =  𝑗!"#$  AND 𝑖!"#$%&'( >  𝑗!"#$%&'(  (29)  

 

The NSGA-II’s ranking process is further improved with the concept of ε-dominance (Laumanns et al. 

2002).  Suppose population members p1 and p2 have fitness values of f1 and f2, respectively.  Using ε-

dominance, p1 is allowed to dominate p2 if (1+ε)∙f1 is greater than or equal to f2.  The ε-dominance allows 

for the inclusion of additional, well-performing population members to each rank’s Pareto-optimal front. 

 

Next, in step (f), an iterative tournament-style selection process is used to select parent injection strategies 

for the next generation.  A subset of Tsize population members is selected randomly and the population 

member with highest partial order according to Eqn (29) is chosen as a parent.  Once parents are selected, 

a crossover operator is used to create the new generation of population members in step (g).  During each 

crossover operation, components of chromosomes from two randomly selected parents are used to build a 

new trial injection strategy.  Crossover is repeated until the new population is filled.  Finally, there is a 



chance, quantified as the mutation rate, Mrate, in which chromosome elements of this new population will 

be randomly altered during step (h).  Steps (b-h) are repeated until the maximum prescribed number of 

generations, Ngens, is reached. 

 

2.4 Efficient Computational Implementation 

This framework utilizes parallel computing and simulation archiving to improve the computational 

efficiency.  Due to the iterative nature of both evolutionary search and Monte Carlo analyses, large 

numbers of model simulations are needed for each stochastic optimization run.  Without using simulation 

archiving, the total number of model calls required for each stochastic optimization run, Nct, is equal to 

the product of NMC, Npop, and Ngens.  CO2 leakage estimation calculations for each trial injection strategy 

are independent and therefore may be processed in parallel (i.e. simultaneously) rather than sequentially 

by distributing processes on different computer cores.  

 

A custom optimization program is created to apply both parallel processing and simulation archiving.  An 

efficient, multi-tier archive lookup method is implemented.  As results from new trial injection scenarios 

are received, the archive dataset continually remains sorted from smallest to largest based upon the sum 

of each archived injection strategy’s decision variable values.  When the code is searching through the 

archive database to determine if an identical trial injection strategy had previously been evaluated, the 

code first looks for a match between the summations of decision variable values.  If a match is found, the 

code checks to see if each decision variable is identical.  The archive search process is stopped if either an 

identical set of decision variables is found or the remainder of archived injection scenarios have a larger 

decision variable value sum. 

 



3 Characterization of the Michigan Basin test site 

The Michigan Basin (MB) is near the town of Thompsonville in northwest Michigan.  Michigan 

Technological University’s data library provides detailed subsurface data in this region.  A cross-sectional 

schematic of the MB is provided in Figure 3 along with a map of the study area, showing a nearly 

depleted hydrocarbon reservoir between depths of approximately 4660 and 5000 feet (1420-1520 meters) 

overlain by multiple confining and saline aquifer layers.  This reservoir’s only production well, Merit 1-

20A, was originally drilled by the Shell Oil Company and is located between two exploration boreholes, 

Burch 1-20B and Stech 1-21A.  This work explores the simulation and optimization of GCS into the 

saline Grey Niagaran formation immediately below the hydrocarbon reservoir. 

 

 

The Burch 1-20B (Burch) and Stech 1-21A (Stech) boreholes have provided a wide variety of high 

resolution well logs that may be used to characterize subsurface domain properties such as density, 

porosity, electrical resistivity, and compressional and shear wave velocities.  For this analysis, neutron 

porosity hydrogen index (NPHI) data were used, gathered from the boreholes to estimate aquifer and 

caprock locations, thicknesses, and permeabilities.  High NPHI values indicate relatively high 

permeability while regions exhibiting low NPHI values indicate low permeability caprock layers.  Figure 

4 shows NPHI versus depth for both the Burch and Stech boreholes.  Aquifer (highlighted light blue) and 

caprock (highlighted brown) layers are then defined using this data.  Derived formation thicknesses and 

depths shown in Figure 4 correspond with aggregated layer sets displayed in Figure 3.   

 

 

Five derived aquitards and four interlaying aquifer layers (including the Grey Niagaran formation) are 

used in the computational model (L = 4).  Caprock thicknesses are estimated to be 16.8, 18.3, and 109.1 m 

for layers 2, 3, and 4, respectively, while layers 1 and 5 are assumed to be completely impermeable even 



at passive well locations.  Average aquifer permeability, k, in milliDarcys (mD; 1 mD ≅ 10
-15

 m
2
) is 

estimated for all aquifer layers using the following from Trebin (1945): 

 

𝑘 =
2 ∙ 𝑒

!".!∙!
                                 𝑖𝑓 𝜙 < 0.124

4.94 ∙ 10
!
∙ 𝜙! − 763          𝑖𝑓 𝜙 ≥ 0.124

 (30)  

  

where, φ is assumed to equal NPHI.  Table 1 shows the permeability, thickness, and porosity value for 

each aquifer layer obtained using the preceding methodology.   

 

 

 

Table 1 Aquifer permeability, thickness, and porosity values used in this study 

Parameter Symbol 
Value for Aquifer Layer l 

Units 
l = 1 l = 2 l = 3 l = 4 

Permeability k 24 4.5 6.7 655 mD 

Thickness H 119.5 35.1 36.6 75.3 m 

Porosity φ 0.079 0.026 0.038 0.169 / 

 

The Michigan Department of Environmental Quality maintains a database of producing and inactive oil 

and gas wells in the state.  Although 65,560 well records containing permit number, depth, and spatial 

coordinates are retrieved from the department’s website (Michigan Department of Environmental Quality 

Oil and Gas Database 2014), only 131 wells are located within 4 km of the reservoir’s production well, 

Merit 1-20A, and intersect the four aquifer layers defined above. 

 

A GCS test site is envisioned herein using MB data characterized above.  Optimal injection rates and well 

locations are determined for a maximum of 3 injection wells (Mmax = 3).  Injection wells are allowed to 

operate at a constant injection rate of either Q1 = Qmin = 0, Q2 = 10, Q3 = 20, Q4 = 30, or Q5 = Qmax = 40 

kg/s (Nir = 5) over a 50-year duration (tinj = 50 yrs.), thereby satisfying Eqn (26).  Injection well locations 



may be selected from 16 candidate locations uniformly distributed over a 2.25 km
2
 square grid.  Figure 5 

provides a plan view of the MB site with candidate injection well locations (Ncl = 16) shown as orange 

circles and existing passive well locations (N = 131) shown as blue pluses.  Horizontal positions are 

relative to the Merit 1-20 production well with xmin = ymin = -750 m and xmax = ymax = 750 m), thereby satisfying 

constraint Eqn (25). 

 

 

 

In Eqn (21), Massleak is defined as the cumulative mass of CO2 that escapes into the top layer (l = 4) at the 

end of the 50-year injection duration.  The radius, rpw, used in Eqn (14) is assumed to be 0.2 m for all 131 

passive wells.  A fracture safety probability of Sp = 95% is assumed for the pressure constraint (Eqn (28)).  

Also a fracture gradient of 14.2 kPa/m (Oldenburg et al. 2011) is used for this analysis.  Table 2 lists 

additional deterministic hydrogeological parameter values used herein. 

Table 2 Deterministic hydrogeological parameter symbols and values 

Parameter Symbol Value Units 

Brine density ρb 1,045 kg/m3 

CO2 density ρc 479 kg/m3 

Brine viscosity µb 2.94x10-4 Pa·s 

CO2 viscosity µc 3.95x10-5 Pa·s 

Brine residual saturation Sres 0.3 / 

 

The costs associated with installation, operation, and maintenance (Jim Lepinski, Headwaters Clean 

Carbon Services LLC, personal communication, 2012) used for each candidate well location in this study 

are shown in Table 3.  This preliminary analysis does not include costs involved with site 

characterization, permitting, lease/purchase of land/pore space, financing, insurance, monitoring, 

verification, Environmental Protection Agency (EPA) financial bond requirement, post-injection site care, 

and long-term liabilities although these may be significant in the final financial assessment (Jim Lepinski, 



Headwaters Clean Carbon Services LLC, personal communication, 2012).  The leakage cost parameter cL 

in Eqn (21) is assigned a values of 0.6 $/kg. 

Table 3 Cost parameter values for each candidate well location in Eqn (20) 

Capital Cost, 

Cap ($/well) 

Fixed O&M 

Cost, OP 

($/day/well) 

Surface 

Maintenance, 

SurM ($/yr/well) 

Subsurface 

Maintenance, 

SubM ($/yr/well) 

Variable Cost, 

Var  

($/kg of CO2) 

3,537,104 11,566 120,608 37,612 0.009 

 

As stated previously, aquifer permeability, effective compressibility, ceff, and passive-well segment 

permeability are assumed to be uncertain variables.  For each MC simulation, aquifer permeabilities and 

effective compressibilities are assigned a random value using log-normal distributions with a standard 

deviation of 0.4, mean aquifer permeabilities from Table 1, and mean ceff of 4.6x10
-10

 m
2
/N (Celia et al. 

2011).  Passive-well segment permeabilities are randomly assigned as either 0.01 or 1000 mD, 

representing “intact” and “degraded” cement, respectively (Celia et al. 2011, Court et al. 2012, Nogues 

and Dobossy 2012).  Table 4 shows the probability of each passive-well segment being assigned an 

"intact" or “degraded” permeability value during the MC ensemble generation for each uncertainty 

scenario.  Herein, two uncertainty scenarios are tested and compared including 1) data supporting an 

abundance of intact passive-well segments (U1) and 2) data supporting an abundance of degraded 

passive-well segments (U2). Passive-well segment permeabilities are assumed to be fully uncorrelated 

(i.e. passive wells may have differing permeabilities at different depths). 

 

Table 4 Probability of passive-well segments being assigned either an "intact" or “degraded” permeability value for each 

uncertainty scenario. 

Uncertainty 

Scenario 
Description 

Probability of being assigned an 

"intact" permeability value 

Probability of being assigned a 

"degraded" permeability value 

U1 Intact passive-well data 90% 10% 

U2 Degraded passive-well data 10% 90% 

 



4 Results and Discussion 

4.1 NSGA-II Parameter Calibration 

The number of Monte Carlo simulations, NMC, generated and simulated for each trial injection strategy is 

determined from an analysis of the uncertainty scenario U2.  U2 is assumed to be the worst case (i.e. most 

difficult to solve) optimization problem because it has the largest probability of degraded passive wells 

and, therefore, the greatest potential for CO2 leakage.  Both P50%(Cost) and P95%(Cost) (Eqn (23)) are 

estimated for ten different injection strategies (Nsims = 10).  For each of these simulations, the value of 

NMC is ranged between 50 and 1000 in intervals of 50.  An inspection of the results of this analysis shows 

that a NMC value of 400 produces convergence for both P50%(Cost) and P95%(Cost). 

 

Optimal NSGA-II parameter values of Npop, Mrate, Tsize, and ε are selected from a series of preliminary 

tests using a simplified deterministic optimization problem having 50% degraded and 50% intact passive-

well segments.  A deterministic problem is used because it requires much less computational time for 

each simulation as there is no need for MC analysis.  First, a single measure is established to quantify the 

performance of each set of NSGA-II parameter values. The average project cost per unit mass sequestered 

($/kg) over all non-dominated solutions is assumed to represent the fitness of any given Pareto set.  A 

lower value of this measure indicates less overall project cost and therefore a more “fit” solution.  Next, 

the true optimal Pareto set is found for the test deterministic optimization problem by performing three 

exhaustive evolutionary searches, each with 5,000 generations.  Each of these converged to the same 

average project cost per unit mass sequestered.  Finally, the set of parameter values requiring the least 

number of simulation calls to reach within 0.1% of the minimal average project cost per unit mass 

sequestered found from exhaustive search are selected to be used by the stochastic optimization problem. 

Table 5 shows the NSGA-II parameter values and maximum number of optimization generations found 

using this analysis.  

 



A performance comparison between the NSGA-II and a completely random search of the decision space 

is also performed to further validate the effectiveness of the NSGA-II used in this study.  One hundred 

deterministic optimization trials having differing random number seeds are processed.  The genetic 

algorithm is found to greatly outperform the random search algorithm. The percent of trials reaching 0.1% 

of the minimal project cost per unit mass sequestered in 200 generations is 100% for the NSGA-II 

compared to 0% for the random search algorithm.  Results from this convergence test provide strong 

evidence that, for this problem, optimal or close-to-optimal Pareto sets are found using the algorithmic 

parameter set shown in Table 5. 

 

Table 5 NSGA-II parameter values and maximum number of optimization generations used for the stochastic case study. All 

parameters are dimensionless. 

Npop Mrate Tsize ε  Ngens 

25 1.6% 2 0.001 200 

 

4.2 Stochastic Optimization Analysis 

Three goals regarding the stochastic optimization of the MB site are investigated and discussed within 

this section: 1) quantify the impact of DM preferences on heuristically determined Pareto-optimal 

objective values (i.e. mass sequestered and project cost); 2) quantify the impact of DM preferences on 

carbon injection strategy (i.e. the selection of injection-well flow rate and location), and; 3) assess the 

suitability of the MB test site for GCS.  To accomplish this, results from several optimization test cases 

having differing DM preference values, including the selection of the risk adversity factor, rA, (Eqn (21)), 

stochastic non-exceedance cost probability, z, (Eqn (23)), and passive-well uncertainty scenario (Table 4), 

are compared and discussed.  Eight stochastic optimization cases are performed for the MB test site data 

described in Section ‘Characterization of the Michigan Basin test site’.   The risk adversity factor, rA, is a 

sensitive exponential term and is set to either 1.0 or 1.1 representing the preference of either a “risk-

neutral” or “risk-adverse” decision maker, respectively.  Also, the stochastic non-exceedance cost 



probability, z, is set to either 50% or 95% for each of the two possible passive-well uncertainty scenarios 

(U1, U2), hence obtaining a total of 2∙2∙2 = 8 combinations of DM preference selections.  Table 6 shows 

DM preferences for each of these stochastic optimization cases (C1-C8). 

 

Table 6 Decision maker (DM) preferences for each of the eight stochastic optimization runs (C1-C8) 

Stochastic 

Optimization 

Case 

Risk 

Adversity 

Factor, rA 

Passive-Well 

Uncertainty 

Scenario 

Stochastic 

non-

exceedance 

cost 

probability, z 

(%) 

C1 1.0 U1 50 

C2 1.0 95 

C3 1.0 U2 50 

C4 1.0 95 

C5 1.1 U1 50 

C6 1.1 95 

C7 1.1 U2 50 

C8 1.1 95% 

 

4.2.1 Impact of DM Preferences on Objective Function Values 

The first step in investigating relationships between DM preferences and objective function values is to 

determine Pareto-optimal (or close-to-optimal) tradeoff sets for each stochastic optimization case 

described in Table 6 using the methodology presented in Section ‘Methodology’.  The quantity of total 

mass sequestered (Eqn (19)) is a function of the injection duration, tinj, the maximum number of injection 

wells, Mmax, as well as the number, Nir, and flow rates, Q, of prescribed injection rates.  Because values 

for these three variables are prescribed before the start of optimization, all possible values of the total 

mass sequestered objective function are known a priori.  Recall from Section ‘Characterization of the 

Michigan Basin test site’ that each injection well may only assume an injection rate of either 0, 10, 20, 30, 

or 40 kg/s.  Because of this, there are only 12 possible non-zero, discrete values of total mass sequestered 

when Mmax = 3, as the total injection rate for all three wells may range between 10 and 120 kg/s in 

increments of 10 kg/s. 



 

A visual representation of resulting Pareto sets is provided in Figure 6, where project cost versus mass of 

CO2 sequestered is displayed for each of the 8 optimization cases described in Table 6.  Figures 6a-d plot 

the objective function tradeoff curve associated with each uncertainty scenario (i.e. U1 and U2) for given 

values of rA and z.  Capital, operation and maintenance (CO&M) costs, defined herein as all project costs 

other than the penalties incurred from CO2 leakage, are also plotted. Policies found to violate the fracture 

constraints (Eqn (28)) are infeasible and are therefore not shown in Figure 6. Note that, due to higher 

project costs, a larger scale is used on the ordinate axis when rA = 1.1. 

 

 

A general trend exhibited by these tradeoff profiles shows that project cost increases with the mass of 

CO2 sequestered in all optimization runs.  A sharper increase in capital project cost is observed in CO&M 

costs when rA = 1.0 (Figure 6a-b) because, due to the maximum prescribed injection rate (Eqn (26)), an 

additional injection well is needed when sequestering more than 63.1 Mt of CO2.  While increases in 

injection well capital costs are also incurred when rA = 1.1 (Figure 6c-d), they are overshadowed by much 

larger total project costs, as increasing rA drastically increase leakage penalty costs. 

 

In this work, DM risk adversity preference, rA, is quantified through an exponential term when estimating 

leakage cost (Eqn (21)) and therefore does not affect the estimated mass of CO2 leakage.  However, as 

seen in optimization cases C7 and C8, when the estimated mass of CO2 leakage is high, rA is found to 

have a profound effect on project cost.  While all optimization cases under uncertainty scenario U1 (90% 

probability of any passive well being assigned as intact) exhibit very little CO2 leakage, substantial CO2 

leakage masses are estimated for test cases assigned a U2 (10% probability of any passive well being 

assigned as intact) uncertainty scenario, resulting in large leakage costs when rA = 1.1. 

 



The selection of uncertainty scenario (Table 4) represents a DM’s knowledge of the GCS site’s caprock 

integrity.  Uncertainty scenario selection directly impacts the estimated mass of CO2 leakage and, 

therefore, indirectly affects the estimated cost associated with CO2 leakage.  Cases assigned uncertainty 

scenarios having greater percentages of intact well segments are found to exhibit less CO2 leakage.  All 

optimization cases assigned a U1 uncertainty scenario exhibit fairly negligible CO2 leakage costs as their 

minimized total project costs are very similar to CO&M costs.  There is, however, one exception to this 

observation: the fracture constraint (Eqn (28)) does not allow for any well to operate at 40 kg/s and 

therefore forces the installation of additional injection wells when sequestering more than 47.3 Mt of CO2 

 

Finally, the choice of stochastic non-exceedance cost probability, z, affects the estimated cost associated 

with CO2 leakage because greater project costs are required to increase non-exceedance probability.  Data 

shown in Figure 6 suggest that the value chosen for z has a minor impact on resulting Pareto-optimal 

objective function values, thus indicating that spread of each Cost CDF is relatively contained.  Estimated 

project costs increase when a greater value of z is used.  However, the project cost variability associated 

with stochastic non-exceedance cost probability is much smaller than the project cost variability 

associated with risk adversity or uncertainty scenario selection. 

 

4.2.2 Impact of DM Preferences on Injection Strategy Selection 

The impact of DM preferences upon the heuristic selection of optimal injection locations and flow rates is 

also investigated.  Figure 7 displays a close-up, plan view of the MB test site showing the 16 candidate 

injection-well location indices. 

 

 

As explained in Section ‘Impact of DM Preferences on Objective Function Values’, there are 12 possible 

mass sequestered values for each of the 8 optimization cases.  Hence, for this problem there is a 

maximum of 12∙8 = 96 Pareto optimal injection strategies which may be found using the NSGA-II.  



However several of these solutions are rendered infeasible by the fracture constraints (Eqn (28)) and 

therefore not displayed in the following discussion.  As a general presentation of decision variable results, 

Table 7 shows both candidate well location indices (see Figure 7) and injection rates in kg/s for each 

injection strategy.  Note that injection strategies may use multiple injection wells. 

Table 7 Candidate well location indices from Figure 7 and injection rates for each injection, displayed as Location(Injection 

Rate).   Policies indicated as "-" are infeasible due to a violation of the fracture constraints (Eqn (28)). 

Stochastic 

Optimization 

Run Index 

Mass Sequestered (MT) 

15.8 31.5 47.3 63.1 78.8 94.6 110.4 

C1 1(10) 1(20) 1(30) 9(20), 
13(20) 

1(30), 
13(20) - - 

C2 4(10) 1(20) 5(30) 1(20), 
5(20) 

1(20), 
13(30) - - 

C3 1(10) 1(20) 1(30) 1(20), 
2(20) 

1(30), 
2(20) 

1(30), 
5(30) 

1(10), 
5(30), 
13(30) 

C4 1(10) 1(20) 1(30) 1(20), 
2(20) 

1(30), 
2(20) 

1(30), 
5(30) 

1(20), 
2(30), 
13(20) 

C5 1(10) 1(20) 1(30) 1(20), 
2(20) 

3(20), 
9(30) - - 

C6 4(10) 1(20) 5(30) 1(20), 
5(20) 

1(20), 
13(30) - - 

C7 1(10) 1(10), 

5(10) 

1(10), 

2(10), 
5(10) 

1(20), 

2(10), 
5(10) 

1(20), 

2(20), 
5(10) 

1(30), 

2(20), 
5(10) 

2(30), 

3(30), 
13(10) 

C8 1(10) 1(10), 
5(10) 

1(10), 
2(10), 
5(10) 

1(20), 
2(10), 
5(10) 

1(20), 
2(10), 
5(20) 

1(30), 
3(10), 
6(20) 

2(30), 
5(20), 
13(20) 

 

Using the data presented in Table 7, two quantitative analyses are performed to study how DM 

preferences ultimately influence the heuristic selection of carbon injection strategies.  First, the relative 

sensitivity of carbon-injection-strategy selection in relation to each DM parameter (i.e. rA, z, and 

uncertainty scenario) is quantified as the percentage of injection-well rate/location combinations that 

change when varying each DM preference.  These percentages are calculated as the sum of differing 



injection-well rate/location combinations divided by the total number of injection-well rate/location 

combinations in each comparison set.  Optimization cases having all but one identical DM preferences are 

individually compared.  When contrasting rA (rA=1.0 with rA =1.1) a set of four injection strategy 

comparisons are made; stochastic optimization cases C1-C4 are thus compared with cases C5-C8, 

respectively.  Four injection strategy comparisons are also made when contrasting z (z=50% with z=95%); 

case C1 with case C2, case C3 with case C4, case C5 with case C6, and case C7 with case C8.  Finally, a 

set of four injection strategy comparisons are made when contrasting uncertainty scenario (U1 with U2); 

cases C1-C2 are compared with cases C3-C4, respectively, and cases C5-C6 are compared with cases C7-

C8, respectively.  The percentage of injection strategies that remain constant when varying values of rA, 

uncertainty scenario, and values of z is quantified as 49.3%, 37.5%, and 58.3%, respectively.  These 

findings are used to augment the following discussion. 

 

Secondly, a categorical distribution analysis is used to identify general injection strategy trends associated 

with DM preferences.  The number of times each candidate location is selected for injection-well 

placement is counted for all cases having each given DM preference value.  For example, candidate 

location 1 is found to be selected for well placement 21 times when rA=1.0 (i.e. for cases C1-C4), 14 

times when assuming uncertainty scenario U1 (i.e. for cases C1, C2, C5, and C6) and 21 times when 

z=50% (i.e. for cases C1, C3, C5, C7).  Table 8 provides the number of selections of each candidate 

injection location for each DM preference value. 

 

Table 8 Number selections for each candidate well location index.  Indices having zero selections are not shown. 

Candidate 

Location 

Risk Adversity 

Factor, rA 

Passive-Well 

Uncertainty 

Scenario 

Stochastic non-

exceedance cost 

probability, z 

1.0 1.1 U1 U2 50% 95% 

1 21 19 14 26 21 19 

2 5 10 1 14 8 7 

3 0 3 1 2 2 1 

4 1 1 2 0 0 2 



5 5 12 4 13 7 10 

6 0 1 0 1 0 1 

9 1 1 2 0 2 0 

13 5 3 4 4 4 4 

15 0 0 0 0 0 0 

16 0 0 0 0 0 0 

Total 38 50 28 60 44 44 

 

From the results shown in Table 8, the southwest corner of the candidate injection-well field is heavily 

favored by the optimization algorithm, regardless of parameter choice, with 81.8% of all injection-well 

placements being made at either candidate location 1, 2, or 5.  This is due to the presence of a passive-

well cluster approximately 1000 meters northeast of the candidate injection-well field (see Figure 5).  

Also, the furthest southwest candidate injection-well location is found to have a substantially greater 

number of selections than all other individual locations.  Approximately 45.5% of all injection-well 

placements are being made at candidate location 1, compared with 17.0% and 19.3% for candidate 

locations 2 and 5, respectively.   

 

DM risk adversity is found to have a great effect on injection strategy selection as only 49.3% of injection 

strategy selections remain constant when varying values of rA (see second and third columns of Table 8).  

Also, increasing rA from 1.0 to 1.1 is found to increase the total number of candidate well location 

selections from 38 to 50.  This increased number in total candidate well location selections is caused by 

the optimization algorithm attempting to reduce CO2 leakage cost by using additional injection wells to 

spread out and reduce the injection induced pressure distribution.  For example, a total injection rate of 20 

kg/s may be achieved by one well injecting at 20 kg/s or by two each injecting at 10 kg/s.  This finding 

suggests that the leakage penalty savings from diversifying the injection-well field are greater in certain 

cases than the additional CO&M costs incurred from installing, operating, and maintaining more injection 

wells. 

 



Passive-well uncertainty scenario selection is found to have the lowest percentage (37.5%) of injection 

strategy selections remaining constant, and therefore the greatest effect upon injection strategy selection 

(see fourth and fifth columns of Table 8).  The total number of candidate well location selections is also 

found to increase from 28 for uncertainty scenario U1 to 60 for the more expensive uncertainty scenario 

U2, further validating the trend found when studying risk adversity.  Also, greater estimated CO2 leakage, 

as in the case of uncertainty scenario U2, is clearly observed to drive candidate injection-well location 

selections further southwest.  The likelihood of selecting the three furthest southwest candidate locations 

(i.e. locational indices 1, 2, and 5) increases from 67.9% in cases assigned uncertainty scenario U1 to 

88.3% in cases uncertainty scenario U2. 

 

Finally, the stochastic non-exceedance cost probability, z, is found to have the highest percentage (58.3%) 

of injection strategy selections remaining constant and, therefore, has the least effect on injection strategy 

selection.  In addition, there are very similar results shown in the sixth and seventh columns of Table 8 

with the total number of candidate location selections being identical for both columns. 

 

4.2.3 GCS Suitability Assessment for the MB test site 

The final decision of whether or not to proceed with GCS project planning is made by the DM based on 

the assessment of a large number of political and financial indicators. However, the preliminary stochastic 

cost assessment presented above suggests that GCS feasibility at the MB test site would be highly 

dependent upon the DM’s risk adversity preference.  Figure 6 shows that each uncertainty scenario 

produces feasible project cost results if the DM selects rA = 1.0.  If the DM decides to select rA = 1.1, both 

uncertainty scenarios provide much greater project cost results.  In practice, the selection of a high risk 

adversity value effectively eliminates scenarios exhibiting a moderate to high mass of CO2 leakage due to 

high CO2 leakage costs resulting from the exponential leakage cost term, rA.  Economic drivers (i.e. 

carbon tax) will largely influence the decision of the quantity of CO2 injected versus leakage cost 

incurred. 



 

4.3 Computational Efficiency 

It is interesting to note that the complete enumeration of this problem would require 34,800,000 

simulation calls: 
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Assuming that a numerical model would require one hour per simulation, the CPU time required to 

sequentially process 34,800,000 CO2 leakage evaluations without archiving would be approximately 

3,973 years.  Therefore, a semi-analytical algorithm and an NSGA-II optimization approach is used to 

make this problem computationally feasible.  For the NSGA-II optimization parameters provided in Table 

5, each optimization run requires 2,000,000 simulation model calls, Nct, to estimate CO2 leakage without 

archiving (e.g. Nct = NMC∙Npop∙Ngens = 400∙25∙200 = 2,000,000).  Assuming that each semi-analytical 

simulation requires 1 second, the CPU time required to sequentially process 2 million CO2 leakage 

evaluations without archiving would be 23.2 days.  The computational time required for this problem may 

also be reduced using parallel processing and archiving.  For example, if 25 computer processor cores are 

available, setting the number of parallel processes to Npop will reduce this theoretical simulation 

evaluation time by 96% to 0.93 days.  The actual CPU time required for a single optimization run with 

NMC = 400, Npop = 25, and Ngens = 200 using 12 processor cores and employing both parallel processing 

and simulation archiving is approximately 1.04 days, or about six orders of magnitude less than the 

theoretical time required for the complete enumeration of this problem using a numerical model. These 

findings show that the use of the optimization algorithm is essential in providing the computational 

efficiency required when deriving the Pareto optimal set, particularly if the number of candidate locations, 

M, is increased. 



 

5 Conclusions 

A stochastic methodology for determining optimal GCS injection strategies has been presented, where a 

semi-analytical CO2 leakage algorithm and a Monte Carlo procedure were integrated into a NSGA-II with 

ε-dominance.  In an effort to show the applicability of this method to real world potential injection sites, 

the stochastic optimization framework has been used to assess a hypothetical GCS project at a Michigan 

Basin (MB) test site in northern Michigan, USA.  Eight MB test site stochastic optimization cases having 

differing DM preferences were evaluated. 

 

DM risk adversity preference was found to have a profound effect on project cost when the estimated 

mass of CO2 leakage was high.  While all optimization cases that were assigned an “intact” uncertainty 

scenario exhibited very little CO2 leakage, substantial CO2 leakage masses were estimated for test cases 

assigned a “degraded” uncertainty scenario, resulting in large leakage costs with high risk adversity.  The 

choice of stochastic non-exceedance cost probability had only a minor impact on resulting Pareto-optimal 

objective function values.  

 

The southwest corner of the candidate injection-well field was heavily favored by the optimization 

algorithm, regardless of parameter choice, with 81.8% of all injection-well placements being made at the 

three furthest southwest candidate locations.  Passive-well uncertainty scenario selection was found to 

have the greatest effect on injection strategy selection while stochastic non-exceedance cost probability 

was shown to have the least effect on injection strategy selection.  In addition, DM risk adversity was 

found to significantly affect injection strategy selection.  This finding suggests that the leakage penalty 

savings from diversifying the injection-well field were greater in certain cases than the additional project 

costs incurred from installing, operating, and maintaining more injection wells.   

 



This work also discussed large gains in computational efficiency using semi-analytical modeling, NSGA-

II optimization, parallel computing, and simulation archiving.  The actual CPU time required for a typical 

optimization run using 12 processor cores and employing both parallel processing and simulation 

archiving was approximately 1.04 days, or about six orders of magnitude less than the theoretical time 

required for the complete enumeration of this problem using a numerical model. 

 

Because of the large set of assumptions made by the semi-analytical CO2 leakage algorithm, this 

framework may only be used for initial site planning and characterization.  After ‘coarse scale’ project 

planning has been completed using this stochastic optimization framework, more rigorous, although 

slower, numerical models should be used for final project development of individual potential injection 

sites.  However, this tool has potential for initial carbon-sequestration project planning as well as initial 

screening and ranking of large sets of potential carbon sequestration sites. 

 

Looking forward, there are several possible variations of the optimization framework which may be 

explored.  For example, the injection duration may be included as a third decision variable in addition to 

location and flow rate of each injection well.  In addition, the minimization of risk of cost exceedance 

may be included as a third objective function in addition to maximizing the mass of CO2 sequestered and 

minimizing the project cost.  A multi-criteria decision analysis (MCDA) may also be performed upon the 

resulting Pareto-optimal sets of equations to quantify the importance of conflicting objectives and aid in 

the final selection of injection strategy selection.  Finally, substantial gains in computational efficiency 

may be obtained by additional parallelization using large processor core clusters.  Increased 

computational efficiency will lead to the ability to increase the number of model calls per optimization 

run or to process greater quantities of potential injection sites. 
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FIGURES: 

 

Fig. 1 Schematic of the semi-analytical leakage model’s computational domain 

 

 

Fig. 2 Schematic of the stochastic optimization algorithm 

 

 



 

 

(b)  

 

Fig. 3 a Map of study area and b a cross-sectional schematic of the Michigan Basin with the 
simulated injection layer highlighted orange (modified with permission from Turpening et al. (1992)) 
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Fig. 4 Neutron porosity hydrogen index (NPHI) vs. depth for the Burch 1-20B (Burch) and Stech 1-21A (Stech) boreholes.  Light 

blue areas are defined as aquifers (A1 – A4) while brown areas are defined as confining units (C1 – C5). 

 



 

Fig. 5 Plan view of the Michigan Basin test site showing all pumping wells (PW) and candidate injection wells (IW) included in 

the study 

 

  



 

Fig. 6a-d Optimal project costs versus mass of CO2 sequestered for the eight optimization runs described in Table 6. Policies 

found to violate the fracture constraints (Eqn (31)) are infeasible and are therefore not shown. 

 



 

Fig. 7 Close-up plan view of the Michigan Basin test site highlighting candidate injection-well (IW) location indices. 

 

 


