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We present measurements of the energy relaxation length scale ‘ in two-dimensional electron gases

(2DEGs). A temperature gradient is established in the 2DEG by means of a heating current, and

then the elevated electron temperature Te is estimated by measuring the resultant thermovoltage

signal across a pair of deferentially biased bar-gates. We adapt a model by Rojek and K€onig [Phys.

Rev. B 90, 115403 (2014)] to analyse the thermovoltage signal and as a result extract ‘; Te, and the

power-law exponent ai for inelastic scattering events in the 2DEG. We show that in high-mobility

2DEGs, ‘ can attain macroscopic values of several hundred microns, but decreases rapidly as the

carrier density n is decreased. Our work demonstrates a versatile low-temperature thermometry

scheme, and the results provide important insights into heat transport mechanisms in

low-dimensional systems and nanostructures. These insights will be vital for practical design

considerations of future nanoelectronic circuits. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4926338]

There currently exist well-established methods to probe

the low-temperature (low-T) electrical and thermoelectric

properties of two-dimensional electron gases (2DEGs).

However, probing heat transport mechanisms in these systems

has proven more challenging, primarily due to the lack of con-

venient low-T thermometers that couple directly to the elec-

tron gas. Conventional low-T thermometers such as

germanium or ruthenium-oxide films are sensitive only to the

lattice temperature TL, the temperature of the crystal that hosts

the 2DEG. At TL�1 K, the coupling between electrons and

phonons becomes relatively weak, and therefore Te can differ

significantly from TL. The electrical resistance of the 2DEG

itself becomes insensitive to Te at these temperatures, since

the majority of scattering events are from static impurities.

These both therefore become ineffective at measuring Te in

this regime. Accurate measures of Te can be obtained from

the Coulomb-blockade characteristics of quantum dots1

which are broadened at a finite Te. The weak localization

characteristics of 2DEGs2 can also be useful as they depend

sensitively on the phase-coherence length which is Te-

dependent. However, neither of these methods lends them-

selves easily to the measurement of spatial temperature

gradients, which is required in order to measure the thermal

conductivity j (Refs. 3 and 4) or the energy relaxation

length scale ‘ in 2DEGs.

Appleyard et al.5 showed that the diffusive component

of the thermopower S can be used to detect differences

between Te and TL. Here, S � Vth=DT, where Vth is the ther-

movoltage developed in response to a temperature difference

DT. To do this, they measured Vth across a pair of quantum

point contacts (QPCs) with a heated electron gas between

them, as was done similarly in Ref. 6, and more recently in

Ref. 7. Then DT was estimated as Vth=S, where S was

obtained using the Mott relation8

S ¼ p2k2
BT

3e�h2

d ln r
dE

� �
E¼l

: (1)

Here, kB is the Boltzmann constant, e is the electron

charge, �h � h=2p with h being Planck’s constant, r is the

electrical conductivity, E is the total energy, and l is the

chemical potential. This technique has been used to measure

j in quantum wires3,9 and energy-loss rates in 2DEGs.10

Chickering et al.11 showed Eq. (1) to be broadly valid in

gated regions of a 2DEG between 0.8 K and 2 K and therein

suggested the possibility of using a symmetric pair of bar-

gates as a low-T thermometer for the electron gas. This

method was recently employed to measure S in mesoscopic

2DEGs.12–14 Usefully, the relatively large size of the bar-

gates eliminates the need for electron beam lithography

which simplifies the fabrication process. However, it was

noted in Ref. 11 that the data systematically deviated from

the Mott prediction. Rojek and K€onig15 attributed these devi-

ations to the spatial extent of the bar-gate thermometers

(BGTs) being comparable to the energy relaxation length ‘
in the 2DEG and developed a model to account for this. In

this work, we adapt the model developed by Rojek and

K€onig to refine the analysis of the signal produced by a

BGT, and to make an accurate measurement of ‘.
Figure 1(a) shows a false-colour SEM image of a typical

device. Please see the supplementary material18 for wafer

and fabrication details. The device consists of a heating ele-

ment and a longitudinal strip of 2DEG (of width 100 lm and

length Lstrip¼ 1 mm) which together form a ‘T’ shape, with

three BGTs along the strip. The first BGT is at a distance

LT1 ¼ 200 lm from the heating element. A top-gate sits over

the heating element and the strip and is used to tune the elec-

tron density n in these regions. This design minimizes any

power reflection at the interface between the heating element

0003-6951/2015/107(2)/022104/4 VC 2015 AIP Publishing LLC107, 022104-1
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and the strip. The strip is terminated by a large ohmic

contact.

Throughout the experiment all ohmic contacts through

which no current is passed were assumed to be at TL, since

they are in direct thermal contact to the mixing chamber via

the measurement wiring. Figure 1(b) shows a schematic of a

single BGT. It is a symmetric structure consisting of two

arms flanking the 2DEG strip. The left (right) arm is formed

by a gated region labelled II (III), followed by an ungated

region labelled I (IV), and terminated by an ohmic contact.

The lengths of the gated and ungated regions of the arms are

Lg ¼ 150 lm and Lug ¼ 455 lm, respectively.

The experiment involves passing a current Ih at frequency

f ¼ 10 Hz through the heating element which Joule heats the

electron gas with a power of I2
hRh, where Rh is the four-

terminal electrical resistance of the heating element. This

establishes a temperature gradient along the length of the

2DEG strip. The thermovoltage Vth generated across a ther-

mometer in response to Ih is detected at 2f using a lock-in am-

plifier. Figure 2 shows Vth ¼ Va � Vb (see Fig. 1(b)) from the

first BGT while the gate voltage (Vg) on gate II is swept. An

almost identical result is obtained when gate III is swept,

except that Vth is opposite in sign. The thermovoltages devel-

oped across the second and third BGTs were found to be

negligible for even the largest used heating currents. Each sec-

tion of the BGT from I to IV contributes to Vth

Vth ¼
X

p

SpDTp: (2)

Here, p goes from I to IV, denoting each section shown

in Fig. 1(b), DTp is the temperature drop across section p,

and Sp for each section is given by the Mott formula for a

non-interacting 2DEG

Sp ¼
pkB

2Tpm

3e�h2

1þ aeð Þ
np

: (3)

Equation (3) is obtained by substituting the Drude

expression r ¼ npe2se=m for the electrical conductivity into

Eq. (1). Here, np is the 2D number density of charge carriers

in section p, se is the Drude elastic scattering time, m is the

effective mass of the charge carriers (¼0:067me in GaAs-

based 2DEGs, with me being the bare electron mass),

ae � ðnp=seÞðdse=dnpÞ, and Tp is the average electron tem-

perature in region p.

Figure 2 also shows the best fit to the data by assuming

that hot electrons relax to TL within a distance Lg and there-

fore over the gated region, regardless of the carrier density ng

beneath the gate. In this simple picture, the temperature pro-

file along the BGT arm is not relevant, and the only unknown

is Te between the BGT arms. However, the quality of the fit is

clearly inadequate and this is found to be the case across the

parameter space of Ih and Vtg explored in this experiment.

We first describe why it is essential to consider the con-

tribution from all the regions p ¼ I to IV towards Vth. At

low-T and especially in high-mobility 2DEGs, the energy

relaxation length ‘ over which hot electrons relax through

inelastic processes can greatly exceed the mean-free path of

electrons.15,17 The dependence of ‘ on the inelastic scattering

time si is given by ‘ �
ffiffiffiffiffiffiffi
Dsi

p
, where D ¼ vF

2se=2 is the

FIG. 1. Device geometry. (a) False-colour SEM image of the device used in

our experiments. The first bar-gate thermometer (BGT) is outlined by white

dashed lines. The three contacts at the top of the device allow a four-

terminal measurement of the heating element resistance. (b) Schematic rep-

resentation of a BGT which consists of gated (II and III, yellow) and ungated

(I and IV, blue) regions of 2DEG, terminated by an ohmic contact. The or-

ange section between the gates illustrates a region of “hot” electrons.

FIG. 2. The fit shown in this figure is based on a simple model where the hot

electrons are assumed to relax to TL within the gated region. This model

ignores any effects of the temperature profile along the BGT, and therefore

the only fitting parameter is Te. The fit is clearly inadequate with the fit sys-

tematically deviating from the experimental data. This kind of deviation was

found to be typical across the parameter space of Ih and Vtg explored in this

experiment.

022104-2 Billiald et al. Appl. Phys. Lett. 107, 022104 (2015)
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diffusion constant of the electrons, and vF is the Fermi veloc-

ity. si has a power-law dependence on n: si ¼ si;0ðn=n0Þai ,

where the subscript 0 denotes the values in the ungated

2DEG. Thus, the distance over which electrons lose their

excess energy in the BGT arm is crucially dependent on np.

The ohmic contact enforces Te ¼ TL at the 2DEG to ohmic

contact interface, and this needs to be taken into considera-

tion if ‘ is comparable to Lg þ Lug. Therefore, in all the

above situations, both the gated and ungated regions contrib-

ute to Vth in a manner dependent on Te at the centre of the

BGT, Te at the interface of the gated and ungated regions, ‘,
and ai, all of which need to be estimated self-consistently.

To do this we adapt the model used in Ref. 15 (described in

the supplementary material18). The resulting expression for

DTe � Te � TL at the junction of the gated and ungated

regions DTeðLgÞ reads

DTe Lgð Þ ¼ DTe

z sinh Lug=‘0

� �
cosh Lug=‘0

� �
sinh Lg=‘

� �
þ z sinh Lug=‘0

� �
cosh Lg=‘

� � : (4)

Here, ‘0 is the energy relaxation length at n¼ n0 and

z � ðn=n0Þð1þae�aiÞ=2
. Within the framework of the linearized

model of Rojek et al.,15 Tp ¼ TL. Equation (4) provides an

expression for DTp, which when substituted together with

Eq. (3) in Eq. (2), results in an expression for Vth as a func-

tion of n0, n in each gated region, ‘0, ae, ai, and Te. We mea-

sure n0 and nðVgÞ in the device by observing Vg-dependent

edge-state reflections in the quantum Hall regime,16 and ae is

extracted from the dependence of r on n and turns out to be

�0:89 over the relevant range of n. This leaves three

unknowns, namely, ‘0; Te, and ai, which are used as fitting

parameters. Importantly though, by fitting to several comple-

mentary datasets whilst varying different experimental pa-

rameters such as Ih and Vtg, we are able to considerably

reduce the uncertainty in these three fitting parameters (see

supplementary material18).

Figure 3(a) shows Vth against ng for varying Ih which

will produce different DTe. Figure 3(b) shows Vth against ng

but for varying Vtg which will vary ‘ in the 2DEG strip as

well as DTe via its effect on Rh. Clearly, the model produces

excellent fits to the data with no discernible systematic devi-

ations. Similar data and quality of fit are obtained when the

adjacent BGT is swept.

The results of the fitting are the DTe for each Ih and Vtg

in the two datasets. Figure 4(a) shows DTe as a function of Ih

on a log-log scale, and we find that DTe / I1:65
h . This sub-

squared dependence is presumably due to a fraction of the

power being lost to the lattice and to the ohmic contacts. The

values of ai and ‘0 are found to be �3:76 and �280 lm,

respectively. Figure 4(b) shows DTe as a function of Vtg after

DTe has been scaled for the changing value of Rh. This has

been done by applying a corrective factor of Rh;0=RhðVtgÞ, so

that any change in DTe is now due solely to a change in ‘.
Here, RhðVtgÞ is the electrical resistance of the heating ele-

ment as a function of Vtg. Therefore, the graph suggests that

for Vtg�� 0:11 V, the hot electrons completely relax within

a distance LT1.

The data therefore suggest that hot electrons thermalize

over macroscopic length scales (�300 lm) in the ungated

2DEG, but that this length scale rapidly decreases with n.

This strongly justifies the need to account for the ungated

2DEG arms when using BGTs at high ng. This is also con-

sistent with the negligible thermovoltage detected across the

second and third BGTs which are at distances of 500 lm and

800 lm from the heating element, respectively. While ng can

certainly be lowered until ‘ < Lg, such that DTeðLgÞ ¼ 0,

care must be taken to ensure that Eq. (3) remains valid.

Indeed, we have observed that when the 2DEG approaches

the localized regime (when r becomes �3e2=h) the model is

unable to fit the data satisfactorily. In this experiment, n was

conservatively limited to � 0:7� 1015m�2 corresponding to

kFl � 4 and rs � 2, where kF is the Fermi wave vector, l is

the elastic mean free path, and rs is the interaction parameter

defined as the ratio of the Coulomb energy and kinetic

energy of the 2DEG.

Importantly, the model only provides the value of ‘0 and

ai from which ‘ðnÞ can be reconstructed. However, as argued

in the previous paragraphs, this information is independently

contained in Fig. 4(b). The Te-profile in the 2DEG strip is

given by (see supplementary material18)

FIG. 3. Fits to the data using Eqs.

(2)–(4). The graphs show Vth as a func-

tion of the swept gate voltage Vg and

ng, the corresponding carrier density

under the swept gate. The different

traces in (a) and (b) represent different

heating currents Ih and different top-

gate voltages Vtg, respectively. The fits

are markedly improved over, for exam-

ple, that shown in Fig. 2.
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DTe yð Þ ¼ DTe;0

sinh Lstrip � yð Þ=‘
� �

sinh Lstrip=‘
� � : (5)

Here, y is the spatial coordinate along the 2DEG strip

(see Fig. 1(b)) and DTe;0 � DTeðy ¼ 0Þ, the temperature ele-

vation in the heating channel. Since the heating channel is

effectively at a constant temperature between pairs of points

in Fig. 4(b), the ratio DTeðn1Þ=DTeðn2Þ taken at y ¼ LT1 pro-

vides an implicit relation between ‘ðn1Þ and ‘ðn2Þ, where n1

and n2 are the respective carrier densities. Therefore, this

allows the inference of ‘ from Te, and reconstruction of ‘ as

a function of n as shown in Fig. 5. This is the main result of

this study showing the dependence of the energy relaxation

length scale on the carrier density. We stress that this is a

direct measurement of ‘ðnÞ using the pre-calibrated BGT,

which we find to be in striking agreement with indirectly

obtained dependence ‘ðnÞ ¼ ‘0ðn=n0Þð1þaeþaiÞ=2
, using the

values of ‘0 and ai derived from the model and the fitting.

To summarize, we have demonstrated that BGTs are a

versatile tool with which to detect elevated electron tempera-

tures. As remarked earlier, BGTs are an attractive alternative

to QPCs. QPC fabrication requires electron beam lithography

and they come with the associated difficulties of sub-

micrometre devices such as sensitivity to electrical shock and

vulnerability to disorder. In contrast, BGTs can be macroscopic

and therefore free from the above mentioned difficulties.

While our manuscript seems to suggest that the trade-off

between QPCs and BGTs is that detailed modelling is required

to extract Te, it is important to note that modifying the device

design, such that Lg > ‘ significantly reduces the complexity

of the analysis. On the other hand, the advantages of the

employed device design are that it allows for the determination

of ‘ðnÞ using a single BGT. We note that using a second BGT

further displaced along the length of the 2DEG strip should

also allow for such a measurement, so long as ‘ðnÞ < LT2.
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FIG. 4. (a) The elevated electron tem-

perature DTe � Te � TL extracted from

the model is seen to increase as a

power-law of Ih. The broken line shows

a I2
h trend, which would be the case if

DTe increased linearly as a function of

applied heating power. The sub-linear

dependence on power indicates that

there are heat losses to the surrounding

lattice. (b) As Vtg becomes more nega-

tive, Te at the first thermometer

decreases rapidly, indicating that the

electrons thermalize over a much shorter

distance.

FIG. 5. Energy relaxation length ‘ as a function of carrier density n. The

data in Fig. 4(b) produce an independent measure of ‘ðnÞ which we find to

be in excellent agreement with the model exponents.
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