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Can entanglement and the quantum behavior in physical systems survive at arbitrary high tempera-
tures? In this Letter we show that this is the case for a electromagnetic field mode in an optical cavity with
a movable mirror in a thermal state. We also identify two different dynamical regimes of generation of
entanglement separated by a critical coupling strength.
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Recently there has been a lot of interest in macroscopic
systems which can support nonzero temperature entangle-
ment [1–3]. These works suggest that entanglement not
only persists in these conditions but that it is also crucial in
understanding the macroscopic proprieties of the physical
systems. On the other hand, there is also a possibility that,
under some circumstances (very large number of atoms,
very large temperature, etc.), the physical systems become
effectively classical and we no longer require a quantum
description.

It is usually believed that decoherence explains the
transition from the quantum world to the classical world.
Several other alternatives, such as spontaneous wave-
function collapse models [4] and gravitationally induced
decoherence [5] are also found in the literature. Different
schemes to create and probe macroscopical superpositions,
which can give us important clues about the quantum to
classical transition, have already been proposed for differ-
ent physical systems [6–9]. For instance, in Ref. [9], like in
the original gedanken experiment proposed by
Schrödinger, a single photon state induces quantum super-
positions of a mirror and in Ref. [7] multicomponent cats
of a cavity are created in the interaction of a cavity field
with a movable mirror.

Here we proceed in a different direction, shedding light
into the problem of how quantum features may survive in
the macroscopic world. Recent research on this problem
has shown that in systems with finite Hilbert space dimen-
sion in equilibrium with a thermal bath, bipartite entangle-
ment vanishes above a critical temperature [10]. The
following question arises, is this behavior general, or are
there some systems where entanglement is robust against
temperature?

In this Letter we will show that the entanglement be-
tween macroscopic mirror and a cavity mode field can arise
due to radiation pressure at arbitrarily high temperatures as
the system evolves in time. This is very surprising because
it is commonly believed that high temperature completely
destroys entanglement. We will study entanglement in the
time domain using a discrete variable method and identify

its dependence on the relevant physical parameters, such as
the strength of the radiation pressure coupling and
temperature.

In particular, we consider a perfect optical cavity with a
movable mirror with mass m in one end, modeled as a
mechanical harmonic oscillator whose quivering motion is
quantized. Identical systems have been considered in the
studying of decoherence [5] and nonclassical states of the
cavity field [7]. The general Hamiltonian of this system has
been extensively studied by Law [11]. Following the same
approach as Law, we consider the adiabatic limit where the
resonant frequency of the mirror is much slower than the
frequency of the cavity mode wm � 2�nc=L, where L is
the length of the cavity when the mirror is in equilibrium, n
is the order of the longitudinal cavity mode, and c is the
speed of light. Henceforth, the coupling between different
cavity field modes (leading to the Casimir effect, etc.) can
be neglected. For cavities with very high quality factor Q
the damping is negligible, as it occurs on a time scale much
longer than it takes for the photons to perform several
round trips. Under these conditions the Hamiltonian in-
cludes only the free terms of both the field and the mirror
plus the interaction term due to the radiation pressure
(which causes the displacement of the mirror),

H � @w0a
ya� @wmb

yb� @gaya�b� by�; (1)

where a is the annihilation operator of the cavity mode, b is
the annihilation operator of the mirror, w0 is the frequency

of the cavity mode, and g � w0

���

@
p

=�L �����������
mwm

p � is the cou-

pling constant.
The electromagnetic field is prepared in a coherent state,

j�i, using a driving laser tuned to resonance with the cavity
mode, whereas the mirror is initially in a Gibbs state with
temperature T. Then, the composite state of the system is

��t0� �
1

Z

Z d2z

�
e�jzj2= �nj�ih�j � jzihzj;

where �n � 1=�e@wm=KBT � 1� is the mean number of ex-
citations, Z is the mirror partition function, and z repre-
sents all the possible coherent states of the mirror.
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The evolution operator associated with the Hamiltonian
(1) has a closed formula and it was derived in Ref. [6],
using the Campbell-Baker-Hausdorff formula for the Lie
algebra, and in Ref. [7], using operator algebra methods:

U�t� � e�iw0a
yateik

2�aya�2��t�Dm���t�kaya	e�iwmb
ybt;

where ��t� � wmt� sin�wmt�, ��t� � 1� e�iwmt, k �
g=wm, and Dm���t�kaya	 � eka

ya���t�by���t�
b	 is the dis-
placement operator of the mirror, Dm���j0i � j�i. Since
the system is periodic we only need to investigate entan-
glement in the time interval �0; 2�=wm	.

The interaction term of the Hamiltonian has the potential
to entangle the cavity field modes with the vibrational
modes of the mirror. Heuristically, the generation of en-
tanglement in this physical system is better understood by
considering the cavity in the initial state j0i � j1i and the
mirror in the vacuum state j0im (which is a good assump-
tion for T � 0). The state of the composite system evolves
according to (up to a normalization factor)

�j0i � j1i� � j0im ! j0i � j0im � eif�t�j1i � jk��t�im;
where f�t� is a phase, resulting in an entangled state for

0< t < 2�=wm. At t � 0 and � 2�=wm, ��t� becomes
null and the system returns to the initial separable state.
The entanglement results from the evolution of the term
j1i � j0im, which can be interpreted as the transference of
momentum from the photon j1i to the mirror j0im, as the
photon kicks the mirror. Though it is easy to produce the
state of light j0i � j1i experimentally, the radiation pres-
sure in this case is so small that it is virtually impossible to
detect any entanglement using present day technology.
However, as we will show below, a detectable amount of
entanglement is expected when the cavity is initially in a
coherent state with sufficiently high amplitude.

Proceeding to the general case, we introduce the discrete
variable method which will allow the study of the entan-
glement in the system. The density matrix ��t� expressed in
the Fock basis of both cavity field and mirror reads

� �
X

�;�;n;m

���nmjnihmj � j�ih�j; (2)

where the Latin indexes refer to the radiation and the Greek
indexes refer to the mirror. The elements of the density
matrix are calculated to be

���nm �
�
�!����nm���t�e�	@wm���1�; for t � 2�k=wm or n � m � 0

��1���nm���t�e�	@wm���1���nm�t�W

mn�t����HU���; 1� ���; znm�t�	; elsewhere:

(3)

HU�a; b; c	 is the hypergeometric confluent function and

�nm���t� �
�n�
mei��t��n2�m2��j�j2

Z�n!m!�!�!�1=2 ;

Wnm�t� � �n�t� � e�	@wm��n�t� � �m�t�	=2;
znm�t� � �e	@wmWnm�t�W


mn�t�;
�nm�t� � �j�n�t�j2 � j�m�t�j2	=2

� e�	@wm j�n�t� ��m�t�j2=4;
where �n�t� � kn��t�.

Quantifying entanglement in mixed states is a nontrivial
problem, except for bipartite two level systems, where the
Peres criterium is sufficient [12] and necessary [13] to
guarantee entanglement. In this Letter a new approach
inspired by Ref. [14] is followed. First, we project the
original density matrix (2) into a 2� 2 subspace, which
corresponds to a local action (P2�2�P2�2) thus not increas-
ing the amount of entanglement E��� in the overall system
[15], i.e., E���  E�P2�2�P2�2�. Afterwards different
measures and markers of entanglement for 2� 2 systems
can be applied. In particular, the tangle is an entanglement
monotone valid only for bipartite pure states [16]. The
negativity is also an entanglement monotone but valid for
both pure and mixed bipartite states [17] N ��� �
�Pij
ij � 1�=2, where 
i are the normalized eigenvalues
of the partial transposed matrix �TP . The relation between

negativity and the Peres criterium is clear: it measures by
how much the partial transposed density matrix fails to be
positive, i.e., separable. Therefore, to show the existence of
entanglement in the overall system it is sufficient to verify
that E�P2�2�P2�2�> 0. From now on we will use the
notation where each subspace of the density matrix is
represented by ��; �; n;m	 where �; � refer to the number
of excitations of the mirror and n;m refer to the number of
excitations of the cavity field.

For T � 0 the system is in a pure state and we can
investigate entanglement using the tangle [16], ��t�, which
is much simpler to compute than the negativity. Figure 1

FIG. 1 (color online). Tangle � as a function of k and the scaled
time for T � 0 K, � � 1, and subspace �1; 2; 1; 2	.
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shows that the system is always entangled except for t � 0

and t � 2�=wm (only the range t 2 �0; �=wm	 has been
plotted since the tangle has reflection symmetry around
t � �=wm), when the mirror returns to its initial state. For
small k, the system reaches the maximum of entanglement
at t � �=wm, simultaneously with the maximum displace-
ment of the mirror. For k above a critical value, kc, the
maximum of entanglement is achieved before t � �=wm.
The time of maximum entanglement depends on the bal-
ance between the interaction time tint (tint � 1=g), i.e., the
time scale of the interaction term in the Hamiltonian, and
the time of oscillation of the mirror, tm (tm � 1=wm).

It is interesting to try to understand the importance of the
amplitude of the coherent state, �, in establishing the value
of kc. We expect that when increasing � the value of kc
should decrease because there are more photons interacting
with the mirror resulting in a larger effective coupling
(ghayai). Surprisingly, this is not the case: the value of
kc increases with �. This can be understood as follows. The
ratio between the weight of the jn� 1i number state and
the weight of jni number state in the expansion of the

coherent state, being given by �=�
������������

n� 1
p

�, increases
with �, weakening the entanglement generated after inter-
action with the mirror. The best situation occurs when the
weights of states are the most equally distributed. Hence a
higher coupling helps the entanglement generation to have
the same efficiency when � is increased.

Considering the subspace �1; 2; 1; 2	, kc can be calcu-
lated as solution of the transcendental equation

�1� 14k2c � 24k4c � 2�2�1� 4k2c � 96k4c�e�12k2c  0:

(4)

The right-hand side of Eq. (4) is non-negative resulting in a
restriction for kc, i.e., kc is lower bounded. Also we can see
from Eq. (4) that kc increases with �. This confirms, at
least for this subspace, that a higher coupling is necessary
for reaching the maximum of entanglement before t �
�=wm if the amplitude of the cavity field is increased.

Since ���� is the maximum of entanglement achieved
during the evolution of the system for k � kc, and kc
depends on �, the value of ���� is maximized for

�max �
e6k

2
����������������

1� 2k2
p

���

2
p ����������������

1� 8k2
p ; (5)

which can only be defined for kc��max�  k. Equation (4)
indicates that the ideal value of � increases with the
coupling. It is useful to define �c as the value of �, for a
given k, such that kc � k and to notice that kc��max�  k is
equivalent to the condition �c  �max. By squaring (4) and
dividing it by (5) (with kc ! k and � ! �c) the condition
of validity of (5) yields k  1=2. This behavior is inde-
pendent of the particular subspace considered. For ex-
ample, the asymptotic behavior of the tangle at t � � as
a function of � is always ���� � j�j2, for � � �max, and
���� � j�j�2, for � � �max.

Figure 1 shows how the maximum of entanglement in
the considered subspace is shifted to earlier times when k
increases.

For temperatures slightly above T � 0 this behavior is
not significantly altered. At temperatures T > 0 the system
is in a mixed state and the entanglement must be inves-
tigated using the negativity. It can be inferred from the
plots of the negativity obtained from the simulations that,
for the subspace �1; 2; 1; 2	, the value of kc increases slowly
with the temperature. The investigation of the negativity

also shows, as expected, that the entanglement decreases
with temperature in a given subspace.

For higher temperatures, i.e., higher number of excita-
tions of the mirror, the negativity cannot be computed
because the numerical calculation of the hypergeometric
confluent function is ill conditioned. However, it is still
possible to verify the existence of entanglement for differ-
ent values of �, k, and temperature. This can be accom-
plished by introducing a marker of entanglement based on
the Peres criterium, which consists simply in verifying
whether the determinant of the partial transposed density
matrix �TP is negative, thus indicating the existence of a
negative eigenvalue. This is, of course, a very weak marker
of entanglement, which can only detect entanglement if
�TP has a odd number of negative eigenvalues, but has the
useful advantage of being easy to calculate.

The determinant of �TP for the subspace �0; 1; 0; 1	
is ��0;1;0;1	��; b; x� � �G��; b; x�H�b; x�, where

H�b;x��16x2eb
2x�x2��4�b2��2�x���1�eb

2=2�	2 �
eb

2x=2fb4��2�x�4�32x2�4b2x2��1�eb
2=2��4���3�

eb
2=2�x	g, G��; b; x� � x4j�j4eb2�x�2��4j�j2=�16 �n4� is al-

ways positive, b � b�t� �
���

2
p

k
����������������������������

1� cos�wmt�
p

, and x �
�n=�1� �n�. The sign of � is determined by H�b; x� and is
plotted as a function of �2=�� arctan�b�t�	 and x in Fig. 2,
where it is clear that the entanglement occurs for all
parameters except for high values of b�t� and low tempera-
ture (region I) and for low values of b�t� and high tem-
peratures (region II).

FIG. 2. Marker of entanglement, �, as a function of �2=���
arctan�b�t�	 and x for the subspace �0; 1; 0; 1	. Entanglement
(gray) exists for all parameter space except in regions I and II
(white).
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In the parameter region I, the lack of entanglement is not
important since, during the evolution of the system, the
value of b�t� ranges between 0 and bmax � 2k and, for
sufficiently short times, the system is entangled indepen-
dently of how large k is. In the parameter region II the
proof of existence of entanglement in the system is not as
easy because, in principle, the system could always be
separable for small values of k. However, by rewriting
Eq. (3) as follows

���nm � �nm���t�
Z d2z

�
Fn�z��F


m�z��eKnm�z�;

where Knm�z� � ��jFn�z�j2 � jFm�z�j2	=2� jzj2= �n and
Fn�z� � z� kn��t�, it is clear that k is always multiplied
either by n or by m. Then it is straightforward to verify that
��0;1;0;s	 it is proportional to ��0;1;0;1	 if in the former the

coupling ks � k=s is chosen; i.e.,

j�j�2ss!��0;1;0;s	�ks� � j�j�2��0;1;0;1	�k�:
For high temperatures, if we choose a large k capable of
producing entanglement in the subspace �0; 1; 0; 1	, then
there must be entanglement in the subspace �0; 1; 0; s	 for
the coupling constant ks � k=s, even though ks might not
lead to entanglement in the subspace �0; 1; 0; 1	. Therefore,
for systems where b�t� varies in region II there is always a s
such that entanglement occurs in the subspace �0; 1; 0; s	.

Although entanglement occurs at any finite temperature
this does not imply the existence of entanglement in the
limit of infinite temperature. In fact, making use of the
general inequality E�Pipi�

i
AB� �

P

ipiE��i
AB� to write

E�P��t�P	 � R
dze�jzj2= �nE�PUj�ih�j � jzihzjUyP�= �n�

and taking into account that (i) the limit of infinite
temperature is equivalent to the limit �n ! 1 and
(ii) entanglement is bounded in any subspace, yields
lim �n!1E�P��t�P	 � 0.

The entanglement appears naturally in the dynamics of
the system for any value of coupling between the mirror
and the cavity field at any finite temperature, independently
of the value of � (notice that H does not depend on �, at
least for the class of subspaces considered here), in spite of
� playing an important role in determining the amount of
entanglement in the system. An argument will be given to
infer this role. We define the normalized mutual informa-
tion as I � I12=�S1 � S2�, where I12 � S1 � S2 � S, Si is
the linear entropy of the mirror (i � 1) and the cavity field
(i � 2). S � 1� 1=�2 �n� 1� is the linear entropy of the
composite system and

Si � 1� e�2j�j2fi� �n�
X1

p;q�0

j�j2�p�q�

p!q!
e�gi��;k; �n;t��p�q�2 ;

for t � 0; 2�=wm, where f1� �n� � 1=� �n2�a2 � 1�	, f2� �n� �
1, g1��; k; �n; t� � 2k2��t��1� b�, b � �1� 1=a�2 � 1=a,
a � 1� 1= �n, ��t� � 1� cos�wmt�, and g2��; k; �n; t� �
k2��t�� �n� 2�. Since gi��; k; �n; t�> 0 (for k � 0) we

have @I=@j�j> 0, which shows that quantum correlations
increase monotonously with � as mentioned before.
Hence, a detectable amount of entanglement is expected
for sufficiently high �. Finally, we give a numerical value
for I for realistic physical parameters T � 1 K, wm �
10 MHz, k � 1, and � � 106, I � 1=2 * 0:19� 10�4 >
0. The Araki-Lieb inequality [18] guarantees that quantum
correlations are present whenever I > 1=2. This is consis-
tent with our previous conclusions that entanglement per-
sists even in the high temperature limit.

In this Letter the generation of entanglement between a
cavity mode and a movable mirror via radiation pressure
was analyzed by a projection method. Since in the process
of projection of the density matrix much of the entangle-
ment is lost, this method does not allow us to assess the
entanglement of the overall system but it is still robust
enough to identify two dynamical regimes depending on
the coupling between the mirror and the cavity field. For
k � kc the maximum of entanglement is achieved at t � �
and for k > kc is achieved before and, furthermore, dem-
onstrate the remarkable result that entanglement does oc-
cur for any finite temperature.

We hope that our results stimulate further investigations
on entanglement in the macroscopic domain. We gratefully
acknowledge M. Aspelmeyer, Č. Brukner, S. Gigan,
J. Kofler, E. Lage, P. Vieira, and M. Wieśniak. A. F. is
supported by FCT (Portugal) through Grant PRAXIS
No. SFRH/BD/18292/04. V. V. acknowledges funding
from EPSRC and the European Union.
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