

This is a repository copy of *Optimised PEI impregnation of activated carbons* - *Enhancement of CO2 capture under post-combustion conditions*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/89494/</u>

Version: Accepted Version

Conference or Workshop Item:

Salituro, A, Westwood, AVK, Ross, A et al. (1 more author) Optimised PEI impregnation of activated carbons - Enhancement of CO2 capture under post-combustion conditions. In: International Forum on Recent Developments of CCS Implementation, CO2QUEST FP7 Technical Meeting, 26-27 Mar 2015, Athens, Greece.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

School of Chemical and Process Engineering (SCAPE) FACULTY OF ENGINEERING

Optimised PEI impregnation of activated carbons - Enhancement of CO₂ capture under post-combustion conditions

Antonio Salituro, PhD student pmasal@leeds.ac.uk

Overview

Scope of the work

Effect of PEI loading (Stirring time=0.5 h; Solvent=methanol)

Total pore volume (cm 3 g $^{-1}$

0.5

0.4

35

35

Effect of PEI loading (Stirring time=0.5 h; Solvent=methanol)

Effect of PEI loading (Stirring time=0.5 h; Solvent=methanol) 15% CO₂ sorption kinetics at 53 °C and 1 bar

Effect of stirring time (PEI loading = Optimal; Solvent=Methanol)

Effect of stirring time (PEI loading = Optimal; Solvent=Methanol) $15\% \text{ CO}_2$ uptakes at 53 °C and 1 bar

Effect of stirring time (PEI loading = Optimal; Solvent=Methanol) 15% CO₂ sorption kinetics at 53 °C and 1 bar

Effect of Solvent type and Sorption temperature (Optimal PEI loading and Stirring time) 15% CO_2 sorption kinetics at 1 bar

Sample ID	Solvent	Stirring time	Theoretical Loading	Actual Loading	Ν	ΔVtot
-	-	h	wt. %	wt. %	wt. %	%
AR_PEI_44%_Me_8h	Methanol	8	44	29	7.1	42
AR_PEI_44%_W_8h	Water	8	44	34	8.0	51

Effect of Solvent type and Sorption temperature (Optimal PEI loading and stirring time) 15% CO_2 uptakes at 1 bar

	15% CO ₂ uptake (m	g CO ₂ ·gsorb ⁻¹) at 1 bar	
Sample ID	53 °C	77 °C	CO ₂ capacity drop (%)
AR	8.3	6.8	18
AR_PEI_44%_Me_8h	33.6	21.8	35
AR_PEI_44%_W_8h	23.8	21.8	8

SEM micrographs of samples' cross section

Gas adsorption isotherms

Dramatic porosity reduction

Higher CO₂ uptakes at 0 °C in particular at lower partial pressure

Boehm's titrations

Optimal sorbent - CO₂ capture performances

15% CO₂ sorption kinetics at 53 °C and 1 bar - Comparison with benchmark

Optimal sorbent - CO₂ capture performances

15% CO₂ sorption kinetics at 53 °C and 1 bar - TSA cycles

Optimal sorbent - CO₂ capture performances

15% CO₂ sorption capacity at 53 °C and 1 bar - Durability

Conclusions

UNIVERSITY OF LEEDS

The importance of stirring time

Better dispersion of PEI within porous network

4 times increase CO₂ uptakes under simulated post-combustion conditions CO₂ sorption performances

Larger uptakes and Faster sorption kinetics than Z13X

Easy regeneration through **TSA** cycles

Good durability over time (9 working cycles)

Thanks for listening... ...Any questions?

Institute for Material Research (IMR) School of Chemical and Process Engineering (SCAPE) Faculty of Engineering, University of Leeds, LS2 9TJ