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Abstract

This paper introduces a binary neural network-based pediaelgorithm incorporating both spatial and temporal
characteristics into the prediction process. The algorithused to predict short-term traffic flow by combining
information from multiple traffic sensors (spatial lag)daime-series prediction (temporal lag). It extends
previously developed Advanced Uncertain Reasoning Agchitre (AURA) k-nearest neighbour (k-NN) techniques.
Our task was to produce a fast and accurate traffic flow ptedi The AURA k-NN predictor is comparable to

other machine learning techniques with respect to recallfacy but is able to train and predict rapidly. We
incorporated consistency evaluations to determine if tb&RA k-NN has an ideal algorithmic configuration or an
ideal data configuration or whether the settings needeé teahed for each data set. The results agree with previous
research in that settings must be bespoke for each datahgetanfiguration process requires rapid and scalable
learning to allow the predictor to be setup for new data. Est processing abilities of the AURA k-NN ensure this
combinatorial optimisation will be computationally felal for real-world applications. We intend to use the

predictor to proactively manage traffic by predicting fimf/olumes to anticipate traffic network problems.

Keywords- binary neural network; associative memory; k-nearest neiginp@ime series;
spatio-temporal; prediction

Nomenclature

Variable = one feature of a traffic data vector, for exampkeftow value from a sensor.

Attribute = one time slice of one variable, for example tteflvalue from a sensor five minutes ago.

The final publication is available at Springer via http://dx.doi.org/10.1007/s00521-014-1646-5



1 Introduction

Intelligent Decision Support (IDS) systems are an important computitegd in many
problem domains. It is essential that any decision support system provideligence”
to help with good decision making. IDS systems are used to analysenation,
establish models and support the decision making process. An IDS is peedocat
providing a supportive role rather than entirely replacing humans in thsideanaking
process [1]. IDS has developed incorporating aspects from a broad spectrumasfislom
such as: expert systems; artificial intelligence; database témire and, data mining
and knowledge discovery.

The aim of our work is to provide an IDS tool to assist traffic network apms
to optimally manage traffic as a part of the FREEFLOW project [2]sThbl aims to use
neural-network-based pattern matching techniques to provide short-tedintjmes of
traffic volumes to the traffic operators and thus help them to select tst appropriate
course of action. The proposed IDS tool needs to operate in near “real time” and
dynamically; providing predictions prior to the next data collection, whigaffic data are
updated every 5-15 minutes. Traffic monitoring and control systems produgee la
volumes of data which infers that traditional relational databases amaiitable for
online traffic applications such as the IDS. Also, traffic data distributemesfrequently
non-stationary; hence, any method needs to be able to accommodate norastataia
while still maintaining fast, flexible processing. The proposed methagotould be
extended to other monitoring applications that use spatially distribetesbss where
neighbourhoods of sensors exist and where temporal characteristics areaimport

In the remainder of this paper, we provide a concise review of trafiiw &ind
neural network-based prediction methods in section 2, section 3 discussespusqit
binary neural network predictor, sections 4 provides an evaluation of our proposed
prediction method against alternative machine learning methods. Theagwal analyses
the prediction accuracy; and examines whether there is a single hlgariinfiguration
and whether there is a single data configuration that performs bestegipect to
prediction accuracy. The evaluation is focused on the timing analyske ¢fining and
the execution time of our proposed technique. We then analyse the results of the

evaluations in section 5 and provide our conclusions in section 6.

2 Short-term Prediction

The focus of our work in this paper was to predict future traffic flows @resrt-term

intervals using time series prediction [3]. The predicted flow may the displayed to the
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traffic operator to allow them to visualise how the traffic will demglover the near future
and to anticipate traffic problems. We provide a selective reviewnsd series prediction
literature with particular reference to vehicle flow predictenmd neural network-based
predictors.

Well-known short-term prediction algorithms can broadly be classifieal i
univariate and multivariate approaches. Simple univariate prediatiodels predict the
value of a variable as a function of the same variable observed in thedmte past.
Ding et al. [4] used support vector machines [5] to model future traffiw$l at a given
location as a function of past flow observations at the same location. RilglA
methodology introduced by Box and Jenkins [6] is a popular statistical approatimé&
series prediction. Hamed and Al-Masaeid [7] used an ARIMA timees model to
predict 1-minute future traffic flows. Williams et al. [8] added seaal differencing to
the ARIMA model to predict 15-minute-ahead flows with a periodicity of 24-holisre
recently, Ghosh et al. [9] used a seasonal ARIMA model calibrated Bziggsian
methods to predict traffic flows. However, the ARIMA method requtiese consuming
manual configuration for each problem scenario to obtain accurate poediesults. In
addition, it is not easy to incorporate additional explanatory varsatieer than the
observed variable in the ARIMA framework.

In contrast, a multivariate approach uses data from several locatiotraffic
prediction. The traffic flow on a road network is a spatial-temporal @sscThe traffic
variables observed at a given location are correlated with themprasd past values of
the same traffic variables observed at upstream or downstream luadtience, traffic
prediction models often use observations from neighbouring sensor locations as
explanatory variables to predict the value of a sensor variable &ea tcation.

Neural networks are often used for traffic variable prediction bamymeural
networks require intensive tuning to ensure optimal performance. Anaih @i0] used a
Radial Basis Function (RBF) neural network to perform traffic flowdiction. In an IDS
application, the neural network would need to be retrained every time newetzdab
available which is likely to be dalily. It is also likely that diffent parameter sets would be
required for different locations on the road network. This training atrdireng
introduces high computational complexity. For example, Vlahogianni et al., [11]
demonstrated a genetic algorithm for optimising Multi-Layer Perosst(MLPs) with
respect to the learning settings and the hidden layer topology. The sptmeural
network was then used for short-term traffic flow prediction. Abdulhail ef12]
demonstrated a similar approach for traffic flow prediction by using geaggarithms to

tune neural networks but the underlying MLP incorporated temporal lag by using



multiple links between neurons. These additional links introduced a time Hetayeen
network layers to capture the evolution of vehicle flow over time.

Martinetz et al. [13] used the neural gas network for chaotic tienses
prediction. Neural gas extends both k-means clustering and Kohonen neuratksetw
Predictions are generated from learning input to output mappings where the suthe
future value associated with the training example (input value). Zhiaalg [@4]
developed a Bayesian network model to describe the traffic flows. Theioapipused a
Gaussian Mixture Model to approximate the joint probability distributigtiinw the
Bayesian network nodes following dimensionality reduction by Princjmhponent
Analysis.

Kindzerske and Ni [15] are one of a number of authors to realise Yakowit8]s [
developmental work by applying non-parametric regression, the k-NN algorithtime
series prediction. Kindzerske and Ni [15] represented the current sriagighe traffic
sensors as a vector and compared this vector against historicalstéidterbest matching
historical vectors are then combined to generate a prediction. Knsiomé Polak [17]
enhanced this by introducing temporal lag in their k-NN approach so thatddloh
sensor’s variables formed a time series and the set of all tinessgere concatenated to
produce a vector covering the spatial distribution of sensors.

In a similar manner, Kamarianakis and Prastacos [18] introduced a<4patporal
extension of ARIMA to predict future flows as a function of historical flofkom a given
location and its upstream locations.

The accuracy of prediction depends on both the appropriateness of the data
configuration and the correct implementation of the machine learningkookpatio-
temporal data, simply incorporating spatially distributed sensors arilolgtts may
actually generate predictions that are worse than non-spatial modess timedata from
these neighbouring locations influence the predicted value. KamarizanadiBrastacos
[18] showed that injudicious use of data from neighbouring locations may actually
decrease prediction accuracy. They showed that using relatively fgperded sensors
fails to account for the spatial dependencies. Conversely, they found ttegt asmber of
sensors increases, the prediction accuracy may improve significasggtib-temporal
relationships are captured.

To summarise, traffic prediction models need to (1) accurately modtrigal
traffic flow patterns, (2) account for both the intra-day and inter-dayability in traffic
variables, (3) be able to incorporate both temporally and spatiallylaiséd information,
where appropriate, to improve prediction accuracy and (4) generate fjivadicapidly

between data collections.



2.1 Our approach

In this paper, we develop a fast and scalable neural network-based k-NMdtpre
implemented using the AURA binary neural architecture. It is adapted the
methodology described in [17] which incorporated temporal and spatial lagtamolard
k-NN traffic flow prediction.
X The AURA k-NN has only previously been described for non-temporal data.
In this paper, we extend the AURA k-NN method to encompass time series
processing. Traffic data change over time which necessitates a tdmpora

component for prediction.

X The AURA k-NN has also only been used previously for pattern match so we
extend the AURA k-NN to produce multivariate short-term predictions to
allow future traffic flows to be estimated.

The resultant method predicted future traffic flows by matching a atithee
series pattern against historical data patterns and using theskimggtime series to
predict either how the current traffic state will develop over time or whay happen if a
particular control mechanism is implemented. The methodology descriltest,iflexible
and satisfies the four criteria above. It also has wider applicatiother time series
prediction tasks, beyond the prediction problem addressed in this papexafopke,
[19], [20].

3 Binary Neural Network for prediction

The objective for the neural network-based pattern matching method wasdictgthe
future traffic flows to allow the traffic operator to visualise how thaffic situation will
develop. The AURA k-NN method identified a set of historical time periodsnihe set
of traffic observations on the road network were most similar to theeatiobservations.
It then used this information to produce a prediction of the futurdi¢rdbw by

averaging the flow development across the set of matches.

3.1 AURAK-NN

K-NN is a nonparametric pattern matching technique known to be robust adiluldle

and allows the predictor to be updated continuously. However, a drawback of
conventional k-NN is its speed, as it becomes very slow for large problEms.

drawback is overcome by using the AURA neural network technique to underpin the k-
NN. Using AURA means that the AURA k-NN can perform up to four timesdattan

the standard k-NN [21]. AURA is a group of techniques designed for high sgesedh

and match operations in large data sets. The foundation of AURA is a iwarglation
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Matrix Memory (CMM): a binary matrix used to store and retrieve gras [22]. In the
AURA k-NN developed previously [21, 23, 24, 25], each column of the CMM was a set
of attribute observations for a record (pattern) and each row indexettrdnute value or

a quantised range of values. AURA applies input patterns to the CMM to aatasta
retrieve similar output patterns. We extended the approach to matekstries vectors
and then to generate short-term predictions in this paper. The ddttils AURA k-NN

implementation are given in the following text.

3.1.1 Time Series

In the traffic domain, the AURA k-NN can process a broad spectrum of tredfiiables
such as vehicle counts, vehicle speeds, bus timetable adherence sitafil settings,
congestion metrics, roadworks data, events data, and weathenmdtis. paper, we used
flow and occupancy data from sensors located in the roads. Flow is the number of
vehicles passing over the sensor during unit time and occupancy is the peeceftiage
vehicles are present over the sensor during a specific time period.

For traffic prediction, the system must incorporate time: traffiadae dynamic
and show recurring patterns with respect to time. We describe how we auadeted
temporal aspects into the pattern match.

Given the current set of observatiods, from the set of traffic sensors and a
dataset of historical recordx, k-NN identifies thek nearest neighbours o, in { X}
using a distance metric. In this paper, the data records were tines-sepresentations of
spatially distributed sensors to incorporate trend similarity anda@atareness into the
prediction approach. To produce the time series, the AURA k-NN éffedgtbuffered
historical data and accumulated data for a preset time intd?Val} always preserved the
temporal ordering of the data, thiByffer, = { Buffer,: t DPT} represents the time series
buffer of variablev of the data. The time-series for recotgwhich we callX, > becomes

equation 1:

TS _
Xn ~ = {X1t3, X1t-2, X1t-1, X1t, X2t-3, X2t-2, - - -, Xnt-3, Xnt-2y Xnt-1, Xnt} (1)

for PT of four time lags {-3, t-2, t-1, §. The results of our evaluations in section 4 show
that the number of time lags needs to be tuned for each data set.

For example, for two sensors reporting two variables: flow and occuparimre
sensor has readings of 51, 62, 55, 68 for flow and readings of 15.0, 18.0, 21.0, 29.0 for
occupancy for four time lags4{3, t-2, t-1, } respectively and sensphas flow readings
of 38, 38, 56, 58 and occupancy readings of 15.0, 16.0, 23.0, 25.0 respectively, then

is given in equation 2:
X.'°={51, 62, 55, 68,] 15.0, 18.0, 21.0, 29.0, | 38, 38, 56, 58, | 15.0, 16.0, 23.p(25.0
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where the vertical bars illustrate the sections of the pattern with section representing

the time series buffer for one sensor variable (flow or occupancy here).

3.1.2 Learning

The CMM is used in AURA to store representations of all data. The CEIEhim x n
binary matrix that learns thi records in the data set. During learning, the CMM forms
an association between an input pattern and an output paiter , for each recorah

wherel,andO, £{0,1} as shown in figure 1.
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Figure 1. Showing the CMM storing the first associatlgrOy on the left and a CMM trained with
five associations on the right.

The input patternlf) represents the concatenated set of all time-series buffer
values for all variables of a particular recokgl® and indexes matrix rows. In the
remainder of this paper, each value of each time series buffer of eaableas referred
to as an attribute. There are 16 attributes in equation 2. The assboidfmit vector Q)
uniquely identifies that record and indexes the matrix columns. Thus, tloé agtibute
values for recoreh are associated with a unique identifier for the record. In figurg i,
stored in the leftmost column of the CMM and is uniquely indexe®py10000) which
activates the leftmost column.

The CMMs require binary input patterns for computational efficiency while
training and matching; so numeric attributes must be quantised (binnatipwomapping
to a binary pattern [21]. Quantisation maps a continuous-valuettrinto a smaller
("finite") set of discrete symbols or integer values. Eachlaite is quantised over its full
range of values and mapped to a set of bins. This allows each bin to indexificsand
unique row in the CMM. For example, for an integer-valued attribute witigez0-99 and
five bins then each bin would have width 28in, {0..19}, bin, {20..39} ...bin, {80..99}.
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For a real-valued attribute with range [0.0-100.0] and five bins then eachidaitd have
width 20:bing [0.0, 20.0),bin, [20.0, 40.0) ..bin, [80.0, 100.0]. Thus, for the sens@nd

sensoy above, the set of bin mappings f&'° in equation 2 are given in equation 3:
BingX,"%) =1{2,3,2,3,|0,0,1,1,|1,1,2,4,]0,0, 1, 1} (3)

In the AURA k-NN, each bin index maps to a binary representation to gemer
the binary patterns for AURA. For an attribute with five bins, the fivegole binary
representations arbin, = 00001,bin; = 00010,bin, = 00100 etc. To produce the input
vectorl, to train into the CMM, the binary representations for all the attribuiehe data
pattern are concatenated. The bin indexes for all attribut¥g frare set to 1 while all
other bin indexes remain unset (0). The binary input velgtderived from the bin
mappings in equation 3 is given in equation 4. This is the input learning patidre

stored in the CMM to allow the particular associatigrO,, to be stored and retrieved
I, ={00100 01000 00100 01000 | 00001 00001 00010 00010 | 00001 ... } (4)

Each binary input patterh is associated with a unique binary output patt®gn
which has a single bit set to index a single column in the CMM. This columas t
uniquely indexes the binary pattelin For exampleQ, (10000) uniquely indexels
which is the leftmost column in figure 1.

The CMM stores an association for allrecords in the data seX{®}. Thus, the
CMM represents {(;xX0O,), (1X0y), ... (I,x0Op)}. Learning is a one-pass process with one
learning step for each record in the data set. Hence, training is @il learning is
given in equation 5.

cMM | o}
ni where is logical OR (5)

.
'n Wn s an estimation of the weight matri¥(n) of the neural network as a linear

associatorW(n) forms a mapping representing the association described byhhe
input/output pair. The CMM is then effectively an encoding of bhereight matricedw.
Individual weights within the weight matrix update using a generalisadgfiddebbian
learning [26] where the state for each synapse (matrix element) is/hiakred. Every
synapse (matrix element) can update its weight independently and in parallel

Eachl,, hasm bits set wheranis the number of attributes (assuming no missing
values) and each is of lengthmebwhereb is the number of bins per attribute. Each O
has 1 bit set and has length There areN associations (one per data record). Therefore,

mN 1
the CMM containsn x N set bits, i.e.,MoN b possible bits are set in the CMM after

training. This allows a compact representation [27] to be used whehamgaat pattern,
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each output pattern and the CMM are represented by the indices of thiessatly. This

1
means that only? indices need to be stored for the CMM. This is similar to the pointer

representation used in associative memories [28]. This compacteepxen ensures
that retrieval, as described next, is proportional to the number oftsahtboth the

retrieval pattern and the CMM and is fast and scalable.

3.1.3 Retrieving the best matches

During retrieval, the CMM is searched to find théest matches. Each query record is of
the same format as the records in the training data (see equation 2). Raresaquery
XqTS, a retrieval patteriR is createdR is formed from a set of parabolic kernels, with one
kernel for each attribute iP(qTS. The kernels emulate Euclidean distance [21] to allow us
to emulate standard (Euclidean) k-NN. For each time slice for agodati variable, the
kernels are identical but they may vary across variables accordihg taumber of bins
assigned to that variable. For example, a flow variable may use adtiffaumber of bins
compared to an occupancy variable. In this paper, all attributes use dmequzer of
guantisation bins and, hence, an equivalent kernel. The kernel densitynatest using

equation 6 for all attributea in XqTS and an example kernel is shown in figure 2.

a, c? ) [¢] 2
Kernel(a) ««ng(b) » |bin(x§) bin(xg) OxJ) »where O(x3) maxéb)2
(_<|«© 2 15 v, (b(x3))

(6)
Where,maxb) is the maximum number of bins across all attributbm(f(g) - bin(’g)| is
the number of bins separating the bin mapped to by this attribute valuesfoutiry
pattern @‘g) from the bin mapped to by this attribute value for the stored histopatérn

(Xg), andb(Xg) is the total number of bins for attribuie.

&
Prosll

o ™

: N

0 9 L6 21 124 ﬁ 24 121 16| 9 0

Figure 2. Showing the kernel values produced from equation pooximate Euclidean Distance.

To emulate the scoring of Euclidean Distance, the kernels for albatés are

concatenated. Each kernel is centred on the bin representing titaitats value in the



query record. This ensures that the query value itself receives the hagloes and the
score reduces according to the distance from the query value. For an inédged-v
attribute with range 0-99 and five bins then each bin would have widthi2g{0..19},
bin; {20..39} ...bin, {80..99}. Thus, if the query record value was 31 this would map to
bin; so the input vector element representing viiould be the centre of the kernel. The
highest value for this kernel (analogous to the dotted value of the kierfiglire 2)
would be centred obin;.

For Euclidean kernels, the retrieval pattern input to the CMM toeee the topk

matches is iteratively given by equation 7:
R™ =R T offse{Kernel(xy)), for all attributes, (7

whereoffsef) indexes attribute,’s section of the input patterR and ensures that the
kernel is added t&, centred on the query value for attribu¢gand t is the concatenation

operator. Thus, each attribute indexes a defined set of elemeR@asishown in figure 3.

Sensor1_Flow_t-3 C
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N
Sensort_Flow_t C
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input-output
associations.

Each column
represents the
vehicle flows

at a set of sensors
for four consecutive
time slices.

Sensor1_Occ_t-3

Sensor1_Occ_t-2 (

Etc.
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Figure 3. lllustrating the application of kernels to a CMM to find #aeearest neighbours using
time-series vectors. The kernels are mapped onto an integesnR, which is applied to the
binary CMM by multiplying the CMM rows by the integer values. The @Mummed output
vector is thresholded to retrieve tkdest matches.

WhenRis applied to the CMM to retrieve the best matches, the valugs in
multiply the rows of the matrix as shown in figure 3. If the bit is set to ona particular
column, then the column will receive the kernel score for the correspgndiv as given
in equations 7 and 8. The process is illustrated in figure 3. For Sensorl_Fiow _t
columns 1 and 2 (indexing from 0 on the left) receive a score of 9 as the setthé i
respective columns aligns with the score of 9 in the input kernel. In astytthe right
column receives a score of 5 as the set bit in the right column aligihstingtscore of 5 in

the input kernel.
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To retrieve the best matching records, the columns (one column per redng)
matrix are summed according to the value on the rows indexed by the query itjgutbpa

R and the CMM produces a summed output ve&as given in Equation 8.

T
S IR XxCMM )

The summed output vector is then thresholded using L-Max thresholding [29] to
produce a binary thresholded vecitorL.-Max thresholding is used in the AURA k-NN as
it retrieves the tofh matches. After thresholding, effectively lists the tof. matching
columns which represent the t&gwherek=L) matches; i.e, thk nearest neighbours.
This is also illustrated in figure 3.

The overall retrieval time is proportional to the number of set bits in buth t
retrieval vector and the CMM. If the retrieval vector is a binargtee, similar tol, used
in training, then retrieval from the CMM is a count of the number of exact hiagc
binned attribute values for every stored recoroN. If we assume that on average each
stored vector (matrix column) matches 50% of the input and we assume thesseebit

mN
equally distributed across the rows then on bits are examined during retrieval

wheremis the number of attributes. We performed recall accuracy invegiigatising a
number of different kernels for retrieval and using the Euclidean kerigiffisantly
improves recall accuracy compared to other approaches [30]. Howkeexcturacy
increase is at the expense of a slight speed decrease compared tosisilg hit set
pattern. The Euclidean kernel excites all CMM rows of the attributiedfkernel is
centred on the middle bin and half of the rows if centred on one of the extralue kins.
If we assume that on average 75% of the rows are excited for each attnitaLitieeabits

3mbN
are equally distributed across the rows thed  bits are examined during retrieval.

8BmbN -
7KXV WKH NHUQHO EDVHG $85%RN 9 1 IéD/NErur)b@d/MlscPH JURZW
this is approximately equal to growth proportional todpfheren is the number of

records.

3.1.4 Prediction

For the prediction task in this paper using data arriving at 15 minute adtefnom the
sensors, we retrieved theaop matches and then looked up thé (+15 minute) ot+4
(+1 hour) sensor values for each of thmatches (these are stored in a database)t#he
(+15 minute) prediction is then the mean value of the seétbfvalues from th& nearest

neighbours and thie-4 (+1 hour) prediction is the mean of the4 values.
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4 Evaluation

We evaluated our AURA k-NN prediction method against a number of predictors
implemented using WEKA 3.6 software [31]. WEKA [32] is a Java GUI-based
application that contains a set of machine learning algorithms designedta mining.
The algorithms can be used for tasks including data pre-processing, ickssi,
prediction and clustering. Note WEKA prediction is to 3 decimal ptasbereas AURA
predicts to integers to display to the traffic operator. The methodsweses

1. Standard k-NN [33] known as Instance Based learning (IBK) in WEKA 3.6 - we
usedk=50 andk=10 in our analyses.

2. Multi-Layer Perceptron (MLP) Neural Networks are feedforward supervised
neural networks with at least one layer of nodes between the input nodestaoid o
nodes. The network links flow forward from the input to the output layer. The
network is trained by the backpropagation learning algorithm [34] usingridato
data. Training creates a model that maps inputs to outputs and this model céethe
used to predict the output when new data is applied. MLPs have been usedfior tra
prediction on a number of occasions. For optimum results, the pararmétbesMLP
are intensively tuned; for example, using a genetic algorithm [11]. How#hisr,
intensive tuning process is too slow for an on-line application such as the IDS.
Nevertheless, we ensured that we evaluated at least as many teraete for the
MLP as we evaluated for the AURA k-NN. For all evaluations, the MLP used
learning rate decay, train and validate (using 30% of the training dataafidation)
and we varied the key MLP parameters: learning rate and momenturothéit
settings were WEKA defaults as these produced the best predictiareagcAn
example WEKA MLP configuration is listed in the Appendix showing the settings
that we varied. Learning rate determines the amount the network werghtpdated
as training proceeds. Decaying the learning rate “may help to stop thediN f
diverging from the target output as well as improve general performahlsirfig a
train and validate regime ensures that the training data are spliebetactual
training data and validation data. Validation data are used to testtihed network
and stop training before performance degrades.

3. Support Vector Machine (SVM) is implemented as SMOreg in WEKA 3.6 and
implements the support vector machine for regression [31][35]. Suppordrvect
machines map the data to a high dimensional feature space and gemexate li
boundaries in the feature space to represent the non-linear class bosin8it{ereg
implements sequential minimal optimisation to train the support veetgession and
all attributes are normalised. Again, we ensured that we evaluatedsh as many

parameter settings for the SVM as we evaluated for the AURA k-NN. THd Ssed
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an RBF kernel and we varied the complexity. Labeeuw et al. [36] asdagrious
machine learning technigues for the similar task of predicting traffieeds and
congestion. They concluded that SVMs with an RBF kernel had the higbestay
of the methods evaluated so we used it here. All other settings were Wiekallts
as these produced the best prediction accuracy. An example WEKA SVM
configuration is listed in the Appendix showing the settings that weedari

4. Least Median Squares (LMS) regression- In WEKA, the LMS regression
functions are generated from random subsamples of the data. The LMS i@gress
with the lowest median squared error is then used as the final model. Our
implementation used all default settings.

The performances of the various configurations of the AURA k-NN were
compared against each other based on their prediction accuracy over p@rnddet test
set (out-of-sample accuracy) using the metrics in equations 9, 10 and 11. TReSWIM
and LMS provided baseline accuracies to allow us to compare the standaidakeN

AURA Kk-NN prediction accuracies using the metric in equation 11.

X, F

L uL00

i
ill
Mean Percentage Error (MPE) n 9)

- measures the bias (over-estimating or under-estimating)

? Xi l:i ulo

1] X

Mean Absolute Percentage Error (MAPE, n (20)

- measures the goodness-of-fit

Root Mean Squared Error (RMSE) (11

- Measures the absolute error — this is the best metric for comparingetiffanethods.

4.1 Data

In our application the IDS is required to run in near real-time so we t@ednimise the
data pre-processing. The only pre-processing performed was to clean tbatesets
used using a simple rule: Univariate Screening given in Krishnan [B&historical
record contained an erroneous value then the entire record (one vedtertiaining set)
was removed.

For the WEKA algorithms evaluated, the training data comprised the datarv

as per equation 2 associated with tihg value for the sensor to be predicted (the class
13



value). For +15 minute prediction, the training vector was the vecton Equation 2 with
thet+1 sensor reading as the class value. Accordingly, for +1 hour predittien,
training vector was the vector from equation 2 with tié sensor reading as the class
value. To generate the prediction, the algorithm predicted the ctdigs from the query

data vector. The algorithms were tested using two traffic data etsdentral London in
Russell Square and Marylebone Road.

4.1.1 Data Set 1
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Figure 4. The Russell Square corridor in central London (S&auBoogle Maps).

Data from seven sensors arranged in series along the Russell Squaterco
(southbound) in central London (see figure 4) was the first data set usdwfpradiction
experiment in this paper. The flows on the southernmost (downstream) sensor we
predicted. All sensors output two attributes: 15-minute flow valuesalmary between
0-800) and 15 minute occupancy values (with data range 0.0-100.0). The data were
obtained for the months of June, July and August 2007. Data from June and July were
used as the training set and data for August formed the test set. Tiedrand test data

sets comprised only data from weekdays (Monday to Friday) with 3,840raiecords
and 337 query records after cleaning.
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4.1.2 Data Set 2

Figure 5. Marylebone Road in central London (Source: Googi@®).

Data set 2 comprised data from six sensors on Marylebone Road (easthound) i
central London (see figure 5) where the future flow values at the easternmost
(downstream) sensor were predicted. The six sensors output 15-minutedfioeswith
data range 0-1600. Training data were from May 2008 and 1st-13th June 2008 while test
data were from 16th-20th June 2008 (one week). Only the weekday data were usgd givi
2,976 training records and 480 query records. A severe traffic incident happened i
Marylebone Rd on 20th June from 18:59 to 21:01. We ran two analyses, one lisig a
the test data from 16th-20th June and a second analysing data from the 20th Jdag, the
the incident occurred which comprised 96 records. The latter angly®sigded an
indication of how well the various machine learning techniques performendaiaeint
data when the traffic flow would be anomalous and prediction is potentiathemseful

to end-users.

4.2 Tests

We ran seven separate tests to: find the best AURA k-NN parametieigsepinpoint the
best data configurations; compare the accuracy of the predictors; anthtely, evaluate
the training and query time of the AURA k-NN. Parameter setting is a coatbiial
search problem and both algorithmic and data-related parameters masidx: ¥Hence,
we did not exhaustively test every possible parameter combination agdbid be
computationally intractable. Instead, we analysed a range of datagorittain settings

to evaluate both accuracy and consistency and whether we need to useshasifiogs

for each data set. Tests 1-3 use data set 1: the data for Russell Sg. inulyiaed]
August, 2007. Tests 4-7 use data set 2: the data for Marylebone Rd in May and June,

2008.
15



4.2.1 Test 1 - the best AURA k-NN configuration

This test was to investigate the best configuration with reqpetie internal parameters
of the AURA k-NN. These parameters were: the length of the time sgrgsthe
number of binsBins); and, thek value for k-NN k). We varied the setting of the
parameters in turn and counted the number of times each setting hadvést RMSE

across the evaluations of that parameter. The results are listaolénl.

Table 1. Table with count of the number of times each AURA k-NN patansetting has the

lowest RMSE. The highest counts 68, Bins andk are shown in bold.

TS Bins k

2416|810 11 25 49 10 25 50 1Q0
RMSE-15min§g 0 Q 043 |1 |0 |7 |O |O |11]0
RMSE-60min§g 0 Q 05|2 |6 |0 |2 |0 |4 |7 |0

The most consistent time series length &ndlue are clearS=8 andk=50,
respectively). The number of quantisation bins to use was less clean pvédicting +15
minutes, 49 quantisation bins performed best. When predicting +1 hour, 11drinsadly
performed best as this has the highest winning count. However, the twodr&singing
configurations for +1 hour with respect to both MAPE and RMSE use 49 bihsertitan
11 bins.

Test 1 indicated that optimising the algorithm configuration was impoead

needed care.

4.3 Test 2 —the best data configuration

Test 1 evaluated the AURA k-NN settings so test 2 evaluated diffel&ta

configurations to find the optimal data configuration(s) for predictigin AURA k-NN.

In test 2, we used the best AURA k-NN configuration from test $8, Bins=49, k=50)
and evaluated the following data settings: the number of sen&g@ use, whether to
incorporate the attributes of the sensawlf, whose flow is being predicte®) and

whether to incorporate the occupancy attribu®. (All evaluations used the flow attribute
(F). Each configuration was given a label to allow it to be referennetié text. The
results of test 2 are given in table 2.

Table 2 shows that there was a clear difference between the best asttRMEBE
for both +15 minute and +1 hour prediction. Configurations 1-6 and 1-7 performéd bes
with respect to both RMSE and MAPE.

From table 2, configurations 1-6 and 1-7 have higher MPE than the other
configurations indicating that they overestimate more while the othergumafiions
alternate between under and over estimations of larger magnitudesctupancy

attribute contributed to one of the two best performing configurations but ia not
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necessity as the other best performing configuration did not use occupadicyling all
sensors produced higher accuracy compared to limiting the number of seinstding
the self-sensor improved accuracy with the flow attribute only but didmptaove
accuracy with both flow and occupancy attributes. Again, this indscihigt the data need

to be carefully configured.

Table 2. Table listing the MPE, MAPE and RMSE for the various datdigurations of the
AURA k-NN. 15 indicates +15 minute ahead prediction and 60 inda 1 hour ahead

prediction. The highest prediction accuracy for each colunshdsvn in bold.

AURA k-NN Configuration | MPE MAPE RMSE
Name | NS| S| F| O] 15 60 15/ 60 15 6(
1-1 4 O| Y |N]|-334 -3.36 12.6 15 65(7 77.9
1-2 4 0| Y |Y]-357/-3.01]|128| 15.4| 66.0 77.7
1-3 4 1] Y | N]|-295|-3.20| 12.4] 154 655 79.0
1-4 4 1Y |Y]|-318]| -3.47 12.7 154 666 78.3
1-5 6 O| Y|N]J|-321 -395 125 149 655 76.1
1-6 6 O|Y|Y]-378] -3.41 12.514.8|65.3| 75.3
1-7 6 1| Y| N]J-335 -41112.3| 14.8] 65.2 76.1
1-8 6 1Y |Y]|-3.89 -3.98 12.5 15.0 65/9 765

Figure 6. Scatter plot and line graph for the actual and predittadvalues for +15 minute
prediction (+1) for AURA k-NN configuration 1-6.

The prediction results for configuration (1-6) are plotted in figures 6/&adainst
the actual data values. The scatter plot and line graphs in figure 6 $leguvediction
accuracy for +15 minute prediction and the graphs in figure 7 show the pgosdict
accuracy for +1 hour prediction. This illustrates where the ptixgtids accurate and
where it is inaccurate across the time span of the test data. From figares7, the
AURA k-NN tends to smooth transient spikes, particularly transieikespvhere the
flow values suddenly decrease supporting our earlier conclusion that gaatfans 1-6

and 1-7 overestimate more.
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Figure 7. Scatter plot and line graph for the actual and predftt@dvalues for +1 hour prediction
(t+4) for AURA k-NN configuration 1-6.

4.3.1 Test 3 — comparison to other algorithms

Next, we took the two best performing data configurations (1-6 and 1-7) from test 2 a
compared AURA k-NN to the WEKA machine learning algorithms running these t
data configurations.

X AURA k-NN and standard (WEKA) k-NN50.

X MLP config 1.6: learning rate = 0.4, decay = true, momentum3= 0.

X MLP config 1.7: learning rate = 0.5, decay = true, momentum4: O.

x SVM config 1.6: RBF Kernel, complexity = 50.0

X SVM config 1.6: RBF Kernel, complexity = 75.0.

The recall accuracy results for configuration (1-6) are listed in talalad the

results for (1-7) are listed in table 4.
Table 3. Table comparing the recall accuracy of the varioudigtars with time series length 8,

flow and occupancy attributes and predicted sensor excl(gbedensors) for test 4 part 1. The

highest prediction accuracy for each row is shown in bold.

AURA k-NN_ 1-6/ k-NN| MLP| SVM| LMS

RMSE - 15 min$65.3 65.3 (68.1 | 69.4| 69.9

RMSE - 60 min$75.3 75.380.5| 80.5| 85.7

For configuration 1-6, the AURA k-NN and the standard k-NN were the joint
best performing predictors for both +15 minute and +1 hour prediction compatie to
other approaches.

Table 4. Table comparing the recall accuracy of the varioudigi@s with time series length 8,

flow attribute only and all sensors for test 4 part 2. The higpesdiction accuracy for each row is

shown in bold.

AURA Kk-NN_ 1-7| k-NN| MLP| SVM| LMS

RMSE — 15 min$65.2 65.3 | 68.8| 67.8 69.2

RMSE - 60 min$76.1 76.9 | 81.1| 80.7| 86.5

18



The AURA k-NN was the best performing for both +15 minute and +1 hour
prediction for configuration 1-7, closely followed by the standard k-NNe RMSE
varied for all algorithms between this data configuration and theigus indicating that

all algorithms need to optimise the data configuration

4.3.2 Test 4 — the best data and AURA k-NN configuration

The first test of the AURA k-NN for data set 2 was to evaluate differentigonditions to
find the optimal configuration(s) for prediction. For Marylebone Rd, we raimgle
algorithm/data configuration test as only flow data was availableraeds Russell Sqg. had
both flow and occupancy. The results are given in table 5. We evaluatechavhet
incorporate the attributes of the sensor whose flow is being predi§jethé time series
length (T'S); the number of bins to use for quantisati@ir(s); and, thek value for AURA
K-NN (k).

Table 5. Table listing the MPE, MAPE and RMSE for various configiams of the AURA k-NN
with time series length 8 using the full week of query data. 15 ind&al5 minute ahead

prediction and 60 indicates + 1 hour ahead prediction. Thedsighrediction accuracy for each

column is shown in bold.

AURA k-NN Configuration | MPE MAPE RMSE

Name| S| TS Bins k| 15 60 15 6d 15 60
2-1la | Y| 6 | 25 50| -1.0(-1.1| 8.9| 11.4 117.¢ 1444
2-1b | Y| 10| 25 50[f -1.2 -1.0 9.1 10/ 1189 136.1
2-1c |Y|8 |11 50| -1.20 -1.3 9.3 11 1193 143.6
2-1d | Y| 8 | 25 50 -1.1 -1.0 9.0 11,0 1173 139.3
2-1le | Y| 8 | 49 500 -1.4 -1.0 9.0 11,0 1181 139.9
2-1f N|8 | 25 50| -1.3 -1.2 9.% 118 125/4 144.8
2-1g | Y| 8 | 25 10| -1.1 -0.6| 8.7| 10.00 115.9 131
2-1h | Y| 8 | 25 25| -1.1] -0.7 8.8 103 1151 134.8

Again, there is a clear difference between the best RMSE and worst RMSE f
both +15 minute and +1 hour prediction. The overall best performing configarftio
test 4 with respect to MPE, MAPE and RMSE was 2-1g which had somessigattings
to the best performing configuration (1-7) from test 2 (Russell Sq. datayeder, there
are differences in the settings and these demonstrate that both ¢highabgand data must
be configured and evaluated against each data set if optimum perfornsameeded even
for relatively similar data.

The graphs in figure 8 show the prediction accuracy for configuratiorgjZek
+15 minute prediction as a scatter plot and line graph and the graplysine ® show the
prediction accuracy for +1 hour prediction for configuration (2-1g) as batbatter plot
and a line graph. This illustrates where the prediction is accuratevaere it is

inaccurate across the time span of the test data.
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Figure 8. Scatter plot and line graph for the actual and predittadvalues for +15 minute
prediction (+1) for AURA k-NN configuration 2-1g.

Figure 9. Scatter plot and line graph for the actual and predftt@dvalues for +1 hour prediction
(t+4) for AURA k-NN configuration 2-1g.
From figures 8 and 9 and table 6, the AURA k-NN is again smoothing transient

spikes.

4.3.3 Test 5 — the best configuration for incident detection

We repeated test 4 using the data for only the day of the traffic inci@®/06/08) which
should be anomalous and thus more difficult to predict. The overall best pémnfprm
configuration for test 5 with respect to MAPE and RMSE was identw#hé best
performing configuration for test 4. We call this test 5 configuration 2-Zgth#e result

replicated the result of test 4, the table of figures is omitted.

4.3.4 Test 6 — comparison to other algorithms

Test 6 compared AURA k-NN to the WEKA algorithms running identical data
configurations on data set 2. The test comprised two parts. In part 1,etle us
configuration 2-1g from test 4 and the full week of test data. Part 2 usefibcrration 2-
2g from test 5 and just the incident test data. The results for part isted in table 6 and

for part 2 are listed in table 7.

20



x Standard k-NNk=10 andk=50 (to verify thatk=10 outperforms as per the AURA
k-NN).

X MLP part 1 and part 2: learning rate = 0.4, decay = true, momentum3= 0.

X SVM part 1: RBF Kernel, complexity = 150.0

X SVM part 2: RBF Kernel, complexity = 100.0.

Table 6. Table comparing the recall accuracy of the varioudigt@s with time series length 8
and all sensors predicting a full week. The highest predictionraoy for each row is in bold.
AURA k-NN_ 2-1gk-NN_10k-NN_5MLP [SVM|LMS

RMSE — 15 mins115.9 1156 | 117.8114.6116.3123.6
RMSE — 60 ming31.7 132.7 |139.6 | 146/0155.619Y.2

For part 1, the MLP had the lowest RMSE for +15 minute prediction follbiwe
the k-NN_10 and AURA k-NN. For +1 hour prediction, AURA k-NN was the most

accurate.

Table 7. Table comparing the recall accuracy of the varioudigtars with time series length 8
and all sensors predicting the day of incident only. The higpesdiction accuracy for each row is
shown in bold.

AURA k-NN_2-2dgk-NN_10k-NN_5(MLP SVM|LMS
RMSE — 15 mins128.8 128.0 [137.8 |137.5142(4161.9
RMSE - 60 mind50.7 151.4 |157.6 | 163|5182.82238.4

The standard k-NN performed best for part 2 for +15 minute prediction closely
followed by the AURA k-NN and vice versa for +1 hour with AURA k-NN sligitl
outperforming.

For both evaluations, usirig=10 outperformed usink=50 for the standard k-NN
supporting our results for the AURA k-NN.

4.35 Test7—- AURA k-NN run time.

Our final test was an analysis of the run time of AURA k-NN. It is \itaat the
underlying prediction algorithm is able to train and predict rapidlyyeen data
collections) for on-line applications. Our preceding evaluations havirowd that both
the algorithm and the data must be configured. This configuration will need tanbe r
periodically to maintain an up-to-date system and must be fast.

We have previously demonstrated that AURA k-NN training from raw data w
up to four times faster than conventional k-NN [21]. Zhou et al. [38] deterdnihat the
AURA k-NN trains up to 450 times faster than an MLP. Training time idipalarly
important as this forms the bulk of the overall run time. Here we evaluabether we
can speed the AURA k-NN further by reading binary files from disk sterddgne AURA
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k-NN may read in the data as raw data and perform training of the CMM asepéion 3.
Alternatively, the contents of the CMM may be written to disk once@MiM has been
trained and then read in from the saved file. We evaluated the tifondmth

approaches.

Table 8. Table listing the timings (seconds) for training the retpe data sets from raw data,

training the AURA k-NN from a stored CMM file and running a singleegy

Historical data size (vectorg) Train from rgwlrain from saved Query
(seconds) (seconds) (seconds
2,976 0.268 0.0020 0.0029
29,760 9.12 0.0169 0.0086
119,040 83.9 0.0662 0.0277
1,071,360 820.4 0.5914 0.2308

The software evaluated was a C++ prototype implementation that had et be
optimised at this stage. It ran on a Linux-based 3.4Ghz Intel Pentium IV mawcfitime
2GB of RAM and 1MB of cache. For this analysis, we used data set 2ritadata
comprising 2,976 records and applied one query®48, k=10 andBins=25. We then
replicated the dataset ten times to give a training set of 29,760 recorgystimes to
produce 119,040 records and 360 times to produce 1,071,360 records and recorded the
respective timings. The timings are averaged over five runs andsted In table 8 and
shown in figure 10.

Figure 10. Graphs showing the actual growth in training time gunety time from 2,976 to
1,071,360 records
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The run time growth for AURA k-NN training and querying was line@(n)
which agrees with our theoretical figure established in sectioreddig the data in from
a CMM stored on disk can exploit the compact representation used for ot &M is
almost 1400 times faster compared to training from raw data for the lanjjéon+
records data set. We already knew that the AURA k-NN was up to foustfaster than
standard k-NN but reading the CMM from disk can further speed the AURA k-NN
markedly.

Traffic data generally arrive at five minute intervals although they arrive as
frequently as every 30 seconds. One year of five minute interval datpres®es 105,120
records. Interpolating from the above results, this would take approXyn@a@¥ seconds
to read from the binary file and 0.04 seconds to query. Similarly, one Y& second
interval data comprises 1,051,200 records which would take approximatelg€c6ids
to read from the binary file and 0.24 seconds to query. This timing anahditsated that
the AURA k-NN would be fast enough for our on-line IDS processing one year of

historical data, typically producing results in less than one second.

5 Analyses

K-NN in general performs comparably with other modelling approacheswigneespect
to prediction accuracy as shown in tables 3, 4, 6 and 7. The advantage diE&& K
NN lies in the speed and scalability of training and prediction.

For algorithm configuration, the AURA k-NN only needed to optimise the
number of bins and thievalue for each data set but these do need to be configured
carefully and a range of values assessed. This agrees with botmd 2@ where we
also found thathere is no single bestvalue for predicting bus journey times [19] or a
single best number of bins for a broad range of time series data [20]. From the ten
data sets evaluated in [20] and the traffic data sets evaluated lnere j$ no obvious
correlation between the data characteristics and the best configuratiberngeithere
an obvious correlation between the data distribution and the best configuration.
Therefore, we aim to provide guidelines by recommending suitable ranges of values
for k and the number of bins. We have found that the kesin range from 10 to 50
here. K-NN is an instance-based learner relying on the nearest stored ddatpoi
produce the prediction. THevalue is affected by the density of the data and the data
coverage. Th& value needs to be set to ensure that the majority of points frork the
best matches will predict the correct value. If the value is too low then thaqgpicen
is reliant on too few data points. If it is too high then it may draw data porots f

too large an area making prediction unreliable. The number of bins ranges from 11 to
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49 here. If the number of bins is set too low then the AURA k-NN will fail to
separate the data and discrimination will be too low. Too many bins and the data
points become too sparse across multiple dimensions and fail to disceminat

The CMM does not need to be retrained to optimiselktkialue as this just
requires the number of matches returned to be varied. However, it doesatiedding to
optimise the number of bins. For data configuration: the sensors, the atttilofites from
each sensor and the time series length all need to be optimiseit, AgaCMM does not
need retraining to vary the sensors or attributes. If all attribiligsmay be used are
trained into the CMM then only CMM rows that relate to sensors under iigain
need to be activated and all other rows may be ignored.

Using more spatially distributed sensors produced better predictioneagcas
shown by table 2 where AURA k-NN with 6 sensors outperforms AURA k-NNwit
sensors with respect to MAPE and RMSE. Including the additional sertsbus,
occupancy, only improved the prediction accuracy marginally (see talsie &jditional
attributes have to be selected carefully. Kamarianakis andaesf18] showed that
attributes and sensors need to be carefully considered and thelée agsee with their
findings. Varying the time series length requires the CMM to be ne#dhi It was possible
to pinpoint a single ideal time series length for both data sets A&€3] but we expect
that the length would need to be varied for different data sets.

Previous evaluation have shown that AURA k-NN trains from raw data up to 450
times faster than an MLP [38] and executes up to four times faster thadasd k-NN
[21]. Here, we showed in table 8 that AURA k-NN executed even more rapidly by
reading trained CMMs stored on disk and then retrievingkthearest neighbours.

An advantage of both standard and AURA k-NN over the model-based
approaches is that they can incorporate new data into the k-NN framewngpkysind
quickly. New data may simply be added to the database for standard k-NN or aslded
new columns to the AURA CMM. A model-based approach would have to remodel the
new data which is a computationally intensive process. The AURA k-NN widtirte be
tuned periodically to keep it up to date but evaluating multiple algorithchdata
configurations is computationally feasible. Conversely, the SVM and MoRire
intensive optimisation across a number of parameters and we noticelelRMSE for
both the SVM and the MLP varied according to the parameters selectsprEsents
computational processing issues for an on-line IDS using either an SVM or Mttfe as
data would need to be remodelled regularly as new data became aviolpbéeent
model drift.

We noted in our four criteria that the prediction algorithm must be able to

accommodate non-stationary data and, thus, short-term data fluctuatioterimand
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Caprara [39] suggested that multivariate k-NN can identify chaotie 8aries patterns
(such as those found in traffic flows) that model-based approaches wolddThis
nonparametric regression technique of k-NN which effectively minesdteeahd
retrieves actual cases (local search) is much better suited to sedibtfum tasks than
data modelling techniques such as MLP, SVM or LMS which produce general models
that tend towards the mean. Data such as traffic flows are suseeftiluical, short-term
variations such as daily variations in demand, incidents or the weathese Bhert-term
variations must be identifiable by the technique to allow accurate prediatid a model
that tends towards the mean may well miss them. This hypothesis agreg¢beviindings
of [17, 39, 40] across various problem domains.

The AURA k-NN will generate a prediction using the average value okthe
neighbours. This averaging tended to smooth transient spikes and apuelaged t
overestimating more frequently than underestimating for this data. tHawine data sets
used in these evaluations were relatively small. We posit that arlér@ning set, such as
a full year of data with 365 * 96 = 35,040 records (assuming no missing da&y)|lead

to more accurate predictions as more examples of each time senidd ae present.

6 Conclusion

The AURA k-NN was the overall best performing predictor of the methods e\edwat
the data sets in this paper in terms of both speed and accuracy. It pedompsirably

with respect to prediction accuracy and is able to be implementedat execution and
scalability of both training and retrieval of ttkenearest neighbours. We envisage using
the AURA k-NN as a “train once use many” predictor, writing the CMM td«diwr

safety, running repeated queries and reading the CMM from disk when aegedsw
data may be added to the CMM by adding additional columns to the matrix. The rapid
execution allows the algorithm and data parameters to be tuned ifsaggds prevent
drift.

All predictors evaluated here required both the data and algorititmg®to be
configured. The fast execution time and minimal parameter set of the AURN k-
facilitates this combinatorial configuration process. The only aligoriparameter
required for standard k-NN is thevalue. The AURA k-NN added one parameter to this:
the number of quantisation bins for each attribute. It may be possible thastiesitd
guide the parameter setting can be inferred through analysing a diaaige of data sets.

One disadvantage of k-NN is that it is only as good as the historical data in th
database. Some model based methods such as MLPs are able to generalifeetivel\ye
plug gaps in the training data. If there is a gap in the data space thenviliiebe no

exemplars available to k-NN in this region so predictions will be proddiced more
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distant neighbours. Hence, it is vital, that the historical data basédfisiently large with
sufficient coverage to optimise accuracy. This is particulatg fior infrequent events
such as traffic incidents. A large database covering a long time sileadontain more
event data which will enable better instance-based prediction faxis kaethod.
However, if the data base is too large then computational time will be sixecor
standard k-NN. For this reason, we use the faster AURA k-NN to underpin dugcpor
so much larger databases with better coverage may be processed.

We feel that the AURA k-NN prediction accuracy can be improved. We noted
from the MPE that the AURA k-NN tends to overestimate traffic flowsnek future
work will investigate increasing the prediction accuracy by incorporatinge-of-day
matching using time-of-day profiles; k-NN distance weighting; and, intraduerror
feedback. As discussed above, using a larger database covering atiowggpan may
also improve instance-based prediction. We will also investigateyuinfidence
estimators where the prediction is accompanied by a confidence valuk dratiee
distance of the matches from the query.

Ultimately, it is hoped that the predictor will be incorporated intaraelligent
decision support system for traffic monitoring and tested against redthaata from
London, Kent and York in the UK. By producing predictions, the IDS will be able to
make recommendations proactively and anticipate traffic problathgrrthan
functioning reactively and being subject to time lags inherent in dataatah. The
proposed method is generic and we hope to apply it to other domains that useyspatiall
distributed sensors where neighbourhoods of sensors exist and where temporal

characteristics are important.
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Appendix

WEKA MLP configuration .
Settings in italic were changed from the WEKA defaults but not chdiggween runs and

settings in bold/italic were varied for each run to tune the MLP.

gui false

autoBuild true

debug false

decay true

hiddenLayers t (number of hidden layers = numAttribs + numClasses
learningRate 0.4

momentum 0.3

nominalToBinaryFilter true

normalizeAttributes true

normalizeNumericClass true

reset true
seed 0

trainingTime 500
validationSetSize 30
validationThreshold 20

WEKA SVM configuration .
Settings in italic were changed from the WEKA defaults but not chdiggween runs and

settings in bold/italic were varied for each run to tune the SVM.

complexity 50.0

debug false

fileType Normalize training data

kernel RBFKernel -C 250007 -G 0.01

regOptimizer RegSMOImproved -L 0.0010 -W 1 -P 1.0E-12 -T 0.004d
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