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Abstract 

The interactions of biomass constituents (hemicellulose, cellulose and lignin) were 

investigated during fast pyrolysis at 800 °C in a fixed bed reactor. The formation of 

polycyclic aromatic hydrocarbons (PAH) as well as mass distribution and gas products is 

presented. The possible interactions of biomass constituents were compared with the 

results of the expected results based on the pyrolysis of single components. For the 

interaction of xylan and cellulose, the mass distribution was similar to that expected from 

calculation of single component addition, however, PAH were increased. The interaction 

of xylan and lignin produced a decrease in PAH concentration compared to that expected 

from single component data. There was evidence of strong interaction between cellulose 

and lignin, where gas and solid residue yield was decreased and tar/oil yield was 

increased. In addition, naphthalene, acenaphthylene, and chrysene/benzo[a]anthracene 

were decreased compared with the concentrations expected from the single component 

pyrolysis. However, the amounts of 1-methynaphthalene, 2-methynaphthalene, 

acenaphthene, fluorene, phenanthrene, anthracene, and pyrene were increased. 
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1. Introduction 

 

The world’s reliance on the use of fossil fuels and the consequent concerns around 

climate change has stimulated interest in renewable fuels such as biomass [1]. Thermal 

conversion of biomass, including combustion, pyrolysis and gasification are important 

technologies for biomass utilization [2]. Pyrolysis is operated in the absence of oxygen at 

elevated temperatures, which is regarded as a fundamental process of thermal conversion 

[3]. In addition, pyrolysis presents an alternative process to enhance both the energy and 

economic value of biomass utilization compared with combustion, due to the option for 

the production of syngas and bio-oil that have potential to be further utilized [4]. 

Extensive work on biomass pyrolysis has been carried out recently [2,5]. However, 

the formation of polycyclic aromatic hydrocarbons (PAH) is one of the challenges of 

biomass pyrolysis [6]. PAH are group of semi-volatile compounds which have been 

linked to a range of health concerns, including cancer, mutations or malformations of the 

human body [7]. The US Environmental Protection Agency (US EPA) has listed 16 PAH 

which are regarded as priority pollutants, i.e. naphthalene, acenaphthylene, acenaphthene, 

fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, 

benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene [8]. It has estimated that the global 

total annual atmospheric emission of these priority pollutant PAH in 2007 was 504 Gg 

(331-818 Gg, as the interquartile range), with residential/commercial biomass burning 
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(60.5% of the total), open-field biomass burning (agricultural waste burning, 

deforestation, and wildfire, 13.6% of the total) as the major sources [9]. 

Biomass has three main constituents, hemicellulose, cellulose, and lignin [10]. 

Hemicellulose is a complex, branched and heterogeneous polymeric network, based on 

pentoses such as xylose and arabinose, hexoses such as glucose, mannose and galactose, 

and sugar acids. Cellulose is a long chain polysaccharide formed by D-glucose units, 

linked by ȕ-1,4 glycosidic bonds. Lignin is a racemic, heteropolymer consisting of three 

hydroxycinnamyl alcohol monomers differing in their degree of methoxylation: 

p-coumaryl, coniferyl and sinapyl alcohols [11]. Generally, biomass has hemicellulose 

contents ranging from 16 to 23%, cellulose contents from 42 to 49%, and total lignin 

contents from 21 to 39% [12].  

It is reported that during the pyrolysis/gasification process, the three biomass 

constituents may act with a synergistic effect [11,13]. Giudicianni et al. [11] have studied 

the steam pyrolysis of three the single biomass constituents (hemicellulose, cellulose and 

lignin) and of three binary mixtures in order to evaluate possible interactions between the 

biomass constituents. The results obtained highlight the importance of the interactions 

between constituents, mainly cellulose and lignin, on the yield and characteristics of solid 

and gaseous products [11]. Wang et al. [14] investigated the interactions of biomass 

constituents using thermogravimetric (TG) analysis and showed that the thermal 

decomposition of levoglucosan was extended over a wider temperature range according 

to the interaction of hemicellulose or lignin with cellulose; and the amount of phenol, 



4 

 

2,6-dimethoxy was enhanced by the interaction of cellulose and hemicellulose [14]. A 

considerable influence of the interaction between cellulose and lignin on the pyrolysis 

behavior, including gas, tar/oil, and char formation as well as product composition has 

also been reported by Hosoya et al. [15] at a gasification temperature of 800 °C. Lignin 

inhibited the formation of levoglucosan formed from cellulose and enhanced the 

formation of the low molecular weight products from cellulose resulting in reduced yield 

of char fractions; cellulose reduced the secondary char formation from lignin and 

enhanced the formation of some lignin-derived products including guaiacols, 

4-methyl-guaiacol and 4-vinyl-guaiacol [15]. 

The interactions of biomass constituents during fast pyrolysis may be different from 

those in slow pyrolysis. During the process of slow pyrolysis, different constituents 

decompose at different temperatures. If the pyrolysis of one constituent begins, while the 

pyrolysis of the other constituent has finished, few interactions would be expected. In 

particular, of relevance to the work reported here, there are few studies in relation to the 

interaction of biomass constituents on PAH formation during fast pyrolysis.  

In this paper, the thermal behavior of the single biomass constituents, hemicelluloses, 

cellulose and lignin, of binary mixtures of the components has been investigated with the 

aim to evidence and quantify possible interactions between the three components during 

fast pyrolysis. The influence of component interaction on the yield and composition of 

products, including PAH have been investigated.  
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2. Materials and methods 

 

2.1. Materials 

 

Xylan has been commonly used as a representative of hemicellulose, and xylan 

produced from beech wood was used here and obtained from Sigma-Aldrich. Cellulose 

(microcrystalline) was provided from Research Chemicals Ltd. Lignin (dealkaline) used 

in this research was obtained from a dealkalization process of alkaline lignin provided by 

Tokyo Chemical Industry Co., Ltd. The sample was in granular form with a size of less 

than 150 µm. Before the experiments, all the samples were dried at 105 °C to obtained the 

sample on a the dry basis. The results of the proximate and ultimate analysis of the 

samples are shown in Table 1, which shows that; xylan has a notable amount of nitrogen 

(2.70 wt.%); cellulose shows the highest volatile content (97.94 wt.%); lignin has 

considerable ash (16.15 wt. %) and fixed carbon content (29.25 wt. %); the sulphur 

content of lignin was also quite high (5.67 wt.%). The high volatile content of cellulose 

and high sulphur content of lignin have been reported by other researchers [16,17]. 

 

2.2. Fast pyrolysis process 

 

Fast pyrolysis of the samples was carried out using a fixed bed reactor system (Figure 

1). The reaction system was composed of a pyrolysis reactor, tar/oil collection system and 
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gas collection. During the experiment, N2 (100 ml min-1) was used as carrier gas, and the 

residence time of volatiles was approximately 2.6 s. During the experiment, the reactor 

was initially heated to the set point (800 °C). Once the temperature had stabilized, the 

sample (1 g) was inserted into the hot zone of the reactor and rapidly pyrolysed. The 

average heating rate was approximately 350 °C min-1, which was a rough evaluation of 

how fast the sample was heated. The reactor was kept at the reaction temperature for a 

further 30 minutes. The products from the pyrolysis were cooled using air and dry ice 

cooled condensers, thereby collecting the condensed tar/oil. The non-condensed gases 

were collected using a Tedlar™ gas sample bag, and further analysed off-line using 

packed column gas chromatography (GC). An additional 20 minutes was allowed to 

collect the non-condensed gases to ensure complete collection of gas products. All 

experiments were repeated to ensure the reliability of the results. 

 

2.3. Products analysis and characterization 

2.3.1. Gas chromatography 

Non-condensed gases collected in the Tedlar™ gas sample bag were analysed off-line 

by packed column gas chromatography. H2, CO and N2 were analysed with a Varian 3380 

GC on a 60–80 mesh molecular sieve column with argon carrier gas, whilst CO2 was 

analysed by another Varian 3380 GC on a Hysep 80–100 mesh column with argon carrier 

gas. C1-C4 hydrocarbons were analysed using a third Varian 3380 gas chromatograph 

with a flame ionisation detector, with an 80–100 mesh Hysep column and nitrogen carrier 
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gas. From the known input of nitrogen flow rate and collection time, the volume and mass 

of other gases could be calculated. 

2.3.2. Characterization of PAH 

After each experiment, the condenser and the tar/oil connecting sections were 

weighed to obtain the mass of tar/oil by weight difference. The tar/oil products from the 

condensers were washed by ethyl acetate. The water content in the liquid mixture was 

removed by filtering through a column of anhydrous sodium sulphate.  

Finally, the liquid fractions, which contained PAH, were analysed using a Varian 

CP-3800 gas chromatograph coupled with a Varian Saturn 2200 mass spectrometer 

(GC/MS) fitted with a 30m × 0.25ȝm DB-5 equivalent column. 2 ȝl of the extracted 

tar/oil sample was injected into the GC injector port at a temperature of 290 °C; the oven 

programme temperature was at 50 °C for 6 min, then ramped to 210 °C at 5 °C min-1, held 

for 1 min and ramped at 8°C min-1 to 300 °C (total analysis time of 61 min). The transfer 

line was at 280 °C, manifold at 120 °C and the ion trap temperature was held at 220 °C. 

The ion trap was initially switched off for 7 min to allow the elution of the solvent prior to 

data acquisition to safeguard the life of the trap. The PAH compounds were quantified by 

internal standard method with 2-hydoxyacetophenone as internal standard (IS). The 

GC/MS was calibrated using standard PAH supplied by Sigma-Aldrich Ltd., thus PAH 

could be quantitatively determined. The analysis reported 10 of the 2-4-ring PAH from 

US EPA priority list and also 2 naphthalene derivatives (1-methylnaphthalene and 

2-methylnaphthalene). The GC peaks of benzo[a]anthracene and chrysene could not be 
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separated clearly by the GC system used; therefore the concentration of these two 

compounds was reported together. 

 

3. Results and discussion 

 

3.1.Fast pyrolysis of single biomass constituents 

3.1.1. Product mass distribution 

The product mass distribution for the fast pyrolysis of, xylan, cellulose, and lignin is 

shown in Figure 2. Xylan generated the highest tar yield (43.2 wt.%). Cellulose produced 

the highest gas yield (69.5 wt.%), with no solid residue yield, which was consistent with 

the proximate analysis results reported in Table 1. The higher tar yield and lower gas yield 

from cellulose pyrolysis have been reported by other researchers [18]. The relatively long 

gas residence time of this research of ~2.6 s may have produced secondary reactions and 

thermal degradation of the tar/oil compounds to produce gas. Lignin had the highest solid 

residue content (41.3 wt.%), due to the high fixed carbon and ash content of the lignin, as 

shown in Table 1. The high solid residue yield of lignin pyrolysis has also been reported 

by others [18]. 

3.1.2. Gas composition 

The gas products from the pyrolysis of xylan, cellulose, and lignin are shown in 

Figure 3. The yield of hydrogen from the different biomass constituents were similar 

(~100 ml g-1 sample). Cellulose produced the highest CO yield (342 ml g-1 sample), from 
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decarbonylation and decarboxylation reactions [19]. Xylan produced the highest CO2 

yield (100 ml g-1 sample), mainly due to the cleavage of acetyl groups linked to the xylan 

unit [19]. Lignin produced the lowest yield of hydrocarbons. 

3.1.3. PAH analysis 

The main PAH found in the product tar/oil from the fast pyrolysis of the single 

biomass constituents, xylan, cellulose, and lignin are shown in Table 2. The fast pyrolysis 

of xylan and lignin generated a tar/oil containing a range of 2-4 ring PAH, whereas the 

PAH found in the tar/oil from cellulose pyrolysis was low. Stefanidis et al. have reported 

similar results [20]. The pyrolysis of lignin produced more PAH than that of xylan and 

cellulose. Naphthalene was the most abundant PAH in the tar of lignin. The large amounts 

of PAH from lignin pyrolysis were consistent with our previous research in a two-stage 

reactor system [21]. The high PAH yields might be due to the unique phenyl-propane 

units of the lignin structure which are not found to any extent in the other biomass 

constituents [14]. 

 

3.2. Interactions of biomass constituents during fast pyrolysis 

In this section the possible interactions between the biomass constituents during fast 

pyrolysis are discussed comparing the results obtained via the processing of binary 

mixtures of hemicellulose, cellulose and lignin.  The data obtained were compared with 

calculations obtained from the expected results produced from the fast pyrolysis of the 

single biomass constituents, a method widely used in other research of interactions of 
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biomass constituents [11,14,15]. The ratio of two biomass constituents was 1:1 

(50%:50%). As shown in Figures 4-6, the experimental results (exp) were from the 

co-pyrolysis of biomass constituents; calculated results (cal) were from the simple 

addition of the results obtained from the fast pyrolysis of the single biomass constituent in 

the same weight percentage of real mixtures (Eq. (1)). 

1 2(cal) 50% 50%X X X       
(1)

 

Where X(cal) is the calculated result from the single component data; X1 and X2 

represent the product yield from the pyrolysis of xylan, cellulose or lignin. 

3.2.1. Mass distribution 

As shown in Figure 4(a), there was no significant interaction between xylan and 

cellulose (less than 5 wt.%), which has also been reported by other researchers [11,15]. 

The interactions between xylan and lignin were very weak, as shown in Figure 4(b), 

which was consistent with the results reported by thermogravimetric studies of biomass 

constituents [22,23]. However, the interaction between cellulose and lignin in terms of 

product mass distribution was significant. Due to interactions, gas yield was decreased by 

7 wt.%, tar/oil yield was increased by 15 wt.% and solid residue yield was decreased by 6 

wt.%. The results of these interaction effects between cellulose and lignin were consistent 

with the data reported by of Hosoya et al. during the fast pyrolysis of biomass constituents 

at 800 °C [15]. It was postulated that lignin inhibits the formation of levoglucosan from 

cellulose and enhances the formation of the low molecular weight products from 

cellulose with changes in the secondary degradation mechanism of volatiles species and a 
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reduction in the yield of char [11,14]. However, Worasuwannarak et al. [23] has reported 

that the interactions between cellulose and lignin during thermogravimetric pyrolysis 

(heating rate 10 °C min-1) contributed to a decrease in tar yields but an increase in char 

yield.  However, the work reported by Worasuwannarak et al. [23] was undertaken at 

slow pyrolysis conditions, whereas the work reported here was fast pyrolysis, indicating 

that the interactions for fast pyrolysis are different from the interactions for slow 

pyrolysis. 

3.2.2. Gas analysis 

The comparison of gas products from biomass constituent mixtures and the calculated 

expected results based on the single component data are shown in Figure 5. For the fast 

pyrolysis of the xylan and cellulose mixture, experiments generated less CO yield, which 

has also been reported by Giudicianni et al. during the gasification of biomass 

constituents in steam [11]. Figure 5 shows that the interaction between xylan and lignin 

on the gas composition was not significant. However, for the interaction of cellulose and 

lignin, there was less hydrogen and carbon monoxide generated from the experimental 

mixture of the two components compared to that expected from calculation.  

3.2.3. PAH analysis 

Figure 6(a) shows that during the fast pyrolysis of the mixture of xylan and cellulose, 

the yield of all the PAH was increased compared with the calculated results expected from 

the single component data. For example, the yield of naphthalene increased from 11.9 to 

44.0 ȝg g-1 sample, and the yield of acenaphthylene increased from 13.2 to 48.8 ȝg g-1 
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sample. 

Currently, there are few reported data in relation to PAH generation from the 

interaction of biomass constituents during pyrolysis. Wang et al. [14] reported that 

2,5-hiethoxytetrahydrofuran concentration increased with increasing hemicellulose 

content in mixtures of biomass constituents when the cellulose content was kept constant. 

In addition, the presence of cellulose enhanced the formation of hemicellulose-derived 

acetic acid and 2-furfural [14]. Stefanidis et al. [20] has reported that the interactions of 

xylan and cellulose during pyrolysis of the mixture of the two components increased 

yields of phenols, which were regarded as PAH precursors. 

During the pyrolysis of the xylan and lignin mixture, several PAH were decreased in 

terms of yield compared with the calculated results. Particularly, the yield of naphthalene 

decreased from 79.9 to 44.5 ȝg g-1 sample; the yield of acenaphthylene decreased from 

54.2 to 28.9 ȝg g-1 sample; and the yield of phenanthrene decreased from 36.3 to 16.9 ȝg 

g-1 sample. This finding was different compared with the PAH formation from the fast 

pyrolysis of the xylan and cellulose mixture, where PAH yields obtained experimentally 

were increased compared to the calculated expected results from the single component 

fast pyrolysis data. In addition, a different trend of PAH formation resulted from the 

pyrolysis of the cellulose and lignin mixture (shown in Figure 6 (c)). For example, the 

amounts of naphthalene, acenaphthylene, and chrysene plus benzo[a]anthracene were 

decreased, while the amounts of 1-methynaphthalene, 2-methynaphthalene, 

acenaphthene, fluorene, phenanthrene, anthracene, and pyrene were increased.  
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Currently, the PAH formation mechanisms from pyrolysis of biomass single 

constituent are not clear. For example, Hosoya et al. [24] reported on the phenol 

derivatives produced from interactions of lignin and cellulose. Some compounds (such as 

catechols) were increased compared to the expected results based on the single 

component, whereas some compounds (such as o-cresols) were decreased compared to 

the expected calculated results [24]. Asmadi et al. reported that catechols and pyrogallols 

from the pyrolysis of lignin could decompose to form PAH [25,26]. Meanwhile, benzenes 

or phenols from the pyrolysis of xylan or cellulose might be intermediates for PAH 

formation [20]. In addition, there might be another route of PAH formation linked with 

the generation of char [27]. The interaction of biomass constituents is clearly a complex 

process and in particular, the influence of the formation of PAH, therefore, further work 

should be performed to investigate the influence and mechanisms of biomass interaction. 

 

4. Conclusions 

 

The interactions of biomass constituents (hemicellulose, cellulose and lignin) were 

investigated during the fast pyrolysis of the individual components and simple mixtures 

in a fixed bed reactor at 800 °C. The process was investigated in terms of product yield 

and gas composition and the content of polycyclic aromatic hydrocarbons (PAH) in the 

product tar/oil. The possible interactions of the biomass constituents were compared 

using the experimental data from the mixtures of the components and the calculated 
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expected data from the single component experiments. For the interactions of xylan and 

cellulose, the product mass distribution was similar to that of the calculated expected 

results; however, several PAH in the product tar/oil were increased. The interaction effect 

of xylan with lignin was not significant but several PAH in the product tar/oil were 

decreased. Fast pyrolysis of the cellulose and lignin mixture showed the highest influence 

of interaction, with decreased product gas and solid residue yield and a consequent 

increase in tar/oil yield. Analysis of the tar/oil showed that some PAH were decreased 

while some were increased, indicating the interactions between cellulose and lignin were 

complex. 
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Table 1 

Proximate and ultimate analysis of the biomass constituents. 

Samples Proximate Analysisd (%) Ultimate Analysisdaf (%) 

Ash Volatile Fixed carbon C H O N S 

Xylan 3.83 82.60 13.57 40.26 5.49 51.55 2.70 0.00 

Cellulose 0.07 97.94 1.98 41.66 5.71 52.20 0.41 0.02 

Lignin 16.15 54.61 29.25 63.86 4.45 25.83 0.18 5.67 

d: dry basis; daf: dry ash free basis. 
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Table 2  

PAH concentrations in the tar/oil produced from the fast pyrolysis of biomass constituents 

(ȝg g-1 sample). 

PAH Xylan Cellulose Lignin 

Naphthalene 16.1 7.7 143.8 

1-methylnaphthalene 32.8 0.0 79.0 

2-methylnaphthalene 33.6 0.0 103.9 

Acenaphthylene 19.9 6.4 102.0 

Acenaphthene 2.9 0.0 3.1 

Fluorene 19.6 6.7 33.0 

Phenanthrene 21.6 34.5 50.9 

Anthracene 4.1 3.7 7.9 

Fluoranthene 0.0 0.0 0.0 

Pyrene 5.5 0.0 6.7 

Chrysene/benzo(a)anthracene 0.0 0.0 10.7 

Total 156.2 59.1 541.0 
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Figure Captions 

Fig. 1. Schematic diagram of the fast pyrolysis reaction system. 

Fig. 2. Product mass distribution from the fast pyrolysis of biomass constituents. 

Fig. 3. Gas concentration produced from fast pyrolysis of single biomass constituents 

Fig. 4. Product mass distribution in relation to the interactions of biomass constituents. 

Fig. 5. Gas composition in relation to the interactions of biomass constituents. 

Fig. 6. PAH formation in tars/oil in relation to the interactions of biomass constituents. 
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Fig. 1. Schematic diagram of the fast pyrolysis reaction system. 
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Fig. 2. Product mass distribution from the fast pyrolysis of biomass constituents. 
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Fig. 3. Gas concentration produced from fast pyrolysis of single biomass constituents. 
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Fig. 4. Product mass distribution in relation to the interactions of biomass constituents. 
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Fig. 5. Gas composition in relation to the interactions of biomass constituents. 
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Fig. 6. PAH formation in tars/oil in relation to the interactions of biomass constituents. 

 


