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Abstract In this paper we explore a covariance-spectral modelling strategy
for spatial-temporal processes which involves a spectral approach for time
but a covariance approach for space. It facilitates the analysis of coherence
between the temporal frequency components at different spatial sites. Stein
(2005) developed a semi-parametric model within this framework. The purpose
of this paper is to give a deeper insight into the properties of his model and
to develop simpler and more intuitive methods of estimation and testing. A
very neat estimation for drift direction is proposed while Stein assumes it is
known. An example is given using the Irish wind speed data. Stein constructed
various plot to assess the goodness of fit of the model, we use similar plots to
estimates the parameters.

Keywords Space-time model · Covariance-spectral model · Coherence
function · Asymmetry

1 Introduction

There is a need for tractable yet flexible spatial-temporal models in applica-
tions such as environmental modelling. Two natural starting points are mod-
els for purely spatial or purely temporal data. For example, one may consider
time as an extra spatial dimension; then spatial statistics techniques (Cressie,
1993) can be applied. However, this approach ignores the fundamental differ-
ences between space and time such as coherence, which arises, e.g., if a wind is
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blowing across a spatial region. On the other hand, starting from a time series
perspective, one way to think of a spatial-temporal process is as a multiple
time series (Priestley, 1981) where the spatial locations of the data index the
components of the time series. However, this approach ignores the regularity
in space and does not allow inferences about the process at sites where data
are not observed.

In this paper we focus on a covariance-spectral modelling strategy which
intertwines the roles of space and time in a deeper way. Consider a real-valued
stationary spatial-temporal process Z(s, t) defined on R

d ×R with covariance
function C(h, u), where h ∈ R

d represents a spatial lag in d dimensions,
and u ∈ R represents a temporal lag. The covariance function has a spectral
representation

C(h, u) = FTST {f(ω, τ)} =

∫∫

ei(h
′
ω+uτ)f(ω, τ)dωdτ, (1)

where for simplicity we usually assume the spectral measure has a density
f(ω, τ) for ω ∈ R

d, τ ∈ R. The subscripts “S” and “T” denote Fourier
transforms with respect to space and time respectively. Taking a “half Fourier
transform” of f over the spatial frequency yields an intermediate function

H(h, τ) = FTS{f(ω, τ)} =

∫

eih
′
ωf(ω, τ)dω, (2)

so that

C(h, u) = FTT {H(h, τ)} =

∫

eiuτH(h, τ)dτ.

We shall call H a “covariance-spectral function” since it depends on the spatial
lag h and the temporal frequency τ . Our modelling strategy will be to look
for tractable and flexible choices for H.

This paper is organized as follows. In Section 2, general properties and
special cases of H are discussed, including Stein’s model. A simulation study
is done in Section 4. An exploratory analysis of the Irish wind data is carried
out in Section 5; this data set provides a test case for the estimation and
testing methods developed in Section 3.

2 Stationary spatial-temporal models

2.1 General properties

As described in the Introduction a stationary spatial-temporal covariance
structure can be represented equivalently in terms of a covariance function
C(h, u), a spectral density f(ω, τ) or a covariance-spectral function H(h, τ).
In this section we investigate the relationships between these representations,
and explore H in more detail.

The following proposition based on standard Fourier analysis sets out the
properties possessed by each of these representations.
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Proposition 1 For an integrable real-valued function f(ω, τ) on R
d × R, let

C(h, u) = FTST {f(ω, τ)} and H(h, τ) = FTS{f(ω, τ)}. Then the following
are equivalent.

(a) C is an even (C(h, u) = C(−h,−u)), real-valued positive semi-definite
(p.s.d) function.

(b) f is an even (f(ω, τ) = f(−ω,−τ)) nonnegative function.
(c) H(h, τ) is an even (H(h, τ) = H(−h,−τ)) complex-valued function and

H(h, τ) = H̄(−h, τ). H(h, τ) is p.s.d. as a function of h for every τ .

Statistical modelling strategies can be based on looking for tractable choices
in terms of either C, f or H. In this paper we focus on H. We need to find
choices forH satisfying (c) together with an integrability condition

∫

H(0, τ)dτ <
∞.

Recall that for two stationary time series, the coherence function ρ(τ)
gives the complex correlation in the spectral domain between the two series
at frequency τ . It is often convenient to express ρ(τ) = |ρ(τ)| exp{iArgρ(τ)}
in terms of the absolute coherence function |ρ(τ)| and the phase Argρ(τ). The
phase of the coherence function determines the extent to which one process
leads or lags the other process.

In the spatial-temporal setting, the coherence function also depends on the
spatial lag h. It takes a convenient form in terms of the covariance-spectral
function,

ρ(h, τ) =
H(h, τ)

√

H(0, τ)H(0, τ)
=

H(h, τ)

k(τ)
.

For a fixed spatial site s, k(τ) = H(0, τ) is the spectral density of the sta-
tionary time series {Z(s, t), t ∈ R}. For any fixed spatial lag h, ρ(h, τ) is
the coherence function of the two stationary time series {Z(s, t), t ∈ R} and
{Z(s+ h, t), t ∈ R}, each with spectral density k(τ). For each τ ∈ R, h ̸= 0,
we have |ρ(h, τ)| ≤ 1 and ρ(0, τ) = 1.

2.2 Special Cases

Separable models. If any of the following three equivalent conditions holds,

C(h, u) = CS(h)CT (u), f(ω, τ) = fS(ω)fT (τ), H(h, τ) = CS(h)fT (τ),

then the covariance structure is said to be separable. In this case the coherence
function takes the form

ρ(h, τ) = ρS(h) = CS(h)/CS(0),

which is real-valued and does not depend on the frequency τ . Further k(τ) =
CS(0)fT (τ). Separability is a convenient mathematical assumption but is usu-
ally far too stringent for practical applications.
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Fully symmetric models. The assumption of full symmetry is less restric-
tive than separability, but still imposes strong constraints on the covariance
structure. The property of full symmetry can be expressed in three equivalent
ways:

C(h, u) = C(−h, u), f(ω, τ) = f(−ω, τ), H(h, τ) = H(−h, τ).

Hence, full symmetry is equivalent to the condition that the coherence
function ρ(h, τ) is real-valued. Cressie and Huang (1999) and Gneiting (2002)
have chosen real-valued H(h, τ) for the covariance-spectral representation of
spatial-temporal covariance functions; hence they have obtained fully sym-
metric covariance functions. Subba Rao et al. (2014) investigate the use of the
half-spectral representation to carry out approximate maximum likelihood in-
ference under the assumption of full symmetry and isotropy.

Temporal frozen field models. In some sense the opposite of full symmetry
is the frozen field model, in which a single time series ZT (t) with covariance
CT (u) and spectral density fT (τ) is observed at each spatial site, but subject
to a suitable temporal lag,

Z(s, t) = ZT (t+ v′s)

where v ∈ R
d represents a spatial “drift”. The covariance, generalized spectral

density and covariance-spectral functions of the resulting process take the
forms

C(h, u) = CT (u+ v′h),

f(ω, τ) = fT (τ)δ(ω − vτ),

H(h, τ) = fT (τ)e
iv′

hτ , (3)

where δ is the Dirac delta function, viewed here as a generalized function of
ω for each τ . In this case the coherence function ρ(h, τ) = eiv

′
hτ has absolute

value one for all h and τ , reflecting the coherent dependence of the two time
series {ZT (t), t ∈ R} and {ZT (t + v′s), t ∈ R} . There are two other types
of frozen field model, not considered here, which start with a spatial process
ZS(s) or a spatial-temporal process Z0(s, t), respectively; see e.g. Cox and
Isham (1988) and Ma (2003).

2.3 Stein’s Covariance-Spectral Model

The temporal frozen field model (3) is too rigid in practice, so we consider a
more general model due to Stein (2005)

H(h, τ) = k(τ)D(hγ(τ))eiθ(τ)v
′
h, (4)

where various components have the following interpretations.

(a) The temporal spectral density k(τ) = k(−τ) is a symmetric nonnegative
integrable function on R. It is identical to fT (τ) in (3).
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(b) The latent spatial covariance function D(h) = D(−h) is a real-valued
positive definite function on R

d with D(0) = 1. Note that the coherence
function of (4) is

ρ(h, τ) = D(hγ(τ))eiθ(τ)v
′
h, (5)

with absolute value |ρ(h, τ)| = D(hγ(τ)) ≤ 1 for h ̸= 0. Thus D governs
how the absolute coherence decays with increasing spatial lag up to a factor
depending on temporal frequency. For practical work we follow Stein (2005)
and assume D takes the specific form

D(h) = e−|h|p , 0 < p ≤ 2, (6)

where p is generally unknown, in order to simplify the estimation of the
remaining parts of the model.

(c) The temporal decay rate function γ(τ) = γ(−τ) is a positive even function
of τ ∈ R. It governs how the rate of decay of absolute coherence in h

depends on the temporal frequency τ . The simplest choice is the constant
function γ(τ) = const.

(d) The temporal phase rate function θ(τ) = −θ(−τ) is an odd function on
R. It governs how phase of the coherence function, Argρ(h, τ) = θ(τ)v′h

depends on temporal frequency. The simplest choice is the linear function
θ(τ) = bτ .

(e) Finally the unit vector v specifies a direction for the spatial-temporal asym-
metry.

The corresponding spectral density of (4) is

f(ω, τ) =
k(τ)

γ(τ)
fS

(

ω − vθ(τ)

γ(τ)

)

, (7)

where fS(ω) is the purely spatial spectral density of the spatial covariance
function D(h). The vector vθ(τ) in the phase shift of the coherence function
(4) appears as the location shift of the spectral density (7) and the scaling
function γ(τ) appears as a scale shift.

One way to motivate a simple special case of Stein’s model is through a
combination of a separable model and a temporally frozen model. If D(h) =
CS(h), γ(τ) = 1, k(τ) = fT (τ) and θ(τ) = τ in (4), then

C(h, u) = CS(h)CT (u+ v′h),

f(ω, τ) = fS(ω − vτ)fT (τ),

H(h, τ) = fT (τ)CS(h)e
iτv′

h. (8)

However, Stein’s approach in (4) allows a greater degree of flexibility by al-
lowing more choices for γ(τ) and θ(τ).

Many statistical tests for separability have been proposed recently based
on parametric models, likelihood ratio tests and spectral methods, e.g. Fuentes
(2006) and Mitchell et al. (2006). In the purely spatial context, Scaccia and
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Martin (2005) and Lu and Zimmerman (2002) developed tests for axial sym-
metry and diagonal symmetry. These tests are valid only under a full sym-
metry assumption. A lack of full symmetry in Stein’s model can be carried
out by examining whether θ(τ) = 0. If θ(τ) = 0, then the resulting spatial-
temporal covariance function is fully symmetric. Furthermore, if θ(τ) = 0 and
γ(τ) = const., then the model is separable.

3 Inference for Stein’s covariance-spectral model

In this section we investigate methods of inference for Stein’s covariance-
spectral model (4). The parameters are p, 0 < p ≤ 2 in the latent spatial
covariance function (5) and three functional parameters k(τ), γ(τ) and θ(τ).
The goals are to develop methods for parameter estimation, goodness of fit
assessment and interpretation.

The estimation procedure has several steps, so it is helpful to set out the
general strategy and notation before the details are given.

(a) Starting from the data, construct the empirical covariance-spectral function
H̃(h, τ), as a raw summary statistic of the data.

(b) Carry out preliminary nonparametric smoothing of H̃(h, τ) over τ to get

a smoothed empirical covariance-spectral function ˜̃H(h, τ).
(c) Transform the H function to be linear in the unknown parameters, and use

regression analysis (with the transformed ˜̃H(h, τ) playing the role of the
response variable) to estimate the parameters. This strategy is used first to
estimate k(τ) and second to estimate jointly p and γ(τ). The procedure to
estimate θ(τ) follows the same general principles, but involves a preliminary
estimate of v based on maximizing a certain ratio of quadratic forms.
In other words the basic strategy is to estimate k(τ), γ(τ) and θ(τ) is

to match the smoothed empirical covariance-spectral function ˜̃H(h, τ) to
its theoretical value in (4) using regression methods, after transforming
(4) to linearize the dependence of k(τ), γ(τ) and θ(τ) in turn, on τ . The
regression can be either parametric or non-parametric. Stein (2005) has
suggested parametric forms based on trigonometric polynomials for k(τ),
γ(τ) and θ(τ). Maximizing the likelihood numerically is a computationally
intensive procedure due to the need to invert large matrices. Stein (2005)
considered approximate likelihoods based on a multivariate version of the
Whittle likelihood. Our method can be seen as simpler and more graphi-
cal, enabling visual judgments to be made about the model. Stein (2005)
constructed various plots to assess the goodness of fit of the model. We
use similar plots to estimate the parameters through a regression analysis.
Both parametric and nonparametric regression models are accommodated
by this methodology. The effect and importance of each parameter then
can be seen directly in the appropriate plot.

(d) Finally, it is necessary to estimate standard errors of the parameters.
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3.1 Initial data processing

Suppose the data {Z(si, t), t = 1, . . . , T} are given at irregular spatial lo-
cations si, i = 1, . . . , S and equally-spaced integer times t = 1, . . . , T . For
notational convenience suppose the data have already been centered to have
mean 0. The first step is to construct the half-Fourier transform of the data

J(si, τ) =

T
∑

t=1

Z(si, t)e
−2πitτ , τ = 1/T, . . . , [T/2]/T.

To distinguish the empirical and smoothed versions of various quantities,
we use “ ˜ ” and “˜̃” to denote the empirical and the initial smoothed versions,
respectively.

The sample covariance-spectral function is defined to be

H̃(h, τ) =
1

T
J(si, τ)J̄(sj , τ), h = si − sj ̸= 0,

H̃(0, τ) =
1

S

S
∑

i=1

H̃i(0, τ),

where J̄ is the complex conjugate of J and H̃i(0, τ) = 1
T
|J(si, τ)|

2. Here h

ranges through the set of spatial lags si−sj , assumed for simplicity to have no
replication except for h = 0. The sample temporal spectral density at site si is
defined by k̃i(τ) = H̃i(0, τ) and the sample overall temporal spectral density
by

k̃(τ) = H̃(0, τ). (9)

Define the sample coherence and the sample phase for the process at two sites
separated by spatial lag h = si − sj ̸= 0 by

ρ̃(h, τ) = H̃(h, τ)/

√

H̃i(0, τ)H̃j(0, τ), h = si − sj ̸= 0 (10)

D̃(h, τ) = |ρ̃(h, τ)|, g̃(h, τ) = Arg(ρ̃(h, τ)), (11)

so ρ̃(h, τ) = D̃(h, τ)g̃(h, τ).

3.2 Initial smoothing

Note that D̃(h, τ) = |ρ̃(h, τ)| = 1 for all h = si−sj ̸= 0, making it useless as it
stands for the estimation of D(h, τ). To fix this problem, we propose that some
initial smoothing of H̃(h, τ) with respect to the time frequency be carried out.
Denote the resulting “initially smoothed” sample covariance-spectral function

by ˜̃H(h, τ). Similarly, the corresponding initially smoothed empirical temporal

spectral density
˜̃
k(τ), absolute phase ˜̃D(h, τ) and argument of phase ˜̃g(h, τ)

are obtained by using ˜̃H(h, τ) instead of H̃(h, τ) in equations (9)–(11).
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One way to carry out the initial smoothing is to use the R function,
spec.pgram, which smooths H̃(h, τ) with a series of modified Daniell smoothers.
The exact amount of initial smoothing is not critical here. Enough smoothing

is needed to make ˜̃D(h, τ) suitable for estimation purposes. At the same time
we do not want to mask any broad patterns in the data which will be fitted
later using parametric or nonparametric models. An explicit illustration of a
suitable amount of smoothing is given in Section 5 for the Irish wind data. It
is also possible to include tapering over time but for simplicity we have not
done so here.

3.3 Estimation of k(τ)

The initially smoothed temporal spectral density
˜̃
k(τ) is a crude estimate of

k(τ). This estimate can be refined in two ways, depending on whether we carry
out nonparametric or parametric modelling.

(i) (nonparametric) A simple way to estimate the function k(τ) is simply by

regressing
˜̃
k(τ) on τ nonparametrically, e.g. using the Nadaraya-Watson

(Nadaraya, 1964; Watson, 1964) estimator. A convenient implementation in
R is given by the functions dpill and locpoly in the package KernSmooth
(Ruppert et al., 1995). Let k̂np(τ) define the fitted nonparametric estimate.

(ii) (parametric) Stein (2005) suggested a parametric fractional exponential
model

log k(τ) = −β log sin(|πτ |) +

K1
∑

k=0

ck cos(2πkτ), τ = 1/T, . . . , [T/2]/T,(12)

where the condition 0 ≤ β < 1 guarantees the integrability of k(τ) and
allows for long-range dependence (Bloomfield, 1973; Beran, 1994, Ch. 6).

Here K1 is assumed known for the moment. Assume log
˜̃
k(τ) equals the

right hand side (RHS) of (12) plus independently and identically dis-

tributed (i.i.d.) errors. Then OLS regression yields estimates β̂, ĉ0, . . . , ĉK1
,

which define a fitted spectral density k̂par(τ).

3.4 Estimation of p and γ(τ)

Under assumptions (4) and (6) the following transformation linearizes the
dependence of D(h, τ) = |ρ(h, τ)| on the parameters p and γ(τ):

log(− log(D(h, τ))) = p log(|h|) + p log γ(τ). (13)

In terms of the data, we shall treat log(− log( ˜̃D(h, τ))) as the dependent vari-
able in a regression on the righthand side of (13) with i.i.d. normal errors.
Estimation can take two forms, depending on whether we carry out nonpara-
metric or parametric modelling.
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(i) (nonparametric) We propose estimation in two stages. Initially treat (13)
as a parallel-lines regression model on log(|h|), with common slope p and
with intercepts p log γ(τ) depending on τ . Fit the parameters by OLS and
denote the resulting estimate of γ(τ) by γ̂init(τ). For the second stage,
regress γ̂init(τ) on τ nonparametrically to get γ̂np(τ) and D̂np(h, τ).

(ii) (parametric) Following Stein (2005), one way to model the even non-
negative function γ(τ) is with trigonometric polynomials,

log γ(τ) =

K2
∑

k=0

ak cos(2πkτ), (14)

where K2 is a pre-specified number of terms. Then the log-log transfor-
mation linearizes the dependence of D(h, τ) on the parameters p and
a0, . . . , aK2

.

log(− log(D(h, τ))) = p log(|h|) + p

K2
∑

k=0

ak cos(2πkτ). (15)

Here (15) depends linearly on log(|h|) and cos(2πkτ), k = 0, . . .K2, where
the slope p is the same for all τ . Fitting this model by OLS leads to esti-
mates p̂ and â0, . . . , âK2

which define γ̂par(τ) and D̂par(h, τ).

3.5 Estimation of “drift” direction v and the phase θ(τ)

In (4), recall

g(h, τ) = Arg(H(h, τ)) = θ(τ)v′h. (16)

We propose estimating the parameters by regressing the smoothed empirical
phase function ˜̃g(h, τ) on h and τ using ordinary least squares. However, there
are two complications: g(h, τ) is an angle, not a number, and the regression is
nonlinear.

First we deal with the angular problem; that is, g(h, τ) is an angular vari-
able for each h and τ , and hence defined only up to an integer multiple of
2π. But since g(h, τ) is a continuous function of τ for each h, it can also be
regarded as a real-valued function initialized by g̃(h, 0) = 0. That is, for each
h and τ an unambiguous choice for the winding number can be found. Let
gR(h, τ) denote this real-valued extension of g(h, τ). Similarly, provided the
noise is not too large, the empirical phase g̃(h, τ) and its smoothed version
˜̃g(h, τ) can be unambiguously unwound to give real-valued extensions g̃R(h, τ)
and ˜̃gR(h, τ).

Next we regress ˜̃gR(h, τ) on θ(τ)v′h on v and θ(τ). Since the regression
is nonlinear we proceed in two stages. The first stage produces an estimate of
v and an initial estimate of θ(τ). The second stage produces a more refined
estimate of θ(τ).
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Here are the details. Ordinary least squares estimation involves minimizing
the sum of squares

SSE =
∑

τ

∑

h̸=0

(

˜̃gR(h, τ)− θ(τ)v′h
)2

. (17)

If v is known, then for each fixed τ , the OLS estimate of θ(τ) is given by

θ̂init(τ ;v) =
v′

∑

h ̸=0
˜̃gR(h, τ)h

v′Av
, (18)

where A =
∑

h̸=0
hh′ is a d × d matrix. Inserting (18) into (17) yields the

reduced sum of squares

SSE(v) =
∑

τ

∑

h ̸=0

˜̃gR(h, τ)
2 −

v′Bv

v′Av
, (19)

where B =
∑

τ β(τ)β
′(τ) is a d×d matrix defined in term of the d-dimensional

vector β(τ) =
∑

h
˜̃gR(h, τ)h.

Minimizing (19) now reduces to an optimization problem for a ratio of
quadratic forms. The optimal v is given by the eigenvector corresponding to
the largest eigenvalue of A−1B (e.g. Mardia et al. (1979, p. 479)). Let v̂ denote
the result. Once v has been estimated, then the regression equation reduces
to

gR(h, τ) = θ(τ)v̂′
h

and the initial estimate of θ(τ) becomes

θ̂init(τ) =
v̂
′ ∑

h ̸=0
˜̃gR(h, τ)h

v̂
′Av̂

.

We can get a refined estimate of θ(τ) as follows.

(i) (nonparametric) Regress θ̂init(τ) on τ nonparametrically to get θ̂np(τ).

(ii) (parametric) Regress θ̂init(τ) on τ parametrically to get θ̂par(τ). Following
Stein (2005), one way to model the odd function θ(τ) is with trigonometric
polynomials,

θ(τ) =

K3
∑

k=1

bk sin(2πkτ), (20)

for some fixed K3.
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3.6 Estimation of Standard Errors

In estimating both functional parameters γ(τ) and θ(τ) we must do initial
smoothing. In the first case we do initial smoothing to ensure that the absolute
coherence is less than one and in the latter case to ensure the winding of
the phase angle varies smoothly with τ . Although there is no need for initial
smoothing of the empirical spectral density, we have initially smoothed the
empirical spectral density to unify our estimation procedures.

But initial smoothing leads to autocorrelated errors, underestimated stan-
dard errors and minor shift in the intercepts. Although ignoring correlation
usually introduces little bias in the estimates of regression coefficients, it can
introduce substantial bias in the estimates of standard errors and this may
lead to incorrect inferences about OLS estimates. To resolve this problem, we
assume an approximate model for the autocorrelation of the initially smoothed
residuals. The general procedure can be described as follows. Consider a gen-
eral linear regression model Y = Xβ+ε, E(ε) = 0, cov(Y ) = Σ, where Y is an
SF×1 random vector where F = [T/2] and β is a vector of unknown regression
parameters. Under the separability assumption we have Σ = ΣS ⊗ΣF , where
ΣS = (σi,j)

S
i,j=1 and ΣF = (δi,j)

F
i,j=1 are covariance matrices and ⊗ denotes

the Kronecker product. The OLS estimates are given by β̂ = (X ′X)−1X ′Y .

Under the separability assumption we have cov(Yi1,j1 , Yi2,j2) = σi1,i2δj2−j1 .
Let ε̂ be the SF × 1 vector of the corresponding OLS residuals. The corre-
sponding estimates are given by

δ̂u =
1

SF

∑

i

F−u
∑

j=1

ε̂i,j ε̂i,j+u/σ̂i,i,

σ̂i1,i2 =
1

F

∑

j

ε̂i1,j ε̂i2,j ,

where without loss of generality we scale the covariance matrices so that δ̂0 = 1.
The variance of regression coefficients are given by

var(β̂) = (X ′X)−1X ′(Σ̂S ⊗ Σ̂F )X(X ′X)−1.

Note that for large values of S and F calculating the Kronecker product Σ̂S ⊗
Σ̂F first and then multiplying it by X is not only computationally inefficient,
it is also not feasible due to memory problems in R. To resolve this problem
we use the fact that Σ̂S ⊗ Σ̂F = (Σ̂S ⊗ IF )(IS ⊗ Σ̂F ). These identity matrices
make the calculation easier because it is easy to see that sub-blocks of X
are multiplied by Σ̂F so we multiply each block separately. Also, for numerical
stability we approximate Σ̂F by a Toeplitz matrix based on a stationary AR(1)
process.
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3.7 General Considerations

– When fitting trigonometric polynomials for functional parameters κ(τ),
γ(τ) and θ(τ), it is necessary to choose values for K1,K2,K3. This choice
can be made subjectively or by some model selection criteria such as AIC
or BIC. In our example we will use AIC.

– We can construct pointwise confidence intervals for κ(τ), γ(τ) and θ(τ)
using asymptotic properties of the spectral density, coherence and phase
functions (Bloomfield, 1976).

4 A Simple Example: Bivariate Stationary Processes

In order to develop some intuition for the coherence function under Stein’s
model we look at a simplified model involving just 2 sites and discrete time.
Suppose that {yt} is a latent stationary Gaussian process with covariance
function

Cyy(u) =
1

2π

∫ π

−π

fyy(τ) cos(uτ)dτ, u ∈ Z

where fyy(τ) is the spectral density function of the latent process {yt}. Suppose
that {z1t } and {z2t }, t = 1, . . . , n are observed processes

z1t = yt + ε1t , z2t = yt+ℓ + ε2t , (21)

where {ε1t} and {ε2t} are independent white noise processes with variance σ2,
and the integer ℓ is a delay parameter. The cross-covariance function of the
two processes is C12

zz (u) = E(z1t z
2
t+u) = Cyy(u − ℓ). The spectral and the

cross-spectral densities for the observed processes are

f1
zz(τ) = f2

zz(τ) = fyy(τ) + σ2,
f12
zz (τ) = exp{iℓτ}fyy(τ), (22)

and so the coherence function is

ρ(τ) =
f12
zz (τ)

√

f1
zz(τ)f

2
zz(τ)

=
exp{iℓτ}

1 + σ2/fyy(τ)
. (23)

Note how the addition of noise to the bivariate time series produces an ab-
solute coherence less than one. The phase is g(ℓ, τ) = ℓτ , where the slope ℓ
corresponds to the delay between two processes.

To illustrate these functions and their estimates from data, let {yt} be an
AR(1) process, with Cyy(u) = σ2

0e
−α|u| and spectral density fyy(τ) = σ2

0{1−
2α cos(τ)+α2}−1. Figure 1(a and b) show one realization of the model defined
by (21) with α = 0.5, σ2

0 = σ2 = 1 and ℓ = 4 observed at n = 1000 times. The
theoretical spectrum and the smoothed periodograms of {z1t } and {z2t } are
shown in Figure 1(c and d). The Nadaraya-Watson estimate (Nadaraya, 1964;
Watson, 1964) is used to smooth the periodograms. The smoothing parameter
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Fig. 1 Simulation of the bivariate time series (21) with α = 0.5, σ2
0 = σ2 = 1 and ℓ = 4.

(a) and (b): Time series {z1
t
} and {z2

t
}; (c) and (d): Theoretical spectral density (solid lines)

defined by (22) and smoothed periodograms (dot-dash lines) of {z1
t
} and {z2

t
}; (e) and (f):

Theoretical (solid lines) and smoothed complex (dot-dash lines) coherence and theoretical
(solid lines) and absolute coherence (dot-dash lines).

is obtained by the function dpill in R. This function computes a direct plug-
in estimator of the bandwidth, as described by Ruppert et al. (1995) which
tries to minimize MSE.

Figure 1 (e and f), show the smoothed sample coherence between {z1t } and
{z2t } together with the theoretical coherence derived from (23). Note that the
coherence is strong at low frequencies; its absolute values decreases and the
phase spirals anti-clockwise towards zero as the frequency increases.
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Fig. 2 Phase spectrum of the simulated bivariate time series (21) with α = 0.5, a = 1, b =
1, σ2

0 = σ2
1 = σ2

2 = 1 and ℓ = 4. (a): the phase angle is plotted naively as a number in
(−π, π); (b): by taking winding into account, a real-valued continuous version of the phase
has been plotted. The solid line represents the theoretical phase spectrum of {z1

t
} and {z2

t
}.

The dotted line represent the smoothed phase.

In Figure 2(a), the phase angle is plotted naively as a number in (−π, π) and
hence shows discontinuity as a function of τ . By taking winding into account,
a version of the phase function which is continuous across the boundaries ±π
can be defined and estimated. This has been presented in Figure 2(b) and
shows that the underlying phase is linear in τ . This example illustrates the
types of pattern to look for in real data.

5 Application to the Irish Wind Data

The Irish wind data set is used here to provide a test case for the estima-
tion and testing methods developed in Section 3. The data consist of average
daily wind speeds (meters per second) measured at 11 synoptic meteorological
stations located in the Republic of Ireland during the period 1961-78, with
6,574 observations per location. Following Haslett and Raftery (1989) we take
a square root transformation to stabilize the variance over both stations and
time periods for each day of the year and subtract the seasonal effect from the
data.

Gneiting (2002), by plotting spatial-temporal correlations for different spa-
tial and temporal lags, has shown that the wind speeds measured at different
stations are highly correlated and the correlations decay substantially as spa-
tial or temporal lag increases. De Luna and Genton (2005) by plotting the
correlation function in different directions concluded that the data have an
isotropic correlation structure.

Gneiting (2002) used this data set to illustrate the lack of the separa-
bility and full symmetry assumptions. Indeed winds in Ireland are predomi-
nantly westerly; hence for different temporal lags the west-to-east correlation
of wind speed of stations will be higher than the east-to-west correlation; that
is C(h, u) > C(−h, u); h′ = (h1, 0), h1 > 0, u > 0.
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Fig. 3 Smoothed empirical
˜̃
ki(τ) (gray curves), parametric estimate k̂par(τ) (dotted

curves), and nonparametric Nadaraya-Watson estimate k̂np(τ) (long-dash curves) versus

frequency for the 11 individual stations and their average marginal spectral,
˜̃
k(τ) (first

plot), by the standard program spec.pgram in R with the span set to 5 for average marginal
spectra and 55 for individual marginal spectra.
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Fig. 4 Smoothed empirical
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ki(τ) (gray curves), parametric estimate k̂par(τ) (dotted

curves), and nonparametric Nadaraya-Watson estimate k̂np(τ) (long-dash curves) versus

frequency for the 11 individual stations and their average marginal spectral,
˜̃
k(τ) (first

plot), by the standard program spec.pgram in R with the span set to 5 for average marginal
spectra and 55 for individual marginal spectra.
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Fig. 5 (a): Residuals versus logarithm of fitted values of spectral density, log k̂par(τ). (b)
normal Q-Q plot of residuals.
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Fig. 6 (a): plot of empirical and estimated absolute coherence for different stations; from
top: Birr-Mullingar: |h| = 60.68 km, Birr-Dublin: |h| = 115.40 km, Birr-Malin Head:
|h| = 256.40 km and Valentia-Malin Head: |h| = 427.34 km. (b): plot of estimated γ(τ).
Empirical estimate (gray curve), Nadaraya-Watson estimate (long-dash curve) and trigono-
metric regression estimation (dotted curve). Empirical estimate calculated by the standard
program spec.pgram in R with the span set to 255.

We now fit the Stein’s asymmetric model (4), with unknown parameters
k(τ), γ(τ), θ(τ), v and p to the Irish wind data. The initially smoothed version
˜̃H(h, τ) of the empirical covariance-spectral function H̃(h, τ) has been con-
structed using the standard program spec.pgram in R with the span chosen
subjectively. For estimation purposes as well as plotting figures the common
choice span =255 has been used, though other choices have also been used
below for exploratory purposes.

Estimation of k(τ): First we estimate k(τ). A stationary process with spec-
tral density having a pole at zero frequency is called a stationary process with
long-range dependence (Beran, 1994, Ch.2). Figures 3 and 4 show smoothed
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empirical spectral densities for the 11 individual stations,
˜̃
ki(τ), along with

their overall spectral density
˜̃
k(τ). Since the averaging operation will tend

to smooth out the noise in individual periodograms, we have chosen a smaller
smoothing parameter for the averaged spectrum rather than for the individual
periodograms. The plots of the marginal spectral densities show the spectral
densities have roughly the same form at all stations with an apparent pole at
zero frequency suggesting the existence of long-range dependence; Therefore
Stein’s parametric fractional exponential model (12) seems to be an appro-
priate model for the long-range dependence spectral density k(τ). The model
selection criterium AIC suggestsK1 = 3 is appropriate choice in (12). ForK1 =

3, letting Y =
(

log
˜̃
k(τ)

)

,X = [1,− log sin(|πτ |), cos(2πτ), cos(4πτ), cos(6πτ)],

β = (c0, β, c1, c2, c3)
′ and regressing log

˜̃
k(τ) on the right hand side of (12) by

OLS yields estimates β̂ = 0.315 ± 0.115, ĉ0 = −1.769 ± 0.092, ĉ1 = 0.710 ±
0.132, ĉ2 = 0.022 ± 0.086, ĉ3 = 0.033 ± 0.074. Here the intervals are based on
2 standard errors fitted by the procedure developed in the previous section
taking into account the possibly correlated errors.

The fitted parametric spectral density k̂par(τ) and the fitted nonparametric

Nadaraya-Watson estimate k̂np(τ) are plotted in Figure 3. As can be seen in
Figure 5, it seems that the normality and homoscedasticity assumptions on the
residuals are sufficiently satisfied to justify the parametric OLS estimation.

Estimation of coherence: Next we consider empirical coherence plots for
various pairs of sites. Figure 6(a) shows a plot of the smoothed absolute coher-
ence versus time frequency for a subset of spatial lags including the biggest and
smallest spatial lags. Our investigation indicates that the optimal smoothing
parameters of coherence do not differ significantly from each other and so we
use a common smoothing parameter for different spatial lags. This plot shows
that the coherence decays exponentially with the decay parameter depend-
ing on the spatial lag. Therefore we choose the parametric power exponential
function (6). The low coherence at low frequencies seems to be due to the
long-range dependence in time. We omitted the first 300 frequencies in our
estimation procedure.

Estimation of γ(τ): In the next step we estimate γ(τ) and p. First in (15)
we assess the validity of common slope model by fitting a regression model
with a separate slope for each τ and investigate how the fitted slopes behave.
Figure 7 indicates that the fitted value of p are nearly constant over the time
frequency, so a parallel-lines regression is appropriate. Thus we use common
slope model (15).

The estimated common slope is p̂ = 0.905 ± 0.005. For K2 = 3, the
estimated coefficients are given by â0 = −6.551 ± 0.019, â1 = −0.594 ±
0.028, â2 = 0.010 ± 0.027, â3 = −0.042 ± 0.026 which define γ̂par(τ). The
parametric and Nadaraya-Watson estimates are presented in Figure 6(b). By
model (14), estimates of p and γ(τ) define estimate of the absolute coher-
ence for any spatial lag i.e. see Figure 6(a). The agreement with the empirical
absolute coherence looks reasonable. Figures 8 depicts residuals for the empir-
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Fig. 8 (a): plot of residuals versus fitted log(− log( absolute coherence)). (b): normal Q-Q
plot of residuals.

ical version of (15) and indicates that the homoscedasticity assumption of the
log(− log( absolute coherence)) transform is plausible.

Estimation of θ(τ):

Figure 9 shows a plot of the empirical phase ˜̃gR(h, τ) versus time frequency
τ for all different spatial lags. All the curves lie above the horizontal axis, but
to improve visibility, half of them have been plotted below the axis. For each
curve, the phase seems to increase linearly in τ for small τ , but is pulled
back to 0 at τ = 0.5 due to the periodic boundary conditions. Note that
the maximum absolute value on the vertical axis is well below π = 3.14 so
there is no distinction between the angular variable ˜̃g(h, τ) and its real-valued
extension ˜̃gR(h, τ) for this dataset. As illustrated in Figure 10(a), the slope of
each curve depends on the spatial lag h.

Using the estimation procedure in Section 3, the optimally estimated wind
direction is given by v̂ = (0.999, 0.038)′, i.e. winds in Ireland are predom-

inantly westerly. Once v has been estimated, the initial estimate θ̂init(τ) is
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Fig. 10 (a): plot of empirical and estimated phase for two different pairs of stations; top:
Valentia-Dublin with distance 316.99 km and bottom: Clones-Dublin with distance 105.47
km. (b): plot of estimated θ(τ). Empirical estimate (gray curve), Nadaraya-Watson estimate
(long-dash curve) and trigonometric regression estimation (dotted curve).

given by (18). Adopting a similar modelling strategy to that used for γ(τ), we
model the function θ(τ) with a trigonometric polynomial (20). After regressing

θ̂init(τ) on τ , the optimal order is found to be K3 = 2 by the AIC criterion,

with estimated coefficients b̂1 = 0.00159 ± 0.05021, b̂2 = −0.00045 ± 0.04022
which define θ̂par(τ). The result is displayed in Figure 10(b) along with the
nonparametric estimate. The parametric curve, the empirical curve, and the
Nadaraya-Watson curve all fit the phase reasonably well. Figure 10(a) shows a
plot of the estimated phase versus time frequency for two different spatial lags.
Figure 11, shows that that the normality and homoscedasticity assumptions
of residuals are broadly satisfied for parametric estimation.
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Fig. 11 (a): Residuals versus fitted values of θ(τ). (b): Normal Q-Q plot of residuals.

6 Conclusions

In this paper we have given a deeper insight into the covariance-spectral mod-
elling strategy of Stein (2005) and its properties. We proposed a simple trans-
formation on the covariance-spectral function to make it linear in the unknown
parameters, which facilitate the use of standard methods from regression anal-
ysis. Hence the method of estimation proposed here is more intuitive and easier
to use than Stein (2005).

The effect of initial smoothing on the fitted function estimates and their
standard errors has been explored. A elegant method to estimate the drift
direction has been proposed; Stein (2005) assumed it is known. Phase winding
is another important issue which has been explored clearly in this paper.

Stein constructed various plots to assess the goodness of fit of the model;
we use similar plots to estimate the parameters. Our method can be seen as
more graphical, enabling visual judgments to be made about the suitability of
the proposed models for the functions γ(τ) and θ(τ), and for the parameter
p. In addition residual plots are constructed for goodness of fit assessment.

In general the behaviour of our estimates matches Steins estimates well for
the Irish wind data. However, since Stein treats the data as lying on a sphere
rather than on a plane, and since he uses a different amount of smoothing,
numerical comparison with our estimates is not straightforward.

In our approach and that of Stein (2005), parametric and nonparametric
models have been constructed on the log γ(τ) scale. In more recent work, Stein
(2009) suggested an alternative parameterization in which such models are
constructed directly for 1/γ(τ) = δ(τ), say. This approach seemed to reduce
the problem of singularities near τ = 0 and gives an interesting avenue for
future research.
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