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The initiation of tectonic plate subduction into the mantle is poorly understood. If 

subduction is induced by the push of a distant mid-ocean ridge or subducted slab, we expect 

compression and uplift of the overriding plate. In contrast, spontaneous subduction 

initiation, driven by subsidence of dense lithosphere along faults adjacent to buoyant 

lithosphere, would result in extension and magmatism. The rock record of subduction 

initiation is typically obscured by younger deposits, so evaluating these possibilities has 

proved elusive. Here we analyse the geochemical characteristics of igneous basement rocks 

and overlying sediments, sampled from the Amami Sankaku Basin in the northwest 

Philippine Sea. The uppermost basement rocks are areally widespread and supplied via 

dykes. They are similar in composition and age - as constrained by the biostratigraphy of 

the overlying sediments - to the 52-48 million-year-old basalts in the adjacent Izu-Bonin-

Mariana fore-arc. The geochemical characteristics of the basement lavas indicate that a 

component of subducted lithosphere was involved in their genesis and the lavas were 

derived from mantle source rocks that were more melt-depleted than those tapped at mid-

ocean ridges. We propose that the basement lavas formed during the inception of Izu-

Bonin-Mariana subduction in a mode consistent with the spontaneous initiation of 

subduction. 

 

Recycling of lithospheric plates into the mantle is a major driver of the physical and chemical 

evolution of Earth. Subduction zones mark sites of lithosphere insertion into Earth’s mantle but 

we do not have a good understanding of how these zones are initiated or the accompanying 

compositional types and style of magmatism. Of all magma types emplaced at or near the surface 

of the Earth, those associated with subduction zones most closely match the average continental 

crust
1
; accordingly there has been sustained interest in the genesis and evolution of island arc 



magmas, and their significance with respect to continental crustal growth. On the basis of 

assumed ages of the current major subduction systems bordering the Pacific and along the Alpine-

Himalayan Zone, McKenzie
2
 suggested “ridges start easily, but trenches do not.” Ignorance of 

subduction inception contrasts with our advanced understanding of oceanic crust creation from 

initial lithospheric rifting to development of a mid-ocean ridge. Gurnis et al.
3 
noted half of all 

active subduction zones initiated in the Cenozoic in a variety of tectonic settings including old 

fracture zones, transform faults, extinct spreading centers, and through polarity reversals behind 

active subduction zones, and concluded forces resisting subduction can be overcome in diverse 

settings accompanying the normal evolution of plate dynamics.  

Among a number of proposed hypotheses, two general mechanisms, induced or spontaneous 

3,4
, seem relevant to initiation of one of the largest intra-oceanic subduction zones in the western 

Pacific, namely the Izu-Bonin-Mariana (IBM) system. Induced subduction initiation leading to 

self-sustaining descent of lithosphere into the mantle results from convergence forced by external 

factors such as ridge push or slab pull along strike of a given system
e.g. 3

. The Puysegur Ridge 

south of New Zealand may be an example. Stern
4
 suggested the IBM system represents an 

example of spontaneous initiation wherein subsidence of relatively old Pacific lithosphere 

commenced along a system of transform faults/fracture zones adjacent to relatively young, 

buoyant lithosphere. The importance of transpressional forces in subduction initiation has also 

been emphasised
5
. Stern and Bloomer

6
 proposed the earliest stages of volcanism accompanying 

spontaneous subduction zone nucleation are rift-associated and extensive perpendicular to the 

strike of the zone, rather than comprising the archetypal chain of stratovolcanoes that dominate 

mature arcs. The initial record of subduction initiation on the overriding plate resulting from these 

competing hypotheses should be distinct: induced subduction likely results in strong compression 

and uplift shedding debris into nearby basins, whereas spontaneous subduction commences with 

basement deepening prior to rifting, and sea-floor spreading potentially analogous to a number of 

ophiolites
 e.g. 3, 6

.  

For the IBM system, the age and composition of initial magmatism (~52 Ma) preserved in the 

forearc basement and underlying peridotite have been determined
7
, as has the subsequent 

magmatic evolution of the arc via study of dredged and drilled materials including ashes and 

pyroclastics recovered by ocean drilling
8,9

. The arc has experienced episodes of backarc spreading 

in the Mariana Trough (7 Ma to present) and Shikoku and Parece Vela basins (~30-20 Ma), 

resulting in abandonment of the Kyushu-Palau Ridge (KPR) as a remnant arc
10

. Understanding 

the relationship of the northern portion of the KPR to the basement underlying its western flank in 

the Amami Sankaku Basin (ASB; Fig. 1) appeared to offer the promise of a record of IBM 



inception complementary to that recovered by dredging and submersible operations in the 

forearc
7
. Taylor & Goodliffe

10
 for example, had emphasized the strike of the KPR in this region 

(and the inferred Eocene trench) is at a high angle to all major extant features such as the western 

and southern borders of the ASB, and Amami Plateau-Daito Ridge, and concluded the IBM 

subduction zone did not initiate along any part of the preexisting tectonic fabric such as a 

transform fault.  

 

The Amami-Sankaku Basin – a key record of IBM arc inception 

The ASB is in the northwest of the Philippine Sea plate (PSP). The PSP is bounded by subduction 

zones and transform faults (Fig. 1), and has a complex tectonic and magmatic history. Plate 

tectonic reconstructions
11-13 

place subduction inception at ~50 Ma in the proto-Izu-Bonin arc (i.e., 

previously assumed to be the KPR), concurrent Pacific plate motion change, cannibalizing former 

northwest-southeast–trending transform faults associated with the Izanagi-Pacific Ridge (e.g., ref 

14). Whittaker et al.
12

 propose subduction of the Izanagi-Pacific Ridge along eastern Asia at ~60 

Ma initiated plate reorganisation culminating in Pacific plate motion change at 50 Ma relative to 

the Eurasian plate. Since IBM inception, the PSP has migrated northward accompanied by 

clockwise rotation, mostly between 50 and 25 Ma
15

. At subduction inception, a Cretaceous-age 

island arc system existed on the PSP, now preserved as the Amami Plateau–Daito–Oki Daito 

ridges
13

 (Fig.1); arc conjugates are likely preserved in the southern PSP in Halmahera and 

southern Moluccas
16

. Backarc spreading behind this southern arc caused initial opening of the 

West Philippine Basin (WPB), isolating the Amami Plateau–Daito–Oki Daito ridges. Plume-

derived ocean island basalt (OIB)-like magmatism followed IBM initiation, endured from 51 to 

45Ma, and is preserved as the Benham Rise-Urdaneta Plateau-Oki Daito Rise
17-19

.  

The ASB floor has a simple structure comprising up to 1.5 km of sediment overlying igneous 

oceanic crust (Fig. 2). Assuming a Vp ~ 6 kms
-1

, the two-way travel time of nearly 2 seconds to 

Moho indicates normal oceanic crustal thickness of about 6 km (Figure S1). There is no 

indication from available seismic lines that major topography such as stratovolcanoes forms the 

ASB basement. The floor of the basin is shallower than other basins west of the KPR and the 

WPB
 e.g. 10

. International Ocean Discovery Program (IODP) Expedition 351 targeted the ASB 

anticipating the earliest stages of arc inception and evolution of the northern IBM arc would be 

preserved in the recovered sedimentary record. The basement composition and age would 

constrain the petrological, geochemical and tectonic evolution of the arc and subduction zone 

initiation. By extrapolation of the ASB basement seismic characteristics beneath the KPR, the 

structure of the IBM arc as a whole could be determined. Prior to Expedition 351, it appeared the 



early ASB sediment and basement might be Paleogene
20

 or even Cretaceous in age. During 

Expedition 351, IODP Site U1438 (4700 m water depth) penetrated 1461 m of sediments and 

sedimentary rocks and 150 m of the underlying igneous basement of the ASB. In terms of 

subduction inception, the nature of the basement and immediately overlying sedimentary rocks 

are critical and presented here. The results were unexpected, and require reappraisal of the style 

of arc magmatism immediately following inception, and of the significance of the large volume of 

subduction-related basaltic crust associated with this intra-oceanic island arc.  

 

The Amami-Sankaku Basin basement and overlying sediments  

A rubbly contact is present between overlying brown laminated mudstone and underlying, 

oxidized basalt. Overall, the ASB basement comprises variably altered and veined, lava sheet 

flows of sparsely vesicular to non-vesicular, microcrystalline to fine-grained, aphyric to sparsely 

microphyric, high-Mg, low-Ti, tholeiitic basalts. Phenocrysts are present in ~50% of samples, and 

consist of plagioclase, clinopyroxene, titanomagnetite, and olivine in order of decreasing 

abundance. Several chilled flow margins are present, but few preserve glassy margins. Petrologic 

details and representative photomicrographs (Fig. S2) are given in the Supplementary 

Information.  

Bulk compositions determined shipboard by inductively coupled plasma atomic emission  

spectrometry are presented in Table S1. The basalts mostly have high-MgO (generally >8 wt%), 

low-TiO2 (0.6–1.1 wt%), low-Zr (mostly <50 ppm), high-Sc (mostly >40 ppm) and high-Cr (up to 

~400 ppm). These basalts are compositionally distinct compared with mid-ocean ridge basalts 

(MORB) but generally similar to the ~48 Ma basalts recovered at Site 1201 (Ocean Drilling 

Program Leg 195) in the West Philippine Basin
21

 (Fig. 1), the ~52 Ma tholeiitic basalts (termed 

fore-arc basalts; FAB) recovered from the IBM Trench slope
22-25

 (Fig. 1) and recently in the Izu-

Bonin forearc by IODP Expedition 352
26

 Fig. 4, Figs S3-4).  

The lowermost sedimentary rocks (Unit IV) overlying the basement are clearly critical in 

terms of the earliest record of adjacent volcanic edifices, such as the developing KPR. 

Immediately above basement is a 4 m-thick section of dark reddish mudstone and sandstone 

passing upwards to fine to coarse tuffaceous rocks, and then fine to medium to coarse 

sandstone and breccia-conglomerate. The lithologic and paleontologic details are given in the 

Supplementary Information. A summary biostratigraphic- and paleomagnetic-based age-depth 

plot for the sediments at Site U1438 is shown in Figure 3. Based on the biostratigraphic data, 

the calculated average sedimentation rate for the lowermost 70 m of the supra-basement 

sediments is between 2 to 14 mm/ka without considering compaction. Allowing for a 



compaction factor ranging from 3 to 5, the average sedimentation rate would be between 6 to 

69 mm/ka. On that basis, the minimum age of the uppermost basement is inferred to be 

between 51 to 64 Ma, with a probable age around 55 Ma.  Consistent with the biostratigraphic 

constraints, in situ downhole temperature measurements and thermal conductivity 

measurements on core material to 85 m depth beneath the sea floor give a calculated heat flow 

of 73.7 mW/m
2
 (Fig. S3), implying a thermal age for the underlying lithosphere of 40–60 

Ma
27

.  

 

Subduction inception and earliest magmatism of the IBM arc 

Prior to Expedition 351, we expected ASB basement rocks to be 10s of millions of years older 

than the IBM arc inception date (52 Ma according to forearc exposures
23

), and potentially 

bounded on the western margin of the ASB by an old transform fault. Two other assumptions 

prevailed: (1) the tectonic setting of the basement was assumed to be non-arc related, given its 

depth relative to nearby inter-ridge and backarc basins, and relatively smooth morphology (Fig. 

1); (2) the strike of the KPR stratovolcanic edifices (proto-IBM arc) is subparallel to the nascent 

IBM trench and at an angle to the bounding features of the ASB or neighbouring Cretaceous-aged 

arcs, suggesting a locus for initial arc magmatism independent of the immediate ASB basement 

origins or tectonic setting
10

.  

Drilling results at Site U1438 have defied expectations, and none of these assumptions 

now appear valid. There is marked geochemical and petrological equivalence of the igneous 

basement at sites U1438, 1201 and the FAB of the present-day IBM forearc 
21-24, 26, 28

. Compared 

with MORB
29

, Site U1438 basalts are notable for the presence of phenocryst clinopyroxene (cf. 

pyroxene paradox
30,31

), high MgO/FeO, markedly low TiO2, low Zr, and high Sc abundances. The 

tholeiitic basalts in both present-day forearc and ASB were likely derived from upper mantle 

sources more strongly depleted in terms of magmaphile trace elements than those typically tapped 

beneath mid-ocean ridges. The critical distinctive characteristics of these basalt types compared 

with MORB are their low Zr/Y and Ti/V (Fig. 4). These characteristics relate to the tapping of a 

more refractory (prior melt-depleted) mantle source and presumably more oxidized melting 

conditions than those beneath mid-ocean ridges
33-36

. It is noteworthy however, that the Ti/V of 

FAB from the IBM forearc are lower than those of Site U1438 and 1201, and overlap those of 

Site A (Fig. 1) in the fore-arc (Fig. S4), possibly indicative of decreasing mantle wedge oxidation 

from trench-proximal to distal across the strike of the nascent IBM arc.  While there is muted 

development of Pb and other fluid-mobile, lithophile trace element spikes 
23,24

, the involvement of 

subducted slab-derived fluids in the genesis of FAB is implicated by: (1) the “spoon-shaped” rare 



earth element abundance patterns compared with mid-ocean ridge basalts
29

; (2) the presence of 

clinopyroxene phenocrysts relating to relative suppression of plagioclase saturation resulting from 

elevated H2O contents; and (3) depleted character of the mantle source(s), plausibly requiring 

fluid fluxing for melting. Basalts from Site 447 (Fig. 1; on magnetic anomaly 22, ~ 44Ma) in the 

West Philippine Basin have a depleted character similar to FAB
32

, but also normal olivine-

plagioclase phenocryst assemblages characteristic of MORB, and lack clinopyroxene, plausibly 

reflecting low dissolved H2O contents. The important point is the specific ensemble of petrologic 

characteristics of FAB is unequivocally related to subduction zone magmatism, albeit at an early 

stage of development in any given arc setting. We note tholeiitic basalts derived from refractory 

mantle sources equivalent to those tapped during FAB genesis are being erupted in some active 

rear arc settings. For example, those of the Fonualei Rifts adjacent to the northernmost Tonga Arc 

have strikingly low Zr/Y and Ti/V 10<20 equivalent to those of FAB
37

, but are also characterized 

by more strongly elevated Pb/Ce and other indicators of a larger slab-derived, large ion lithophile-

enriched fluid component in their genesis than FAB.  

 We conclude on the basis of available age constraints, probable sheet lava flow 

morphology, petrology, and key geochemical characteristics that the basement of the ASB is 

equivalent to the FAB exposed in the trench slope of the IBM arc. We recognize that radiometric 

dating of the ASB basement is required, and may temporally have preceded the FAB exposed in 

the present-day fore arc. Reconstruction of the nascent IBM arc then implies an across arc-strike 

extent for FAB and basement of the ASB of at least ~250 km, after accounting for backarc 

extension. The multiple feeder dike systems of FAB observed in the trench slope are all consistent 

with an origin for these basalts in a tectonic environment characterized by sea floor spreading. 

The seismic structure of the KPR indicates the igneous basement at sites 1201
38

 and U1438
39

 

continues beneath the Ridge, and there is an absence of the thick (>5km) middle crustal layer with 

Vp ~6 kms
-1

 (plausibly dioritic) that characterizes the active IBM arc
40

. Sediments overlying the 

ASB basement contain an increasing volumetric input from adjacent arc edifices, inferred to be 

the developing stratovolcanoes of the KPR but possibly from activity on adjacent Daito ridges 

and Amami Plateau. The KPR volcanoes have no apparent or simple relationship with any of the 

observable tectonic features of the basement upon which they are superimposed. Similar 

indifference with respect to basement features is manifest globally by many island and continental 

arc chains of volcanoes. The assumption that the strike of the KPR precludes models of 

subduction initiation along a preexisting zone of weakness is erroneous because the local ASB 

basement (lava flows) was not formed prior to the development of subduction. In fact, the ASB 

basement has either blanketed any preexisting basement or if formed through seafloor spreading, 



represents 100% new crust. The evidence that the western boundary of the ASB is a N-S-striking 

transform fault is not proven, and could postdate at least in part formation of the ASB.  

An important corollary is much of the areally extensive, basaltic crust of the earliest IBM 

arc was constructed by subduction-related processes rather than at a pre-~52 Ma mid-ocean ridge. 

The limited presence of Jurassic (159 Ma) arc-type tholeiites in the IBM trench slope
23

 is an 

indication that the ~52 Ma-old crust developed in rifted older arc basement. Previous attempts at 

calculating volumetric fluxes in the IBM system have deducted a basement crustal thickness 

equivalent to that of ordinary, mid-ocean ridge-generated crust
41

; this potentially results in 

underestimation of the volumetric flux for the early IBM arc, which may have been equivalent for 

a few million years of early arc growth to that of mid-ocean ridges (~1000 km
3
 km

-1 
Ma

-1
). 

Clearly, our general conceptions of the earliest stages of intra-oceanic arc development 

need substantial modification. Suggestions
 e.g. 6

 that the post-FAB sequences of boninite 

pillow lava and dyke outcrops at the type locality at Chichijima and at ODP Site 786 (both in 

the IBM forearc) developed in an extensional environment with no localization of archetypal 

stratovolcano edifices, are confirmed and amplified by the identification of widespread 

preceding eruptions of tholeiitic basalts. The latter formed the basement on which a restricted 

across-strike distribution of individual stratovolcanoes was developed, preserved in the 

remnant arc of the KPR. The apparent absence of boninite lithologies at Site U1438 may 

reflect a trenchward-restriction and focusing of wedge melting as the arc developed. 

Overall, it appears major motion changes of the Pacific plate following subduction of the 

Izanagi-Pacific Ridge along East Asia led to reorganization of equatorially-located networks 

of island arc systems in the region between the Australian and Asian plates
42

. The Philippine 

Sea plate developed in this region, and experienced trench roll-back at one or more of its 

bounding plate margins (~60Ma). Subduction initiation at ~52Ma at the future site of the IBM 

system, triggered rifting and seafloor spreading of the overriding plate, forming an extensive 

basaltic arc crust, both along- and across-strike. Localization of a defined chain of 

stratovolcanoes atop this basement later formed a volcanic front. Areally extensive basaltic 

crust with unequivocal subduction zone-related petrological and geochemical signatures is 

consistent with a spontaneous subduction initiation mechanism
6
 but not at a pre-existing 

fracture zone (e.g, ref 10).  

It is still possible the ASB formed through spreading in a marginal basin associated with 

subduction earlier than IBM inception, but structural relationships of the basin with 

surrounding ridges do not clearly indicate such an association.  Rather than across-strike 

variation in mantle processes, the additional geochemical data indicate potential along-strike 



influences. Closure of the Shikoku Basin shows the ASB and site U1438 are conjugate to site 

A in the IB fore-arc (Fig. 1) whereas Site B, Expedition 352, and the Bonin (forearc) Ridge 

are conjugate to the Daito and Oki-Daito ridges; a greater subduction-related influence on the 

mantle prior to IBM inception may be expected for these latter sites, consistent with their 

lower Ti/V. 

Finally, we note a forced subduction initiation is not altogether precluded because while 

evidence for a pre-subduction initiation basement is not widespread, it may exist. These 

uncertainties require resolution by detailed multidisciplinary studies of samples recovered by 

the triplet of IODP expeditions (350-352) to the IBM system. 

 

Methods 

All data generated during IODP Expedition 351 will be publicly accessible from 31 July 2015 

via the IODP-JOIDES Resolution Science Operator website (www.iodp.tamu.edu). 
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Figure captions 

Figure 1. Location of the Amami Sankaku Basin and the Kyushu-Palau Ridge. General 

setting and bathymetry (blue deep, red shallow) of the bounding trenches, basins, and ridges 

comprising the Philippine Sea Plate, boundary outlined with a dashed white line. Locations of 

IODP Site U1438, ODP Site 1201, and DSDP Site 447 are shown by pink stars. Locations of 

Shinkai submersible dives in the IBM forearc are noted as A
22

, B
23

, and D
24

. Location of 

DSDP Site 458 is noted as C
25

.  Pink-bounded box is shown in detail in Figure 2.  

 

Figure 2. Detailed bathymetry of the Amami Sankaku Basin, IODP Site U1438, and 

seismic survey lines. Bathymetry of the Amami Sankaku Basin, neighboring Kyushu-Palau 

Ridge, and nearby Cretaceous-aged arcs of the Amami Plateau and Daito Ridge. Site U1438 

is located at the intersection of the two multichannel seismic survey lines D98-A and D98-8 



(a). Seismic reflection images (b) at Site U1428 showing in the two upper subpanels, the 

multichannel seismic line D98-8 (upper) and interpreted major reflectors (lower). Lower two 

subpanels show multichannel seismic line D98-A (upper) and interpreted major reflectors 

(lower). 

 

Figure 3. Graphic lithologic summary, biostratigraphic- and paleomagnetic-based age-

depth plot for IODP Site U1438. Abbreviations are: mbsf = metres below sea floor; Cl = 

clay, Si = silt, Vfs-fs = very fine sand–fine sand; Ms-vcs = medium sand–very coarse sand, 

Gr = gravel; Pleist.=Pleistocene, Plio.=Pliocene, Paleoc.=Paleocene. Fossil occurrences are 

described in the Supplementary Material. 

 

Figure 4. Comparative geochemical plots of mid-ocean ridge and subduction-related basalts. 

Comparison of samples from Site U1438 with global MORB
29

, Izu-Bonin-Mariana fore-arc 

basalts (FAB)
23,24

, IODP Expedition 352 FAB and boninite
26

, Site 1201
21

, and global MORB 

averages, with abbreviations: D, depleted; N, normal; E, enriched
43

. Y vs Zr abundances in 

basalts, noting High Y/Zr is indicative of derivation of basalt from highly depleted upper mantle 

sources (a). V vs Ti abundances in basalts. Most MORB have 20< (Tippm/1000)/Vppm <50 

whereas tholeiitic basalts in island arcs, including FAB, have (Tippm/1000)/Vppm<20
36

. Some 

boninite from the Izu-Bonin-Mariana arcs have (Tippm/1000)/Vppm<10
26

 (b). Additional data 

shown in Figures S3 and S4. 

 


