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Abstract 

The exosome ribonuclease complex functions in both the limited trimming of the 3’ ends of nuclear 

substrates during RNA processing events and in the complete destruction of nuclear and cytoplasmic 

RNAs. The two RNases of the eukaryotic exosome, Rrp44 and Rrp6, are bound at either end of a 

catalytically inert cylindrical core. RNA substrates are threaded through the internal channel of the 

core to Rrp44 by RNA helicase components of the nuclear TRAMP or cytoplasmic Ski complexes. 

Recent studies reveal that Rrp44 can also associate directly with substrates via channel-independent 

routes. Although the substrates of the exosome are known, it is not clear whether specific substrates 

are restricted to one or other pathway. Data currently available support the model that processed 

substrates are targeted directly to the catalytic subunits, whereas at least some substrates that are 

directed towards discard pathways must be threaded through the exosome core. 

______________________________________________________________________________ 

 
 

Functions of the Exosome 

The exosome ribonuclease complex acts on all 

types of RNA at some point during their lifetime, 

functioning in (i) the 3’ end maturation of stable 

RNAs (and some mRNAs); (ii) the complete 

degradation of fragments such as the 5’ ETS (5’ 

external transcribed spacer) that are released as a 

result of RNA processing reactions; (iii) quality 

control of all classes of nuclear and cytoplasmic 

RNAs; (iv) the constitutive degradation of unstable 

nuclear transcripts such as CUTs (cryptic instable 

transcripts), and (v) the ultimate degradation of 

cytoplasmic mRNAs 
[1,2]

. 

The exosome complex is conserved throughout 

eukarya and most archaea, and genetic depletion of 

any subunit except Rrp6 causes a block in mitotic 

growth in yeast 
[3,4]

. The importance of exosome 

function in human biology is reflected by the 

observations that active site mutations in Rrp44 

correlate with the incidence of multiple myeloma and 

relapsed acute myeloid leukaemia 
[5,6]

, while 

mutations in the related enzyme Dis3L2 are linked 

to Perlman Syndrome and Wilm’s tumour 

predisposition 
[7]

. Genetic complementation 

analyses underscore the functional conservation of 

exosome subunits through fungi, plants and 

metazoa 
[3,8-10]

. 

 

Structure of the Exosome 

The eukaryotic exosome has a highly stable “core”, 

consisting of an asymmetric double-layered ring. 

The lower tier comprises six subunits (Rrp41, 

Rrp42, Rrp43, Rrp45, Rrp46 and Mtr3) that are 

structurally related to RNase PH. This is overlaid 

with an upper tier of three “cap” subunits (Rrp4, 

Rrp40 and Csl4) that have S1 or KH RNA binding 

domains 
[11,12]

 (see Figure 1). A structurally 

homologous complex is found in archaeabacteria 
[13]

, which is itself similar in architecture to the 

bacterial PNPase (polynucleotide phosphorylase) 

enzyme 
[14]

. Catalytically, however, there are clear 

differences between these complexes. While the 

archaeal complex contains multiple copies of a 

fewer number of subunits, the subunits of the 

eukaryotic exosome have diverged through 

evolution. The eukaryotic exosome core has lost 

catalytic activity but the substrate RNAs traverse the 

same pathway taken through the central channel of 

the archaeal complex 
[12,13]

. The eukaryotic complex 

is directly associated with the eukaryotic-specific 

ribonucleases Rrp44 (also known as Dis3) and Rrp6 
[3,4]

. Rrp44 is bound to the core at the “bottom” of the 

channel near the RNA exit site 
[15,16]

, while Rrp6 is 

bound to the “top” of the core 
[12,17]

 (Figure 1). Rrp44 
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and Rrp6 are hydrolytic ribonucleases 
[18,19]

, 

whereas the archaeal complex and PNPase are 

phosphorolytic enzymes. 

 

The exosome RNase Rrp44 

Rrp44 is related to the RNase II/R family of 3’-5’ 

exoribonucleases 
[20]

. The catalytic RNB 

exonuclease domain is flanked at the N-terminal 

end by two tandem, cold-shock domains (CSD1 and 

CSD2) and at the C-terminal end by an S1 domain 

(Figure 1). The cold shock and S1 domains 

contribute to RNA binding. In addition to its 

exonuclease activity, Rrp44 also has a distinct 

endonuclease activity that is associated with its N-

terminal PIN (PilT N-terminus) domain 
[21-23]

. Full-

length Rrp44 protein nevertheless degrades RNA in 

a 3’-5’ direction 
[3,24]

, indicating that the endo- and 

exonuclease activities of Rrp44 are functionally 

coupled. The PIN domain also mediates the 

interaction between Rrp44 and the exosome core 
[23,25]

. Both RNase activities of Rrp44 are largely 

suppressed upon interaction with the exosome 

through allosteric effects that diminish its ability to 

bind RNA 
[24]

. In yeast there is a single gene 

encoding Rrp44 and the protein functions in the 

nucleolus, the nucleoplasm and the cytoplasm 
[3,26]

. 

In contrast, three Rrp44 homologues are found in 

human cells; Dis3 is nucleoplasmic and excluded 

from the nucleolus, while Dis3L and Dis3L2 are 

cytoplasmic 
[27,28]

. Dis3L lacks endonuclease activity 

but is associated with the exosome core, while 

Dis3L2 lacks the PIN domain and is not associated 

with the exosome. Dis3L2 plays a role in 

cytoplasmic mRNA degradation, in both human cells 

and in the fission yeast Schizosaccharomyces 

pombe 
[28,29]

. Thus, at least some eukaryotic Rrp44 

homologues function independently of the exosome 

core complex. Indeed, a recent study reported that 

Rrp44 in budding yeast functions in mitochondria 

independently of the exosome core 
[30]

. Whether 

yeast Rrp44 can fully function when separated from 

the exosome remains to be determined. Notably, 

expression of the PIN domain alone is able to 

support slow growth 
[31]

. 

 

The exosome RNase Rrp6 

Rrp6 belongs to the RNase D family of 3’-5’ 

exoribonucleases that contain a DEDD exonuclease 

domain juxtaposed to one or more HRDC (helicase 

and RNase D C-terminal) domains 
[32]

. Rrp6 

members of this family also contain an N-terminal 

PMC2NT domain 
[33]

 and a C-terminal exosome 

interacting domain 
[12]

 (see Figure 1). Interaction of 

Rrp6 with the exosome core has little effect on its 

exonuclease activity but allosterically stimulates the 

activity of Rrp44 
[24]

. Yeast Rrp6 is a nuclear protein 
[18]

, while the human Rrp6 protein hRRP6 (also 

known as PM-Scl100) is restricted to the nucleolus 
[27]

. Three different Rrp6 proteins are expressed in 

Arabidopsis thaliana; Rrp6L1 and Rrp6L2 proteins 

are found in the nucleus, while Rrp6L3 is localized 

to the cytoplasm 
[9]

. Thus, distinct forms of both 

Rrp44 and Rrp6 have evolved in different systems 

and presumably carry out specialized functions. 

 

!
Figure 1. Structure of the exosome. (A) Domain 

organisation of the catalytic subunits Rrp6 and Rrp44. 

Rrp6 comprises an N-terminal PMC2NT domain, a 

DEDD exonuclease domain, an HRDC domain, an 

Exosome-Interacting domain (EID) and a C-terminal 

nuclear localization signal (NLS). Rrp44 comprises an 

N-teminal CR3 motif, a PIN domain, two cold shock 

domains (CSD), a catalytic RNB domain and an S1 

domain. (B) Architecture of the exosome complex 

bound to RNA. The exosome core consists of a ring of 

RNase PH-related subunits (in blue) that is overlaid by 

a second ring of subunits that contain S1 or KH 

domains (in green). A central channel passes through 

the core that can bind ~ 30 nucleotides of single-

stranded RNA (in black). Rrp44 (in gold) is positioned 

at the base of the exosome core, with the 3' end of the 

RNA bound at its exonuclease active site. Rrp6 (the C-

terminal exosome-interacting domain is shown in red) 

is wrapped around the top of the exosome core. The 

image was generated from PDB accession number 

4IFD 
[12]

 using MacPyMOL.!
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Rrp6 and the small nuclear, RNA binding protein 

Rrp47 (also known as Lrp1 in yeast, or C1D in 

human cells) form a heterodimer through an 

interaction between their N-terminal PMC2NT and 

Sas10/C1D domains 
[34,35]

. This interaction provides 

mutual protein stabilization 
[36,37]

 and limits 

expression of the Rrp6/Rrp47 complex to the 

nucleus 
[35]

. The C-terminal region of Rrp47 

mediates interactions with snoRNP components that 

are critical for the normal 3’ end maturation of box 

C/D snoRNAs 
[38]

. Thus, the Rrp6/Rrp47 interaction 

also allows RNA degradation to be coupled to 

substrate recognition or binding.  

 

Threading substrates through the exosome 

Rrp44 alone shields a stretch of 9-12 nucleotides in 

RNase protection assays, and 31-33 nucleotides 

when associated with the exosome core 
[16]

. 

Substrate binding to Rrp44 requires a single-

stranded 3’ terminus but, once engaged with the 

RNA, Rrp44 is a highly processive exoribonuclease 

that efficiently degrades structured RNA 
[11]

. The 

energy released upon hydrolytic activity of Rrp44 is 

released in bursts, pulling substrates through the 

complex by a steric occlusion mechanism 
[39,40]

. 

The function of the exosome complex in vivo is 

dependent upon additional factors, notably the 

structurally closely related RNA helicases Mtr4 (also 

known as Dob1) and Ski2 
[41,42]

. Yeast Mtr4, 

together with the noncanonical poly(A) polymerases 

Trf4 or Trf5 and the RNA-binding proteins Air1 or 

Air2, constitute the TRAMP complexes that 

stimulate exosome-mediated RNA degradation in 

vitro and in vivo 
[43-45]

. The human protein hMTR4 is 

found in a homologous TRAMP complex together 

with hRRP6 in the nucleolus, as well as being a 

component of the distinct nuclear exosome targeting  

(NEXT) complex 
[46]

. This suggests that hMTR4, like 

yeast Mtr4, has a major role in targeting nuclear 

RNAs to the exosome and that it promotes the 

degradation of some substrates independently of 

their oligoadenylation. Ski2 is a component of the 

cytoplasmic Ski complex, which contains the 

scaffold protein Ski3 and two copies of the protein 

Ski8 
[47,48]

, and is critical for exosome-mediated 

cytoplasmic mRNA degradation 
[42]

 and mRNA 

surveillance pathways 
[49-51]

. 

RNase protection assays suggest that the Ski 

complex is positioned on top of the exosome core 
[52]

, as has been proposed for Mtr4 
[53,54]

. The RNA 

helicases Mtr4 and Ski2 are thought to unfold the 3’ 

end of substrates and thread the resultant single-

stranded RNA 3’ end into the exosome core for 

subsequent degradation by Rrp44. A number of 

conserved residues are found at the base of the 

central DExH core within Mtr4 and Ski2 and on the 

upper surface of the exosome core, suggesting that 

they might constitute a mutual binding interface. 

Nevertheless, additional factors are required for a 

stable interaction between the RNA helicases and 

the exosome core. Mtr4 directly interacts with the 

exosome-associated protein Mpp6 
[55]

, which may 

promote binding with the exosome core. 

Furthermore, hRRP6 is required for stable 

interaction between hMTR4 and the exosome core 
[46]

. The interaction between the yeast Ski complex 

and the exosome is dependent upon another factor, 

Ski7 
[56]

. 

Mutations in Rrp41 (also known as Ski6) and/or 

Rrp45 that alter conserved residues or obstruct the 

central channel cause a block in growth in yeast 
[24,57]

. This suggests that the passage of at least 

some RNAs through the exosome core is essential 

for cell growth. 

 

A conformational switch in Rrp44  

Recent structural analyses resolve two distinct 

structural conformations of Rrp44 bound to the 

exosome core complex 
[58]

 (see Figure 2). In the 

presence of short structured RNAs, Rrp44 that is 

associated with the exosome core has an extended 

structure and the substrate can directly access 

either the exonuclease domain or the PIN domain. 

In this state, the CSD2 domain of Rrp44 is 

positioned at the RNA exit site at the bottom of the 

core, blocking the pathway of the substrate through 

the core. In the presence of longer RNAs, Rrp44 

undergoes a substantial conformational change and 

becomes more compact. The exonuclease domain 

is rotated ~ 120°, bringing it close to the RNA exit 

site and displacing the CSD2 domain. In this 

conformation, Rrp44 is able to digest RNA that is 

threaded through the channel. These data suggest 

that Rrp44 bound to the exosome core can switch 

between an extended conformation that is 

accessible to direct substrate binding, and a 

compact conformation that is aligned for interaction 

with threaded substrates. 

The path(s) taken by RNA to reach Rrp6 is less 

clear. An Rrp6 mutant lacking the C-terminal 

exosome-interaction domain is functional in vivo, 

indicating that at least some substrates can bind to 

Rrp6 independently of the exosome complex 
[59]

. In 

the context of the exosome complex, the RNA 

binding activities of Rrp6 and Rrp44 are 

interconnected. The interaction between Rrp6 and 

the exosome core causes an increased RNA 

binding activity of Rrp44. Conversely, the presence 

of a substrate that is locked into the threaded 

pathway, by mutation of the Rrp44 exonuclease 

active site, decreased the RNA binding activity of 

Rrp6 
[24]

. It was suggested that Rrp6 substrates are 

threaded into the central channel of the exosome 

core and then diverted laterally to Rrp6. However, 

recent structures of the yeast exosome complex do 

not support such a pathway 
[12]

. Alternatively, the 

interrelated RNA-binding activities of exosome-

associated Rrp6 and Rrp44 could reflect an 

allosteric mechanism that is mediated through the 

exosome core. Thus, commitment of substrates to 
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the threaded pathway to Rrp44 might suppress 

access of substrates to the catalytic domain of Rrp6, 

thereby ensuring that a single exosome complex 

can only be engaged with a substrate targeted to 

the one or other enzyme (see Figure 2). 

 

Long and short pathways for distinct RNAs 

Deletion of the exosome interacting domain of Rrp6 

does not impair its function in box C/D snoRNA 3’ 

maturation or the trimming of the “5.8S+30” 

processing intermediate, but does cause a defect in 

discard pathways that degrade the 5’ ETS fragment 

and truncated degradation intermediates of 5S rRNA 
[59]

. Furthermore, in vivo cross-linking studies have 

shown that Rrp44 and Rrp6 bind directly to 7S pre-

rRNA and snoRNA processing intermediates but 

very few contacts were observed with exosome core 

components 
[60]

. These data suggest that substrates 

that undergo limited trimming reactions are normally 

targeted directly to Rrp44 or Rrp6, whereas at least 

some substrates destined for complete degradation 

are dependent upon threading through the exosome 

core. It is unclear whether Rrp6 can efficiently 

degrade its other substrates, such as pre-mRNAs, 

CUTs/SUTs, tRNAs and snRNAs, when uncoupled 

from the exosome core. 

Strikingly, the subset of Rrp6 substrates that 

accumulate in rrp6 mpp6 double mutants comprise 

those that are destined for complete degradation 

(CUTs, pre-mRNAs, 5’ ETS, truncated stable RNAs, 

snoRNA transcription read-through products) and 

exclude those that undergo limited 3’ end 

processing reactions (5.8S rRNA, box C/D 

snoRNAs) 
[61,62]

. Given that Rrp6 substrates targeted 

to degradation are dependent upon the interaction 

between Rrp6 and the exosome core, this suggests 

that the synthetic lethal relationship between loss of 

function rrp6 and mpp6 alleles 
[61]

 might reflect 

redundant functions of Rrp6 and Mpp6 in facilitating 

substrate threading into the exosome core. This 

model is supported by the direct physical interaction 

reported between hMPP6 and hMTR4 
[55]

 and the 

observation that the stable interaction between 

hMTR4 and the exosome core is dependent upon 

hRRP6 
[46]

. 

Although the exosome was initially characterised 

through its role in the 3’ processing of 5.8S rRNA 
[3]

, 

the overwhelming majority of exosome substrates 

are targeted to RNA discard pathways 
[60,63]

. The 

exosome is able to degrade extensively structured 

pre-ribosomal RNP particles in a highly processive 

manner. It is not clear how substrates destined for 

limited processing could be effectively differentiated 

from those that are targeted to discard pathways if 

they were both engaged in a highly processive 

mode of degradation. One function proposed for the 

endonuclease activity of Rrp44 is to release 

substrates that are stalled in the exosome channel, 

thereby salvaging blocked exosome complexes 
[64]

. 

The endonuclease activity of Rrp44 is not, however, 

required for exosome-mediated RNA processing 

events in wild-type cells. Thus, such a role 

presumably represents a fail-safe recycling function 

rather than an obligatory step in RNA processing. 

Which RNAs might be degraded by Rrp44 using 

direct, core-independent pathways, and how would 

these RNAs be targeted without threading through 

the exosome core? One major class of such 

substrates might be incorrectly folded tRNAs, which 

can be targeted directly to Rrp44 
[65,66]

. Notably, 

tRNA represents a significant proportion of the RNA 

subjected to cellular RNA discard pathways 
[63]

. 

Other small, structured RNAs targeted to discard 

pathways may well share this route. Such 

substrates are likely to require 3’ tailing by TRAMP 
[65]

 or another nucleotidyltransferase 
[66]

 to facilitate 

efficient docking with Rrp44. A major current 

objective is to define the set of RNAs that are 

threaded through the exosome core and those that 

are targeted directly to either Rrp44 or Rrp6.

!
Figure 2. Exosome substrate targeting pathways. 

Exosomes are observed in two distinct physical states 

that differ in the "extended" or "compact" 

conformational state of Rrp44. In the extended state, 

RNA substrates (in red) can directly access the active 

sites of Rrp44 (and presumably that of Rrp6). Upon 

switching into the “compact” state, the RNB 

exoribonuclease domain of Rrp44 is rotated into the 

space directly beneath the core (the movement is 

indicated by the black arrows). Structured RNAs 

targeted to discard pathways are threaded into the 

exosome core by the RNA helicase Mtr4. The portion 

of the RNA pathway that passes through the inner 

channel of the DExH domain and the exosome core is 

indicated by a dashed line. Stable binding of Mtr4 to 

the exosome core may require either Rrp6 or Mpp6. 

Adoption of a compact structure by Rrp44 may lead to 

an allosteric inhibition of Rrp6 RNase activity.!
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