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Effect of Impact Ionization in the InGaAs Absorber
on Excess Noise of Avalanche Photodiodes

J. S. Ng, Member, IEEE, C. H. Tan, Member, IEEE, J. P. R. David, Senior Member, IEEE, and G. J. Rees

Abstract—The effects of impact ionization in the InGaAs ab-
sorption layer on the multiplication, excess noise and breakdown
voltage are modeled for avalanche photodiodes (APDs), both with
InP and with InAlAs multiplication regions. The calculations allow
for dead space effects and for the low field electron ionization ob-
served in InGaAs. The results confirm that impact ionization in the
InGaAs absorption layer increases the excess noise in InP APDs
and that the effect imposes tight constraints on the doping of the
charge control layer if avalanche noise is to be minimized. How-
ever, the excess noise of InAlAs APDs is predicted to be reduced
by impact ionization in the InGaAs layer. Furthermore the break-
down voltage of InAlAs APDs is less sensitive to ionization in the
InGaAs layer and these results increase tolerance to doping varia-
tions in the field control layer.

Index Terms—Avalanche photodiodes, impact ionization, noise.

I. INTRODUCTION

T
HE DETECTOR of choice for optical fiber communica-
tion systems is often an InP-based, near infrared avalanche

photodiode (APD) since its internal gain can improve the overall
sensitivity of the receiver. The quantum efficiency, frequency
response and excess noise of such devices are thus of some in-
terest [1]. The APD consists typically of an undoped InGaAs ab-
sorption layer, a doped, thin InP field-control layer, an undoped
InP multiplication layer and doped cladding layers. The doping
profile is designed so that, under operating bias, the absorption,
field control and multiplication layers are fully depleted, while
the field across the narrow bandgap InGaAs absorption layer is
kept low but finite to minimize tunneling in the InGaAs [2] while
ensuring rapid drift of photogenerated carriers to the multiplica-
tion region. In recent years devices investigated in the laboratory
have favored InAlAs lattice-matched to InP for the multiplica-
tion layer [1], however, the structure remains largely the same,
except that electrons, the more readily ionizing carriers in In-
AlAs, are injected into the multiplication layer.

Conventional APD models usually assume that the field
across the InGaAs absorption layer is too weak to cause ioniza-
tion, so that only the InP or InAlAs multiplication and possibly
field control layers contribute to the gain and the excess noise
and limit the intrinsic avalanche bandwidth. In most III–V
semiconductors the ionization coefficients, for electrons and

for holes, exhibit a strong and approximately exponential

Manuscript received January 28, 2005; revised March 29, 2005. This work
was supported in part by the U.K. Engineering and Physical Sciences Research
Council and the Electromagnetic Remote Sensing Defence Technology Centre
and in part by the Electro Magnetic Remote Sensing Defence Technology
Centre, U.K., and Engineering and Physical Sciences Research Council, U.K.

The authors are with the Department of Electronic and Electrical Engineering,
University of Sheffield, Sheffield S1 3JD, U.K. (e-mail: j.s.ng@sheffield.ac.uk;
c.h.tan@sheffield.ac.uk; j.p.david@sheffield.ac.uk; g.rees@sheffield.ac.uk).

Digital Object Identifier 10.1109/JQE.2005.850700

dependence on inverse electric field. However, recent work
[3], [4] shows that, at low fields, the field dependence of in
InGaAs becomes weaker, resulting in relatively large values,
even at fields as low as 150 kV cm , previously thought too
low for ionization. This behavior is thought to result from a
combination of narrow bandgap and large intervalley separation
[5].

The effect of impact ionization in the InGaAs absorption layer
on the bandwidth of InGaAs–InAlAs APDs has recently been
studied in [6], [7]. Using a local model for ionization, which
neglects dead space effect, and measured values of InGaAs ion-
ization coefficients Hollenhorst [8] predicted detrimental effects
on excess noise. Theoretical investigations by Shih [9] on an
a-Si:H/a-SiC:H superlattice APD predicted that ionization in the
a-Si:H absorption layer also increases excess noise.

However, the effects of ionization in the InGaAs absorption
layer in InGaAs–InAlAs APDs have not been investigated. In
this paper we report a theoretical study of multiplication and
excess noise in InP and InAlAs APDs with InGaAs absorption
layers, allowing for nonlocal ionization, by including the effects
of dead space in the multiplication layer, and using the most
recent and accurate measurements of ionization coefficients in
InGaAs covering the low fields.

II. MODEL

APD designs for high speed reported in [6] and [7] were used
and the structures modeled here are summarized in Tables I
and II, where positive and negative doping densities indicate
p-type and n-type layers, respectively. Field profiles were eval-
uated using a one-dimensional Poisson solver. The doping den-
sity in the field-control layer was varied to modify the electric
field in the InGaAs layer and the corresponding devices are la-
beled APD1, APD2, and APD3. The peak fields (kept below
200 kV cm to avoid significant tunneling current) in InGaAs
absorber are shown in Tables I and II at biases corresponding
to multiplication factors of 20, including the effects of impact
ionization in the InGaAs layer.

Recurrence equations [10] were used to calculate multiplica-
tion and excess noise factor as functions of reverse bias .
The calculations require knowledge of the probability density
function of the carrier’s ionization path length , where

and are its positions of ionization and generation, respec-
tively [10]. For electrons, we used [10]

(1)
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TABLE I
STRUCTURE OF THE InP APDs MODELED

TABLE II
STRUCTURE OF THE InAlAs APDs MODELED

where and are the dead space and the “activated” ion-
ization coefficient for electrons. The dead space is related to

the ionization threshold energy, ,
where is the electron charge and is the electric field. is
deduced from the local ionization coefficient, , using

[11]. Holes are treated similarly. Bandgap discontinu-
ities were not considered in the model.

Light of wavelength 1.55 m enters the structure from the
top of the InGaAs absorption layer and its absorption is charac-
terized by a coefficient of 0.7 10 cm [12]. Electrons and
holes are assumed to have the same ionization threshold energy
of 2.2 eV ( 1.5 bandgap) for both InP and InAlAs. The local
ionization coefficients of [13] and [14] were used for InP and
InAlAs, respectively. For InAlAs [14]

cm (2)

cm (3)

where is in V cm . The field dependences of and in
InGaAs were taken from [4] and the ionization threshold energy
was taken as zero in this material since dead space effects are
expected to be less important in the thick absorption layer.

Fig. 1. (a) Multiplication factors of InP APD1 1 (�), 2 ( ), and 3 ( ) as
functions of reverse bias calculated with (solid symbols) and without (open
symbols) impact ionization in the InGaAs layer. (b) The corresponding F (M)
results. F (M) given by local model for fixed values of k from 0 to 0.5 in steps
of 0.1 are also shown (solid lines) for comparison.

III. RESULTS

The multiplication and excess noise curves predicted for the

InP APDs are shown in Fig. 1, both excluding and including

the effects of ionization in the InGaAs. Similar results for the

InAlAs APDs are shown in Fig. 2. given by local model

for fixed values of (for Fig. 1) or (for Fig. 2) from

0 to 0.5 in steps of 0.1 are also shown for comparison.

Of the three InP APD designs considered the InP APD1 struc-

ture has the highest field across the InGaAs layer. Consequently

it has the highest breakdown voltage, since for a given bias the

field in the multiplication region is correspondingly reduced and

the bias must be increased to compensate. However, the excess

noise characteristics for the three InP APD designs, calculated

excluding ionization in the InGaAs layer, coincide, since the

multiplication and excess noise are generated only in the InP

layers. It is evident from Fig. 1(a) that ionization in the InGaAs

layer significantly increases the multiplication, with the most

dramatic increase predicted in the device with the highest field

across this layer. Hence, taking this mechanism into account re-

duces the breakdown voltages of the InP APDs, especially that

of APD1.

The excess noise in the InP devices also increases with in-

creasing InGaAs layer field, as shown in Fig. 1(b), in agreement

with the findings of [8]. In fact the comparison shows that small

variations in the doping level of the field control layer can give
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Fig. 2. (a) Multiplication factors of InAlAs APD 1 (�), 2 ( )), and 3 ( )
as functions of reverse bias calculated with (solid symbols) and without (open
symbols) impact ionization in the InGaAs layer. (b) The corresponding F (M)
results. F (M) given by local model for fixed values of k from 0 to 0.5 in steps
of 0.1 are also shown (solid lines) for comparison.

quite different values of excess noise. Moreover, fields as weak

as 120 kV cm in the absorption layer are still not weak

enough to avoid detrimental effects on excess noise, suggesting

a lower limit on field across the InGaAs layer than that imposed

by band-to-band tunneling. It appears to be vital to achieve a de-

pleted InGaAs layer but with an extremely low field, demanding

tight tolerances on InP APD wafer growth.

On the other hand, it appears that ionization in the InGaAs

affects the multiplication factors and the breakdown voltages of

InAlAs APDs only marginally, as shown in Fig. 2(a). More sig-

nificantly, Fig. 2(b) shows that the excess noise is reduced when

ionization in the InGaAs layer is included. By contrast with the

prediction of increased excess noise in InP APDs, the InAlAs

APDs are predicted to achieve lower noise as the field across

the InGaAs layer is increased, with the InAlAs APD1 structure

having the lowest noise of the three structures simulated.

Multiplication and noise characteristics were also calculated

for other InP and InAlAs APD structures with 0.5- m-thick

multiplication layers and suitably doped field control layers

(other layers remaining unchanged). The fields across the In-

GaAs layer for are 90 kV cm and 120 kV cm ,

respectively. The multiplication and excess noise curves for

these APDs are compared in Fig. 3(a) and (b). The results

also show that ionization in the InGaAs results in respectively

higher and lower excess noise factors for InP and InAlAs

APDs, reflecting the behavior shown in Fig. 1(b) and Fig. 2(b).

Fig. 3. (a) Multiplication factors of InP APD ( ) and InAlAs APD (�) with
0.5-�m-thick multiplication layer as functions of reverse bias calculated with
(solid symbols) and without (open symbols) impact ionization in the InGaAs
layer. (b) The corresponding F (M) results. F (M) given by local model for
fixed values of k from 0 to 0.5 in steps of 0.1 are also shown (solid lines) for
comparison.

IV. DISCUSSION

It is now well known that to achieve low excess noise

it is beneficial to use a material with dissimilar ionization

coefficients and significant dead space effects [15] and to inject

the carriers with the higher ionization coefficient. For the field

ranges typical of those in the InGaAs absorption layer and

the InAlAs multiplication layer, the ionization coefficients are

more dissimilar in InGaAs ( at high multiplication

factors), leading to lower associated excess noise, than in

InAlAs. Even with dead space effect reducing the excess noise

in the InAlAs, multiplication in the InGaAs is still less noisy

than in the InAlAs. Furthermore, feedback holes generated by

ionization in the InAlAs multiplication layer are less likely

to initiate ionization in the InGaAs layer because of its low

value of . Hence, allowing for ionization in the InGaAs layer

leads to slightly reduced excess noise.

It appears that the multiplication, excess noise and breakdown

voltage of InAlAs APDs are less susceptible to variations in the

field across the InGaAs layer and hence to variations in doping

level of the field control layer. While lowest excess noise would

be achieved by designing for ionization in the InGaAs layer,

tunneling places a strong upper limit on the electric field there

and design tolerances could be uncomfortably tight.
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In the InP APD the advantages of ionizing in the InGaAs,

where the dissimilar ionization coefficients, , can be

expected to reduce multiplication noise, still apply in principle.

However in the InP multiplication region and the device

is designed so that photogenerated holes are injected from the

InGaAs. These holes are unlikely to have ionized in the low field

InGaAs absorption layer, where . However, feedback

electrons, generated by ionization in the high field InP, are

likely to ionize in the InGaAs, generating more holes, which

subsequently enter the high field InP layers and may create more

carriers. Such chains of events may increase multiplication,

reducing the breakdown voltages as shown in Fig. 1(a). It also

leads to photo-generated carriers producing a wider distribution

of multiplication factors in the InP APD when ionization

is allowed in the InGaAs layer for a given mean value of

multiplication, leading to increased excess noise.

Impact ionization in the InP or InAlAs cladding and

field-control layers has been included in all the results pre-

sented above. Since the accuracy of the recurrence equations

has not been tested for structure with rapidly changing field,

such as those across the cladding and the field-control layers

in the APDs, it was necessary to check that the observations

in Figs. 1–3 are not affected by impact ionization taken place

in these layers. Ignoring impact ionization in the cladding

and field-control layers yields similar observations to those

in Figs. 1–3, confirming that ionization in the InGaAs layer

increases and reduces the excess noise factors for InP and

InAlAs APDs, respectively.

In addition, to check that the predictions are not an artifact

of the values chosen for ionization threshold energy the calcu-

lations were repeated using values of 0 and 3 eV for both

InP and InAlAs APDs. We find the trends described earlier are

repeated.

The results in Figs. 1–3, obtained with light entering from

the p-cladding side (termed top injection), are also compared

to those obtained with light entering from the substrate side

(termed back injection). For both InP and InAlAs APDs, top

injection resulted in slightly larger multiplication factors than

back injection for a given reverse bias, since electrons impact

ionize more easily than holes in InGaAs absorber. Excess noise

factors are also lower with top injection, compared to back

injection.

V. CONCLUSION

Multiplication and excess noise have been calculated in

APDs with InGaAs absorption layers and multiplication layers

composed of both InAlAs and InP, allowing for the low field

ionization behavior observed in InGaAs. Ionization in the

InGaAs increases the excess noise of the InP APDs and the effect

becomes more pronounced as the field in InGaAs increases. The

design of InP APDs may therefore be as limited by undesirable

impact ionization in the InGaAs as by tunneling current. By

contrast, the excess noise was reduced in the InAlAs APDs

when impact ionization in the InGaAs was included in the

model and the reduction increased with the field in the InGaAs.

These contrasting effects were explained by the match (for the

InAlAs APDs) or mismatch (for the InP APDs) between the

ionization coefficient ratio in the InGaAs absorption layer and

in the multiplication layers. The calculations also suggest that

InAlAs APDs are more tolerant to variations in field across

the InGaAs absorption layer resulting from poor control of

the doping level in the charge control layer.
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