This is a repository copy of *Influence of Biomass Pellet Composition on the Pulverised Pellet Flame Propagation and Minimum Explosion Concentration*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/89062/

Version: Accepted Version

Conference or Workshop Item:

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Introduction

- Biomass is a sustainable and effective solution to CO₂ emission reduction.
- Pelletisation results in higher energy density, ease of handling and transportation.
- For efficient combustion, pellets need to be pulverised.
- Finer particles of <63µm release more volatiles contributing almost 100% in flame propagation without formation of char.
- Inerts like ash+moisture act to reduce the reactivity that is more severe for wood as compared to crop residues.

Experimental Methodology

- Modified Hartmann dust explosion tube was used for measurements of flame speed and minimum explosive concentration (MEC) [1].
- Dust is pneumatically dispersed with pre-existing spark.
- Pressure transducer and array of thermocouples recorded pressure rise and time of flame arrival (flame speed).

Conclusions

- Average particle size of different sized fractions against their respective MEC obtained from modified Hartmann tube.
- Minimum explosible concentration decreases with decreasing particle size.
- Good correlation of %ash+H₂O vs. MEC were obtained for biomass samples.
- % ash+H₂O affect MEC more for wood samples than for crop residues.

Results

- For biomass samples 90% of the volatiles released at around 450°C in contrast to coals (750°C).
- Fine particles with higher surface area release more volatiles.
- No evidence of char residue left for fine particles of biomass.

References