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Abstract

The design of multi-material compliant mechanisms by means of a multi Sequential

Element Rejection and Admission (SERA) method is presented in this work. The SERA

procedure was successfully applied to the design of single-material compliant

mechanisms. The main feature is that the method allows material to flow between

different material models. Separate criteria for the rejection and admission of elements

allow material to redistribute between the pre-defined material models and efficiently

achieve the optimum design. These features differentiate it to other bi-directional

discrete methods, making the SERA method very suitable for the design of multi-

material compliant mechanisms. Numerous examples are presented to show the

validity of the multi SERA procedure to design multi-material compliant mechanisms.

Keywords

Topology optimization, compliant mechanisms, multiple materials, SERA method,

output displacement



1 Introduction

Compliant mechanisms can be defined as monolitic structures that rely on its own

elastic deformation to achieve force and motion transmission [1]. They have undergone

considerable development since the introduction of both advanced materials and the

field of MicroElectroMechanical Systems (MEMS). These submillimeter mechanical

systems are the most promising application area of compliant mechanisms. They are

coupled with electronic circuits and manufactured using etching techniques and surface

micromachining processes from the semiconductor industry [2]. The use of hinges,

bearings and assembly processes are prohibitive due to their small size, and must be

built and designed as compliant mechanisms etched out of a single piece.

The most widely studied compliant mechanisms are single-material devices. Originally

accomplished by trial and error methods, researchers took an interest in the systematic

design of this type of compliant mechanisms by means of topology optimization

techniques [3-5]. The main advantage of these techniques was that the optimum

design was automatically suggested for a target volume fraction for a prescribed design

domain, boundary conditions and functional specifications. There was no need to pre-

determine the number of links or the location of the flexural joints in the device [6].

The optimization methods used for this purpose were diverse. Among others, the

homogenization method [3, 7], the SIMP method [5], the Genetic Algorithms [8], the

Level Set methods [9] and, more recently, the SERA method [10].

During the last decade, the design of devices with multiple materials gained popularity

with the recent development of manufacturing methods. It is the case of the

coextrusion of plastics, the shape deposition manufacturing [11], or the layered

manufacturing with embedded components [12].

As a result, some of the methods applied to single-material compliant mechanisms

were also applied to the design of multi-material compliant mechanisms. Sigmund [13]



performed topological synthesis of electrothermal actuators with nonlinear deformation

and multiple materials and output ports. In this work, Sigmund studied the effect on the

mechanisms performance of using two materials for thermal and electrothermal

actuators. The conclusion was that the use of two materials was beneficial only in

some cases and that those gains were, in many cases, insignificant. Yin and

Ananthasuresh [14] proposed a peak function material interpolation scheme to

incorporate multiple materials to the design of compliant mechanisms without

increasing the number of design variables. In the two aforementioned works, the

optimization methods used were gradient based with algorithms comprising the

optimality criterion [14] or the method of moving asymtotes [13].

More recently developed methods were also applied to the design of multi-material

compliant mechanisms. Wang and Chen [15] extended the Level Set approach to the

design of monolithic compliant mechanisms made of multiple materials. The

mechanical advantage of the mechanisms was used as objective function. Saxena [16]

used Genetic Algorithms to compute the synthesis of compliant mechanisms with

multiple materials and output displacements. Geometrically nonlinear analysis was

used and the implementation was accomplished usign frame finite elements.

This research focuses on the design process for multi-material mechanisms and it can

be used in multiple applications. It is the case, among others, of piezoelectric devices

[24], bimorph actuators [13], grippers and clamping devices [15] or biologically inspired

mechanisms in which multiple materials such as bones, muscles or skin are connected

together to perform the desired function effectively [25]. It is specially interesting when:

(a) One of the materials is more expensive; (b) the designer is interested in having a

stiffer internal mechanism structure with flexible material surrounding it; (c) the

designer is interested in mechanisms with porous materials; (d) there is a need to

isolate a region and the inclusion of an electrically non-conductive phase in the

mechanism design may make it possible; (e) a mechanism already exists and its output



displacement needs to be increased without changing its topology apart from reducing

the size of the existing members and adding material around it.

The aim of this paper is to present a generalized formulation for the design of multi-

material compliant mechanisms with the use of a Sequential Element Rejection and

Admission (SERA) method [17,18]. This method was succesfully applied to the design

of single-material compliant mechanisms [10]. The procedure considers two separate

criteria for the rejection and admission of elements and material was redistributed

between two material models: ‘real’ material and ‘virtual’ material with negligible

stiffness. This feature of the SERA method makes it ideally suited for the design of

multi-material compliant mechanisms. The formulation presented here is an extension

from the one used for single-material compliant mechanisms [10] where the objective

was to maximize the mutual potential energy of the mechanism under a constraint in

the target volume fraction. Benchmark examples are used to demonstrate the validity

of the proposed method to design multi-material compliant mechanisms.

2 Problem formulation of a multi-material compliant mechanism

A multi-material compliant mechanism is required to meet the flexibility and stiffness

requirements in order to withstand the applied loads and produce the predefined

displacement transmission. Fig. 1 shows such a multi-material compliant mechanism

domain ȍ. It is subjected to a forces Fin at the input port Pin and is supposed to produce

an output displacements ∆out at the output port Pout.



Fig. 1 Problem definition of a multi-material compliant mechanism

The goal of topology optimization for multi-material compliant mechanisms is to obtain

the optimum design that converts the input work into an output displacement in a

predefined direction. The mathematical formulation of this work is expressed as the

maximization of the Mutual Potential Energy (MPE) (1) subjected to M constraints on

the target volume fraction of the M materials, V*m (2). The summation of target volume

fractions must be the unit (3) as each element can only be in one material model.

maxܧܲܯ (1)

݀݁ݐ݆ܾܿ݁ݑݏ :݋ݐ ݎ݋݂ ݉ = 0,� ܯ,
෍ ɏ୫ୣ୒
ୣୀଵ ή V୫ୣ

VTot
൑ ௠ܸכ , ɏ୫ୣ = {ɏ୫୧୬, 1}, e = 1,� , N

(2)

෍ V୫כ୑
୫ୀ଴ = 1 , m = 0,� ,M (3)

where: em is the density of the eth finite element and material m, ௠ܸ௘ is the volume of

the eth element and material m, ்ܸ௢௧ is the total volume for the domain, M is the number



of materials, N is the number of finite elements and min is the minimum density

considered, a typical value of which is 10-4. Void material is represented with m=0.

The MPE (4) [19] was defined as the deformation at a prescribed output port in a

specified direction. To obtain the MPE, two load cases are calculated: 1) The Input

Force Case, where the input force Fin is applied to the input port Pin, named with the

subscript 1 in (4, 5) and Fig. 2a ; 2) the Pseudo-Force Case, where a unit force is

applied at the output port Pout in the direction of the desired displacement, named with

the subscript 2 in (4, 6) and Fig. 2b.

ܧܲܯ = ଶ்ࢁ ήࡷ ή ଵࢁ ࡷ(4) ή ଵࢁ = ଵࡲ ࡷ(5) ή ଶࢁ = ଶࡲ (6)

where: K is the global stiffness matrix of the structure; F1 is the nodal force vector

which contains the input force Fin; F2 is the nodal force vector which contains the unit

output force Fout; and U1, U2 are the displacement fields due to each load case.

The global stiffness matrix K is expressed by the density of the eth finite element and

the elemental stiffness matrix (7).

ࡷ =෍ ɏ୫ୣ୒
ୣ ή K୫ୣ(E୫,ɓ୫) , ݉ = 0,� ,ܯ, e = 1,� , N (7)

where: Ke
m is the elemental stiffness matrix of the eth element, which depends on the

Young modulus Em and Poisson ratio ȣm of the m isotropic material.



Fig. 2 Representation of the load cases: a) Case1: Input Force; b) Case 2: Pseudo-Force

The definition of the stiffness at the input and output ports is done in this work with the

use of the spring model of Fig. 1. The artificial input spring kin together with an input

force Fin simulates the input work of the actuator. The resistance to the output

displacement is modelled with a spring of stiffness kout. This allows the displacement

amplification to be controlled by specifying different values of the input and output

springs.

As part of the optimization process, a sensitivity analysis is carried out to provide

information on how sensitive the objective function is to small changes in the design

variables. The derivative of the MPE with respect to the element density is given in (8).

௘ߩ߲ܧܲܯ߲ =
௘ߩ߲߲ ଶ்ࢁ) ήࡷ ή (ଵࢁ = (

௘ߩଶ்߲ࢁ߲ ήࡷ ή ଵࢁ + ଶ்ࢁ ή ௘ߩ߲ࡷ߲ ή ଵࢁ + ଶ்ࢁ ήࡷ ή ௘ߩଵ߲ࢁ߲ ) (8)

Since the stiffness matrix is symmetric, the first derivative is then given in (9).

௘ߩଶ்߲ࢁ߲ ήࡷ ή ଵࢁ = ࡷ) ή ்(ଵࢁ ή ௘ߩଶ߲ࢁ߲ = ଵ்ࢁ ή்ࡷ ή ௘ߩଶ߲ࢁ߲ = ଵ்ࢁ ήࡷ ή ௘ߩଶ߲ࢁ߲ (9)

Giving the derivative of the MPE to be (10).

௘ߩ߲ܧܲܯ߲ = ଵ்ࢁ) ήࡷ ή ௘ߩଶ߲ࢁ߲ + ଶ்ࢁ ή ௘ߩ߲ࡷ߲ ή ଵࢁ + ଶ்ࢁ ήࡷ ή ௘ߩଵ߲ࢁ߲ ) (10)

The two equilibrium equations (5) and (6) are differentiated with respect to the density

and are given in (11) and (12). The input load is independent from the design variables

and its derivative is zero.

௘ߩ߲ࡷ߲ ή ଵࢁ ࡷ+ ή ௘ߩଵ߲ࢁ߲ = 0 ՜ ௘ߩ߲ࡷ߲ ή ଵࢁ = െࡷ ή ௘ߩଵ߲ࢁ߲ (11)

௘ߩ߲ࡷ߲ ή ଶࢁ ࡷ+ ή ௘ߩଶ߲ࢁ߲ = 0 ՜ ௘ߩ߲ࡷ߲ ή ଶࢁ = െࡷ ή ௘ߩଶ߲ࢁ߲ (12)

The equivalences obtained in (11) and (12) are introduced to (10), giving the derivative

of the MPE to be (13).



௘ߩ߲ܧܲܯ߲ = ൬െࢁଵ் ή ௘ߩ߲ࡷ߲ ή ଶࢁ െ ଶ்ࢁ ήࡷ ή ௘ߩଵ߲ࢁ߲ + ଶ்ࢁ ήࡷ ή ௘ߩଵ߲ࢁ߲ ൰ = െࢁଵ் ή ௘ߩ߲ࡷ߲ ή ଶࢁ (13)

As each density variable corresponds to a unique mesh element, only the

displacements and stiffness of that element needs to be considered in the calculation.

The sensitivity number for an element e, Įe can be calculated using (14).

௘ߙ = െࢁଵ௘் ή ୫ୣߩ୫ୣ߲ࡷ߲ ή ଶ௘ࢁ (14)

where: U1e is the displacement vector of element e due to load case 1; U2e is the

displacement vector of element e due to load case 2; and

డࡷ౛ౣడఘ౛ౣ is the derivative of the elemental stiffness matrix with respect to the density.

The derivative of the stiffness matrix with respect to the density can only be

approximated to the variation of the elemental stiffness (15). This is because the

design variables are discrete (density can only be zero or one) and as a consequence,

the elemental stiffness can only be the value of the stiffness of the m real material,ࡷ୫ୣ or a negligible value equivalent to zero.

୫ୣߩ୫ୣ߲ࡷ߲ ൎ οࡷ୫ୣ (15)

When the approximation to the variation of the elemental stiffness in (15) is substituted

to the expression of the elemental sensitivity number (14) and the relative volume of

the FE is factored, equation (16) is obtained. This sensitivity number in each element

(16) determines which elements are removed or added so that the objective function is

maximized.

௘ߙ = (െࢁଵ௘் ή οࡷ୫ୣ ή (ଶ௘ࢁ ή V୫ୣ
V୘୭୲ (16)

where: U1e is the displacement vector of element e due to the applied load F1; U2e is the

displacement vector of element e due to the output load vector F2; and ∆Ke
m is the

variation of the elemental stiffness matrix.



3 The SERA method for multi-material compliant mechanisms design

The SERA method was originally defined for single-material structures. It considered

two separate material models: 1) ‘Real’ material and 2) a ‘Virtual’ material with

negligible stiffness [17, 18]. Two separate criteria allowed material to be introduced and

removed from the design domain by changing its status from ‘virtual’ to ‘real’ and vice

versa [10].

In the SERA method for multi-material compliant mechanisms, the definition of

separate criteria for each material model is maintained. The method is extended for

multiple materials so that elements can flow between consecutive levels of material

models. Elements in material model m “move forward” to material model (m+1) or

“move backwards” to material model (m-1). The final topology is made of all the

different ‘real’ materials m= [1, M] present at the end of the optimization (Fig. 3).

Fig. 3 The SERA material models for multi-material compliant mechanisms



The twelve steps that drive the SERA method for multi-material compliant mechanisms

are given below, and can be seen in the flow chart of Fig 4.

1. Define the design problem. The maximum design domain must be defined and

meshed with finite elements. All boundary constraints, loads and the target

volume fraction for each material model V*m must also be specified.

2. Define properties for each material model and assign material properties to the

initial design domain, section 3.1.

3. Calculate the amounts of volume to redistribute in the ith iteration which consists

of the volume to be “moved forward” ∆VFw,m(i) and “moved backwards” ∆VBw,m(i)

in each material model m, section 3.2.

4. Carry out a Finite Element Analysis of the two load cases to produce the

displacement vectors U1 and U2. The elemental and global stiffness matrixes,

Ke
m and K, are also calculated as part of the FEA.

5. Calculate the elemental sensitivity numbers e (16).

6. Apply the mesh independent filtering to the sensitivity numbers, section 3.3.

7. Separate the sensitivity numbers in those for each material model, m.

8. Define the threshold values for each material model, Fw,m
th and Bw,m

th, section

3.4.

9. Redistribution of elements between material models, section 3.4.

10. Calculate the volume of each ‘real’ material model and the total volume of ‘real’

material in the domain.

11. Calculate the convergence criterion ছi, section 3.5.

12. Repeat steps (3) through (11) until the target volume fractions are reached and

the optimization converges. The final topology is represented by the ‘real’

material in the design domain.



Fig. 4 Flow chart of the SERA method for multi-material compliant mechanisms

3.1. Definition of material properties

The SERA method can start from a full design domain (all elements are ‘real’ material),

from a void design domain (all elements are ‘virtual’ material), and also with any

amount of material present in the domain. In a previous work by the authors [20], it was

stated that a void initial design domain was the most efficient starting point to design

compliant mechanisms as fewer iterations were needed to achieve the optimum. This
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is the strategy considered in this work and, therefore, all elements in the design domain

are assigned ‘virtual’ material properties as the initial design domain.

The rest of material models (m=1...M) are initialized so that m=1 is the weakest ‘real’

material available and m=M the one with higher material properties. That is, elements

“move forward” from ‘void’ material towards material M.

3.2. Calculating the volumes ∆VFw,m(i) and ∆VBw,m(i)

Material is moved between material models in a two stage process (Fig. 5):

1. Different amounts of material are moved forward and backwards in each

iteration until the target volume fraction for each material model Vm* is reached.

2. Once the target volume fractions of each material model are reached, material

re-distribution takes place by moving the same amount of material between

material models until the problem converges.

Fig. 5 Scheme of the volume to move forward and backwards for material m

The volume of material to be moved forward and backwards are given in equations

(17) and (18) when an equal target volume fraction Vm* is to be achieved in all ‘real’

1

Vm*

0

∆VBw,m(i)

i i+1

∆VFw,m(i)

∆VBw,m(i)

i i+1

∆VFw,m(i)

Stage 1
Stage 2

Stage 1:

Stage 2:

Iteration



material models. This can be adjusted for any other relationship between target volume

fractions.

ο ஻ܸ௪,௠(݅) = ܴܲ ή ܰ, ݎ݋݂ ݉ = 1�ܯ (17)

ο ிܸ௪,௠(݅) = ܴܲ ή ܰ ή ܯ) + 1െ݉), ݎ݋݂ ݉ = 0�ܯ) െ 1) (18)

where: PR is the progression rate, with typical values ranging between 0.005-0.05; N is

the number of finite elements.

The stage of material re-distribution consists of redistributing material without

increasing the total in each material model (19) (20).

ο ஻ܸ௪,௠(݅) = ܴܴ ή ܰ, ݎ݋݂ ݉ = 1�ܯ (19)

ο ிܸ௪,௠(݅) = ܴܴ ή ܰ ή, ݎ݋݂ ݉ = 0� ܯ) െ 1) (20)

where: RR is the material Re-distribution Rate, with typical values ranging between

0.001 and 0.005.

3.3. Mesh independent filtering

The mesh independent filter is based on the one by Sigmund and Petersson [21] and

modifies the sensitivity number of each element based on a weighted average of the

element sensitivities (21) in a fixed neighbourhood defined by a minimum radius rmin

(22).

௘ƍߙ = σ ௞ߩ ή ߱௞ ή ௞௡௞ୀଵσߙ ߱௞௡௞ୀଵ (21)

߱௞ = ௠௜௡ݎ െ ,(݇,݁)ݐݏ݅݀ {݇ א ݊ / (݇,݁)ݐݏ݅݀ ൑ ,{௠௜௡ݎ ݁ = 1,� ,݊ (22)

where: ’e is the eth element filtered sensitivity number. n is the number of elements

which are inside of the filter radius. ȡk is the density of element k. k is the weighting

factor for element k, its value decreases linearly the further element k is away from

element e and for all elements outside the filter radius its value is equal to zero. Įk is



the kth element sensitivity value. rmin is the filter radius specified by the user. dist(e,k) is

the distance between the centres of elements e and k.

3.4. Redistribution of material

The sensitivity numbers of each eth finite element e (16) are listed separately in (M+1)

lists, one for each material model m=0...M (Fig 6).

Fig. 6 Scheme of the lists of material models and the volumes to move forwards and backwards

The threshold values Fw,m
th and Bw,m

th are the sensitivity values that allows the

transmission of ∆VFw,m(i) from material m to material (m+1), and ∆VBw,m(i) from material

m to material (m-1) (Fig. 6).

The objective is to maximize the MPE and, therefore, in general for material m:

elements with the higher values of sensitivity number are the ones to be moved forward

to the next material model (m+1). Elements with lower values of sensitivity number are

the ones to be moved backwards to the previous material model (m-1) (Fig. 6b).
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Special cases of this rule are material models m=0 and m=M. For m=0, elements can

only be forwarded to material model m=1 (Fig. 6a). For m=M, material can only be

moved backwards to the previous material model (Fig. 6c).

3.5. Convergence criterion

The convergence criterion is defined as the change in the objective function in the last

10 iterations (23), which is considered an adequate number of iterations for the

convergence study. It implies that the process will have a minimum of 10 iterations as

the convergence criterion is not applied until the iteration number has reached 10.

᠁௜ = หσ ૢି࢏૞ି࢏௜ܧܲܯ െ σ ૝ି࢏࢏௜ܧܲܯ หσ ૝ି࢏࢏௜ܧܲܯ (23)

when: ছi is the convergence criterion, with typical values ranging between 0.001-0.01.

4 Examples

Examples of multi-material compliant mechanisms are presented in this section to

demonstrate the validity of the proposed method: 1) Bi-material inverter mechanisms,

2) Bi-material crunching mechanisms, and 3) Tri-material gripper mechanisms.

For the inverter mechanism, different target volume fractions for the two material

models are considered. In the case of the crunching mechanisms, different target

volume fractions and material properties are used for compliant mechanisms with

different stiffness ratios. Finally, two different designs of tri-material gripper

mechanisms are presented. The evolution charts of these two optimization processes

are also given in this section.

4.1. Bi-material inverter mechanism with different target volume fractions

The design domain for an inverter mechanism is shown in Fig. 7. It is a square of size

120x120mm subdivided using square four node 2x2mm finite elements.



Two real materials are considered: Material m=1 with E1=0.1, Ȟ1=0.3, and Material m=2

with E2=1, Ȟ2=0.3. That is, material 2, represented in black in the figure, is ten times

stiffer than material 1, represented in orange in the figure. The density of the virtual

material m=0 is min=10-4, which is equivalent to 0.01% of the stiffness of a real

material.

Fig. 7 Inverter mechanism (all dimensions are in mm)

The two target volumes fractions considered are: a) V1*=0.2, V2*=0.2, b) V1*=0.1,

V2*=0.3 of the initial design domain. In both cases, the same input force Fin=1N is

applied and a stiffness ratio between the input and output ports of kout/kin=1 is defined.

The filter radius used in all cases is rmin=4mm. The final topologies obtained for the two

cases are shown in Fig. 8.

Fig. 8 Inverter mechanisms with: a) V1*=0.2, V2*=0.2, b) V1*=0.1, V2*=0.3
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As it can be observed in Fig. 8, material is efficiently distributed in the design domain in

order to transmit the motion from the input to the output port. Regarding the distribution

of each material model, the stiffest one defines a topology capable of providing the

transmission of movement and the weakest material is located where it provides

stability to the mechanisms without reducing its capacity of movement.

4.2. Bi-material crunching mechanism with different stiffness ratios

The design domain for the crunching mechanism is shown in Fig. 9. It is a square of

size 120x120mm subdivided using square four node 2x2mm finite elements.

Fig. 9 Crunching mechanism (all dimensions are in mm)

Three different input-output situations are considered in this section: 1) kout/kin=0.01, 2)

kout/kin=1, 3) kout/kin=100. The topologies obtained for single-material mechanisms

(Alonso et al. 2012) were significantly different so it could be thought that the inclusion

of a second material could beneficiate the mechanisms performance in, at least, some

of the cases. Two different volume distribution for the bi-material mechanisms are also

considered: 1) V1*=0.2, V2*=0.2, and 2) V1*=0.3, V2*=0.1 (cases (b),(c), and (d)). All the

rest of parameters remain unchanged (Fin=1N, rmin=6mm).
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For each stiffness ratio, five cases of real material properties are studied: a) Single-

material with E1=1 and V1*=0.4, V2*=0, b) Bi-material with E1=2·E2 , c) Bi-material with

E1=10·E2, d) Bi-Material with E1=100·E2, and e) Single-material with E1=1 and V1*=0.2,

V2*=0. For all cases, the Poisson’s ratio is ȣ1= ȣ2=0.3 and the density of the virtual

material m=0 is min=10-4. Results are shown in Fig. 10, Fig. 11 and Fig. 12.

Fig. 10 Bi-Material crunching mechanism with kout/kin=0.01 and: a) E1=1, V1*=0.4, b) E1=2·E2

with b1) V1*=0.2, V2*=0.2 and b2) V1*=0.3, V2*=0.1, c) E1=10·E2 with c1) V1*=0.2, V2*=0.2 and

c2) V1*=0.3, V2*=0.1, d) E1=100·E2 with c1) V1*=0.2, V2*=0.2 and d2) V1*=0.3, V2*=0.1, and e)

E1=1, V1*=0.2

Fig. 11 Bi-Material crunching mechanism with kout/kin=1 and: a) E1=1, V1*=0.4, b) E1=2·E2 with

b1) V1*=0.2, V2*=0.2 and b2) V1*=0.3, V2*=0.1, c) E1=10·E2 with c1) V1*=0.2, V2*=0.2 and c2)

V1*=0.3, V2*=0.1, d) E1=100·E2 with c1) V1*=0.2, V2*=0.2 and d2) V1*=0.3, V2*=0.1, and e) E1=1,

V1*=0.2

(b1) (c1) (d1)

(b2) (c2) (d2)

(a) (e)

(b2) (c2) (d2)

(b1) (c1) (d1)

(a) (e)



Fig. 12 Bi-material crunching mechanism with kout/kin=100 and: a) E1=1, V1*=0.4, b) E1=2·E2

with b1) V1*=0.2, V2*=0.2 and b2) V1*=0.3, V2*=0.1, c) E1=10·E2 with c1) V1*=0.2, V2*=0.2 and

c2) V1*=0.3, V2*=0.1, d) E1=100·E2 with c1) V1*=0.2, V2*=0.2 and d2) V1*=0.3, V2*=0.1, and e)

E1=1, V1*=0.2

It can be observed from Fig. 10, Fig. 11 and Fig. 12, that the topology of bi-material

crunching mechanism changes considerably if different material properties are defined

for each material model (cases (b), (c), and (d)). In all cases, the SERA method

proposed provides an efficient distribution of material in the design domain.

An analysis of the displacements in this and previous section reveal that all

displacements are between 0.0012% and 0.9% of the dimensions of the mechanism.

Due to such small displacements, the use of linear analysis with small displacements is

appropriate for this work. The conclusions drawn from this study are based on the

comparison of the performance of all examples under the same type of analysis and

displacement range.

4.3. Tri-material gripper mechanisms

The design domain for two different gripper mechanisms are shown in Fig. 13. In both

cases, it is a square of size 200x200mm subdivided using square four node 2x2mm

finite elements. In case (a) a 50x50mm square in the right side is removed from the

design domain to allow the mechanism to grip the workpiece, modelled by the output

spring kout. In case (b) the square is 150x50mm size.

(b2) (c2) (d2)

(b1) (c1) (d1)

(a) (e)



Three real materials are considered: Material m=1 with E1=0.01, Ȟ1=0.3, Material m=2

with E2=0.1, Ȟ2=0.3, and Material m=3 with E3=1, Ȟ3=0.3. The density of the virtual

material m=0 is min=10-4.

Fig. 13 Gripper mechanisms (all dimensions are in mm)

The target volume fractions considered for each material model are V1*=V2*= V3*=0.15

of the initial design. An input force Fin=1N is applied and a stiffness ratio of kout/kin=1 is

defined. The filter radius used in all cases is rmin=6mm. The resulting topology and

evolution chart of the gripper mechanism (a) case is shown in Fig. 14. The equivalent

for the gripper mechanism (b) case is shown in Fig. 15. As it can be observed, in both

cases, the three materials are efficiently distributed in the design domain.

Fig. 14 Tri-material gripper mechanism (a) case: a) Final topology and b) evolution chart
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Fig. 15 Tri-material gripper mechanism (b) case: a) Final topology and b) evolution chart

5 Conclusions

A generalized formulation to design multi-material compliant mechanisms is presented

in this work. A multi Sequential Element Rejection and Admission (SERA) method is

used to achieve the optimum design. This procedure considers each material in the

domain as separate material models. The rejection and admission of elements is done

via separate criteria for each material model and elements flow between pre-defined

material models. The examples presented in this work show the versatility and

robustness of the method to achieve the optimum topology for compliant mechanisms

with multiple materials.

The authors are aware of the need for a nonlinear analysis when large displacements

are considered in compliant mechanisms [22,23]. However, for the purpose of studying

the validity of the method, a linear analysis has proven to be a good approximation as

all examples exhibit small displacements.

The SERA method has efficiently distributed material in all bi- and tri-material

mechanisms presented in this work. It has therefore been demonstrated to be an

efficient and robust method for the design of multiple materials compliant mechanisms.
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