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An attempt is made to theoretically and experimentally verify the shrinkage curvature models presented in

Eurocode 2 and BS 8110. These codes claim that the models originally derived and proven for uncracked sections are

suitable, with modification, for predicting the behaviour of cracked sections, although this claim has never been

proven experimentally. To achieve verification, an alternative theoretical approach is initially proposed in this paper.

In this theoretical model, the effect of shrinkage, creep and the variation in the neutral axis position of the section

are taken into account. The stresses developed in the steel and concrete at a cracked section according to this

theoretical model are then applied to a finite-element (FE) model representing a portion of the beam from the crack

to mid-way between the crack and an adjacent crack. Ultimately, the mean curvature is determined. Experimentally,

pairs of beams were cast and subjected to a level of flexural loading to produce a stabilised crack pattern in the

constant-moment zone. The behaviour of the beams was monitored for up to 180 days. For any pair of beams, one

beam was cast using a high-shrinkage concrete and the other with a low-shrinkage concrete. Each concrete type,

however, exhibits similar creep. Therefore, shrinkage curvature can be obtained by subtracting the long-term

movements of one beam from the other. These experimentally defined curvatures were compared with the mean

curvatures obtained from the FE analysis. The comparison showed reasonable agreement. The curvatures were also

compared with uncracked and cracked curvatures predicted by the codes. The curvatures derived in this investigation

fell within the boundaries of the uncracked and cracked curvatures predicted by the codes and, for the fully cracked

case, the curvatures were closer to the uncracked boundary.

Notation
Ac area of concrete

As area of tension reinforcement

A9s area of compression reinforcement

C cover depth

d, d9 depth of tensile and compressive reinforcement

respectively (Equation 4)

Ec elastic modulus of concrete at the time of estimation

Es Young’s modulus of reinforcement (Equation 4)

h height of the section

I second moment of area of the cracked or gross

section

I moment of inertia about an axis through the centroid

of an age-adjusted transformed section (Equation 5)

M external applied bending moment

N sum of normal forces

1/rcs shrinkage curvature

r2c ¼ Ic/Ac, Ac and Ic being the area of the compression

zone and its moment of inertia about an axis through

the centroid of the section (Equation 5)

S first moment of area of the reinforcement about the

centroid of the cracked or gross section

2S0 theoretical crack spacing

t0 age at loading

t1, t2 time intervals
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x depth of neutral axis (Equation 4)

yc y-coordinate of the centroid of the concrete area in

compression (based on the stress distribution at age

t0) (Equation 5)

ys distance to bottom steel from whatever axis is chosen

y9s distance to the top steel from whatever axis is chosen

Æ deformation parameter considered (e.g. a strain, a

curvature or a rotation)

ÆI, ÆII values of parameters calculated for uncracked and

fully cracked conditions respectively

Æe modular ratio

� coefficient taking account of the influence of the

duration of the loading or of repeated loading on the

average strain

�h height of individual strip

�cs free shrinkage strain

�cs(t, t0) shrinkage that would occur in the concrete if it were

free, during the period t� t0 (Equation 5)

�sh shrinkage of concrete

�tot total strain of concrete

� distribution coefficient (allowing for tensioning

stiffening at a section)

k curvature reduction factor (¼ Ic=I ) (Equation 5)

�1, �2 stress applied at t1, t2

�c stress in concrete

�s stress in tension reinforcement calculated on the basis

of a cracked section

�sr stress in tension reinforcement calculated on the basis

of a cracked section under the loading conditions

causing first cracking

� 9s stress in top steel

� creep coefficient of concrete

ł creep coefficient of concrete in Equation 4

1. Introduction
The first step in design is usually to perform ultimate limit state

analysis; the serviceability limit state is then verified. In many

cases, however, serviceability (i.e. deflection) is critical and it is

this limit state for which the section, reinforcement and even the

materials are determined. As the properties of concrete, typically

shrinkage, develop with age, the serviceability of a concrete

element is affected – it will behave time dependently. The effect

of shrinkage on the deformation of concrete beams was

investigated both theoretically and experimentally as far back as

the 1970s (Hobbs, 1979) and conclusions from such investiga-

tions have been included in structural design codes such as BS

8110 (BSI, 1985) and Eurocode 2 (EC2) (BSI, 2004).

In BS 8110, Equation 1 is recommended to calculate the

curvature of uncracked or cracked spanning elements caused by

shrinkage of concrete

1

rcs
¼ Æ�cs

S

I

� �

1:

where 1/rcs is shrinkage curvature, �cs is the free shrinkage strain,

Æe is the modular ratio, S is the first moment of area of the

reinforcement about the centroid of the cracked or gross section

and I is the second moment of area of the cracked or gross

section. However, as noted in earlier work (Mu et al., 2008),

derivation of this equation was based on an uncracked section

(BSI, 1985: section 3.6).

Similarly, an uncracked section derived equation is suggested to

predict shrinkage curvature in EC2 (BSI, 2004: section 7.4.3).

However, in an attempt to recognise that the mean curvature of a

beam or slab will lie somewhere between the curvature predicted

at a cracked and uncracked section, depending on the degree of

cracking (or, for instance, the ratio of cracking moment to

applied moment), EC2 also recommends a universal equation for

the prediction of the average value of the deformation para-

meters, including curvature, of cracked beams (BSI, 2004:

section 7.4.3)

Æ ¼ �ÆII þ (1� �)ÆI2:

where Æ is the deformation parameter considered (which may be,

for example, a strain, a curvature or a rotation), ÆI and ÆII are the

values of the parameter calculated for the uncracked and fully

cracked conditions respectively and � is a distribution coefficient

(allowing for tensioning stiffening at a section) given by

� ¼ 1� �
� sr

� s

� �2

3:

where � ¼ 0 for uncracked sections. � is a coefficient taking

account of the influence of the duration of the loading or of

repeated loading on the average strain (� ¼ 1.0 for a single

short-term loading and � ¼ 0.5 for sustained loads or many

cycles of repeated loading), �s is the stress in the tension

reinforcement calculated on the basis of a cracked section and

�sr is the stress in the tension reinforcement calculated on the

basis of a cracked section under the loading conditions causing

first cracking.

Equation 1, which is adopted in the two codes, although

originally derived for uncracked sections, is suggested by the

codes to be applicable to cracked sections. However, this

guidance has never been proven theoretically, nor has it been

experimentally validated.

The shrinkage curvature model proposed by Hobbs (Hobbs,

1979) is given as Equation 4 and, again, was originally derived

for an uncracked section. The equation is effectively the same as

Equation 1. Hobbs also suggested that this formula was suitable

for calculation of the shrinkage curvature of cracked sections
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1

rcs
¼

(1þ ł)�csEs[As(d � x)� A9s(x� d9)]

EcI4:

in which �cs is the shrinkage that would occur in concrete if it

were unrestrained, ł is the creep coefficient of concrete, Es is

Young’s modulus of the reinforcement, Ec is Young’s modulus of

concrete, I is the moment of inertia of the cracked or uncracked

section about an axis through the centroid of an age-adjusted

transformed section, x is the depth of neutral axis and d and d9

are the depth of tensile and compressive reinforcement respec-

tively.

Another model for the prediction of the shrinkage curvature of

sections fully cracked due to an external applied bending moment

has been developed (Ghali and Favre, 1986) and is shown as

Equation 5. As with the previous examples, this is an approxi-

mated model; that is, besides the common assumption that plane

sections remain plane, a fixed neutral axis position assumption

was adopted in the derivation of Equation 5, irrespective of

shrinkage

1

rcs
¼ k�cs(t, t0)

yc
r2c5:

where �cs(t, t0) is the shrinkage that would occur in the concrete

if it were free, during the period t � t0, r
2
c ¼ Ic=Ac (Ac and Ic

being respectively the area of the compression zone and its

moment of inertia about an axis through the centroid of the

section), k is the curvature reduction factor (¼ Ic=I ; I being the

moment of inertia about an axis through the centroid of an age-

adjusted transformed section), yc is the y-coordinate of the

centroid of the concrete area in compression (based on the stress

distribution at age t0) and M is the external applied bending

moment.

Shrinkage and creep of concrete always result in a significant

shift in the position of the neutral axis towards the tensile area of

the section, so fixing the neutral axis position will affect the

accuracy of the prediction. However, based on the analysis

presented later in Section 3, the predictions are not too dissimilar

to the previously acceptable code guidance (BS 8110 model).

In this paper, an attempt is made to validate the mean shrinkage

curvatures predicted by the models in the codes for a fully

cracked section (i.e. Equations 1 and (2) and even Equation 4),

using experimentally defined shrinkage curvatures and curvatures

predicted using a new theoretical approach (combined with finite-

element (FE) analysis).

2. Theoretical approach for curvature
calculation

To theoretically validate the existing shrinkage curvature models,

an alternative methodology is proposed. The proposed approach

avoids the oversimplification in the current code derivations that

could potentially significantly affect the accuracy of the analysis.

The approach is based on common cross-sectional analysis and

the effective modulus method developed by Faber (1927). A

Matlab programme, utilising existing theories, was then devel-

oped to determine the shrinkage curvature.

Consider a simply supported rectangular section beam with both

top and bottom reinforcement. The beam is fully cracked due to

an external applied positive bending moment M introduced at age

t0 and kept constant. The analysis concerns a section at a crack.

As with the majority of methodologies, a series of assumptions

and simplifications are employed. The two basic assumptions

adopted in this current analysis are as follows

j plane sections remain plane

j creep is linear (i.e. creep strain is proportional to stress)

(Favre et al., 1983).

Assume that cracking occurs instantly immediately after the load is

applied and the concrete has zero initial shrinkage and creep.

Further, assume the concrete has zero tensile strength, meaning that

the tension zone is ineffective at resisting any forces. Immediately

after the load is applied when no shrinkage or creep have occurred,

the elastic curvature of the cracked section can be calculated using

Equation 6 and the other properties of the section, such as the

neutral axis position and the stress and strain of the section, can be

determined easily from mechanical equilibrium equations

1

r
¼

M

EI6:

Here, I is the moment of inertia of the transformed section,

composed of ÆAs, ÆA9s and Ac, about the centroidal axis (which is

the same as the neutral axis), M is the external applied moment

and E is the elastic modulus of concrete.

At age t1, some shrinkage and creep have taken place, leading to

a change in the neutral axis position of the section, and Equation

6, as explained below, is no longer suitable for the analysis of the

section. To identify the new position of the neutral axis, an

approximation approach is developed, in which the shrinkage,

creep and the shift of neutral axis position are considered and

equated. In the approximation, the cross-section is divided

horizontally into a number of strips and the state of each strip is

analysed. Then, the load over the section is obtained by integrat-

ing the loads on all the strips, which should equal the external

load applied to the section. Finally, by iteration, the true stress

and strain of each strip, the real neutral axis position and hence

the curvature of the section are determined. Although this is an

approximation, the greater the number of strips, the more

accurate will be the result. Therefore, in theory, greater precision

of results could be achieved by using even finer strips. Details of

the theoretical analysis are now described.
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2.1 Equilibration conditions

Figure 1 illustrates the cross-section, which is divided into strips

with height �h. First of all, the values for the neutral axis

position x and the curvature 1/r are estimated. The average

strain and hence the average stress in each strip can then be

calculated. Finally, the strains and hence the stresses in the top

and bottom steel can be calculated. By equilibrium

A9s� 9s þ As� s þ �� ib�h ¼ N ¼ 07:

A9s� 9s y9s þ As� s ys þ �� ib�hyi ¼ M8:

where � 9s is the stress in top steel, �s is the stress in bottom steel,

�i is the stress in the ith strip, y9s is the distance to the top steel

from whatever axis is chosen, ys is the distance to the bottom

steel from whatever axis is chosen and yi is the distance to the

centre of the ith strip from whatever axis is chosen.

As no external axial force is applied, the sum of the normal

forces of all strips and reinforcement N, which is the left-hand

side of Equation 7, equals zero. At this stage, the tensile strength

of concrete is assumed to be zero and tension stiffening is

ignored. So, the concrete stress will be zero in any strip wholly

within the tension zone. The tensile strength of the concrete may

be considered in the future when necessary.

Using the initial estimates for curvature and neutral axis position,

if either or both Equations 7 or 8 are untrue, then the values of x

and/or 1/r are adjusted and equilibrium is checked again. When

both equations are satisfied, the correct values of x and 1/r have

been found and the analysis is complete. To obtain the correct

answer in relatively few cycles, the relationship between the two

incremental variables (i.e. changes in curvature and neutral axis

position) and the corresponding increase in bending moment and

axial force can be manually derived. Conversely, using this

relationship, by setting the increase in force and moment to the

necessary values to meet the equilibrium condition of Equations

7 and 8, the appropriate adjustment of x and 1/r can be obtained.

2.2 Effects of shrinkage and creep

In Equations 7 and 8, the effects of shrinkage and creep are

incorporated when the stress of the strips is calculated from the

strain. Creep and shrinkage are treated as independent phenomena

with no interaction; this is a normal assumption in design

calculations, but by no means necessarily true.

2.2.1 Effect of shrinkage

By considering the effect of shrinkage, the stress–strain relation-

ship of concrete becomes

� c ¼ (�tot � �sh)Ec9:

where �c is the stress in concrete, �tot is the total strain of

concrete, �sh is the shrinkage of concrete and Ec is the elastic

modulus of the concrete at the time of estimation.

The shrinkage influences not only the stress–strain relationship

but also the neutral axis position of the section as schematically

shown in Figure 2. The shrinking of concrete results in the

neutral axis position moving downwards.

b

h

A �s

d�

d

As

x

Curvature, 1/r

Neutral axis

y

Figure 1. Sketch of cross-section and strain

h

b

As

xInitial neutral
axis position

A �s

εcs

N
after shrinkage

eutral axis

Figure 2. Effect of shrinkage on neutral axis position
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2.2.2 Effect of creep

In the stress–strain relationship, the effect of creep can be

considered by incorporating a creep coefficient �

� c ¼ Ec�tot
1

1þ �

� �

10:

where �tot is the total strain of the concrete.

For analysis of a section of a purely bending beam, however,

Equation 10 cannot be used directly because the stress within the

cross-section varies with time even though the bending moment

may be constant. An approximation is made to simplify the

analysis, as shown in Figure 3. As can be seen, the variation in

stress is gradual. However, in order to develop the analysis, it is

assumed that the change in stress occurs instantaneously and is

equivalent to a new stress (��i) being applied at the end of each

time step. In this way, the stresses are considered constant for

each time step, but new stresses are applied continuously.

Incorporating the assumption of linear creep, stress with con-

sideration of creep can be analysed.

Figure 4 illustrates an element close to the compression face and

hence all �� values are negative. Creep is assumed to occur only

due to the stress �0 from t0 to t1, and due to the stress �1 from t1

to t2 and so on. It is assumed that the creep from each increment

in stress can be superposed and thus deformations can be

assumed to develop.

In the sketch of Figure 4, the long-term increment in strain at

time t3 (A) is given by

A ¼
�(t0,t3)

� 0

Ec0

þ
�� 1

Ec1

þ
�(t1,t3)

�� 1

Ec1

þ
�� 2

Ec2

þ
�(t2,t3)

�� 2

Ec2

þ
�� 3

Ec311:

The total strain can now be expressed as

�3 ¼
(1þ �(t0,t3)

)� 0

Ec0

þ
(1þ �(t1,t3)

)�� 1

Ec1

þ
(1þ �(t2,t3)

)�� 2

Ec2

þ
�� 3

Ec3

þ �sh(ti ,t3)12:

where �sh(ti ,t3) is the shrinkage from the time of the start of drying

(ti) to t3:

Clearly, this form of calculation can be extended to any time tn,

even time step t0 immediately after the load is applied but when

no shrinkage or creep has taken place. To validate this approach,

the first step of the analysis immediately after loading was

performed and the output checked with that from Equation 6. It

was confirmed that the new method gave the same result as

Equation 6. This approach can also be applied to uncracked

sections; the only necessary change is that the stress of the strips

in the tension area is not taken as zero.

Based on the approach described above, a Matlab programme

was developed. Using the programme, the neutral axis position,

curvature of the cracked sections, and the stress and strain of the

concrete and reinforcement in any section can be determined.

The effect of shrinkage on beam curvatures can be investigated

by making a comparison between the analytical curvatures of two

beams with different shrinkage.

To perform the analysis, models for the variation in elastic

modulus, strength, creep coefficient and free shrinkage as func-

tions of time are required. These were obtained from the equa-

tions given in EC2 (BSI, 2004) (and cross-checked with

measured data recorded as part of this investigation). In the

shrinkage and creep models, the relative humidity and tempera-

ture were assumed to remain constant.

σ3

Time

Stress
True behaviour Assumed behaviour

t0 t1 t2 t3

δσ1 δσ2

σ2

σ1

σ0

δσ3

Figure 3. Approximation of stress behaviour

φ σ( 0, 1) 0 c0t   t /E δσ1 c1/E

δσ2 c2/E

σ0 /Ec0

Time

Strain

A

t0 t1 t2 t3

Figure 4. Sketch of superposition of creep
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3. Verification of code-predicted cracked
section shrinkage curvatures

Consider a cracked section, 300 mm wide and 150 mm deep,

subjected to a pure bending moment 12.53 103 kN m. The

section is reinforced with 3T16 bottom bars and 2T10 top bars.

The clear cover depth (reinforcement surface to concrete surface)

is 30 mm. The compressive strength of the concrete is 54 MPa at

28 days. The strength, shrinkage and creep were determined using

the relevant models given in EC2 as functions of time. Figure 5

shows two shrinkage curves (high shrinkage and low shrinkage)

generated using the shrinkage model in EC2 with different

parameters, which will be used as input for the model analysis.

The relative humidity and temperature are assumed to be constant

at 60% and 218C respectively over the duration considered.

3.1 Shrinkage curvature

Figure 6 shows the analysis results for the curvatures of sections

with high and low shrinkage. The curvatures of both sections

increase with time due to the shrinkage and creep of concrete.

However, the curvature of the high-shrinkage section grows more

quickly than that of the low-shrinkage section; this is purely due

to the shrinkage because all other inputs, including creep, for the

two sections are the same. The difference in curvature between

the two curves is thus the shrinkage curvature, and is plotted in

Figure 7(a) along with shrinkage curvatures from the BS 8110

model and the models of Hobbs (1979) and Ghali and Favre

(1986) for cracked sections.

In Figure 7(a), the input in creating the shrinkage curvatures from

the models of BS 8110, Hobbs, and Ghali and Favre is ‘clear

shrinkage’, which is the high shrinkage minus the low shrinkage

in Figure 5. It can be seen that the shrinkage curvature from the

Hobbs model is about three times that from the other models.

The curvature of the Ghali and Favre model is about 15% higher

than the proposed (‘New’) and BS 8110 models, which is because

of the assumption of a fixed neutral axis position in Ghali and

Favre’s model. The much higher prediction of the Hobbs model is
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Figure 5. Shrinkage of two concretes
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because the effective modulus is adopted in the calculation of the

second moment of the section whereas, in the other models, the

effective modulus is used to determine the area of transformed

section only. The prediction of shrinkage curvature using the

EC2/BS 8110 model (Equation 1) is almost the same as the new

method proposed in this paper. In Equation 1, the effect of

applying the shrinkage later is to reduce the modular ratio (Æe),

reduce I and slightly increase S. These changes almost exactly

balance each other with the result that the shrinkage curvature is

accidentally unaffected.

3.2 Neutral axis position

Using the iteration method proposed in Section 2, the neutral axis

position of the cracked section against time was determined

(Figure 7(b)). The shrinkage input for the neutral axis depth

calculation is that in Figure 5. As can be seen from Figure 7(b),

for a 150 mm high, 300 mm wide section under bending moment

load applied at age 3 days, the neutral axis position of the section

falls from 106.5 mm immediately after load application to

97.0 mm (for high shrinkage) or 90.5 mm (for low shrinkage) at

age 180 days. This change can significantly influence the proper-

ties of the section, especially its moment of inertia, which

obviously has an influence on the curvature of the section under

bending.

4. Experimental validation
The proposed shrinkage curvature approach was validated via

experiments. Experimentally, the major difficulty has always been

separating the influences of shrinkage and creep on curvature. To

overcome this problem, two concrete mixes were designed – one

with low shrinkage and one with high shrinkage – but with

similar creep. Two beams were then cast with each mix and

loaded to produce stabilised crack patterns. Any difference in

curvature between the two beams is, therefore, due to shrinkage.

Once this was achieved, comparisons were made between the

experimental tests and the predictions using the proposed model-

ling approach.

4.1 Details of experimental tests

The dimension and reinforcement details of the beams are given

in Figure 8(a); the beams were 150 mm deep, 300 mm wide and

4200 mm long. The cover depth (from concrete surface to bar

surface) was 30 mm. No link reinforcement was placed in the

constant-moment zone. The beam pair is denoted B2.

After casting, the beams were cured in moulds covered with wet

burlap and plastic sheeting until they were loaded at an age of 3

days. Companion prisms to obtain creep and free shrinkage data

for the mixes and cubes for compressive strength tests were cast

4200
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Figure 8. (a) Details of reinforcement of concrete beams

(dimensions in mm). (b) Shrinkage plotted against time. (c) Creep

coefficient plotted against time
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from the mixes used for the beams. They were also cured in the

same way. Figures 8(b) and 8(c) respectively illustrate the shrink-

age and creep coefficients of the high- and low-shrinkage prism

mixes. Also shown in the figures are the long-term movement

predictions using MC90 (FIB, 1993).

Three days after casting, the beams were demoulded and placed

in the test rigs. A four-point bending load was applied to the

beams. The span of the beams was 4000 mm and the two loading

points were 1500 mm apart. At each loading point, a load of

18 kN was applied by a hydraulic jack. A stabilised crack pattern

was achieved (confirmed by analytical checks). The load was

monitored and adjusted frequently to ensure that it remained

constant. The ambient temperature in the laboratory was in the

range 20–258C and the relative humidity was 40–60%.

In order to monitor the curvature and the depth of neutral axis

with time, Demec gauges (200 mm) were used to measure the

horizontal strain on the side of the beam in the region of the

constant-moment zone. The strain was measured at four different

depths, two of which corresponded to the position of the main

tensile and compressive reinforcement; the other two were

equally spaced between the two lines corresponding to the

reinforcement position. Readings were taken twice daily for the

first 2 days. The frequency of readings was then reduced to once

per day, then once every 2 days and finally once every 4 days

after the age of 5 days, 3 weeks and 6 weeks respectively.

Although the stress in the tension concrete is not considered for a

fully cracked beam, shrinkage and creep of the concrete in

tension do occur (as shown by the Demec measurements in the

tension zone), which may slightly influence the stress in concrete.

Furthermore, taking an average of the Demec strains for the four

Demec lines on the side of the beams and checking the strains

down through the depth, it was found that the plane section

assumption is correct.

From the test readings, the total curvature and neutral axis depths

of the two beams could be determined. The shrinkage curvature,

which is (as explained earlier) the difference in curvature between

the two beams, could therefore be calculated. The shrinkage

curvature from the tests represents the mean curvature value over

the constant-moment portion of the beams. However, the curva-

ture predicted by the theoretical model is the curvature of a

section either at a crack or mid-way between any two adjacent

cracks (uncracked section). What the new theoretical approach

does not do (as is the case with any of the other current

prediction methods) is predict the curvature of a section near a

crack (i.e. a section in the region between the crack and half-way

between two adjacent cracks). In this region, although the section

is uncracked, its behaviour will be influenced by the crack. To

obtain the curvature in the region where a section is influenced

by the crack, FE analysis was performed. The refinement of the

new theoretical approach using the FE analysis is described in the

next section – the curvature obtained using the FE analysis

represents the mean curvature for the constant-moment zone.

4.2 Mean shrinkage curvature using FE analysis

For the fully cracked beam under constant bending, an FE model

can be developed to represent that part of the beam from the

crack to mid-way between two adjacent cracks. In theory, this

represents all parts of the beam within the constant-moment zone.

According to research by Beeby and Scott (2004), it is reasonable

to assume that the average crack spacing of a fully cracked beam

is two-thirds of the theoretical crack spacing 2S0, where

S0 ¼ 3.0C (Beeby and Scott, 2004), C being the cover depth of

the reinforcement. The cover depth in the model and the tests

was 30 mm (or 38 mm from the centroid of the section of rebar

to the concrete surface) and hence the average crack spacing is

120 mm or 152 mm. So, half the crack spacing is somewhere

between 60 and 76 mm. Therefore, a 70 mm wide portion of the

beam was adopted in the FE analysis, as shown in Figure 9.

In the FE analysis, one vertical face corresponds to the mid-point

section between two adjacent cracks; the concrete between two

adjacent cracks is symmetrical about this vertical face and is,

therefore, considered as ‘fixed’ in the model. The other vertical

face corresponds to the section at a crack; this vertical face is

unconstrained and it is this face to which the loads are applied

(Figure 10). The stresses applied to the reinforcement bars (� 9s
and �s) and to the concrete (�c) at the unconstrained face were

obtained from the analytical results for a cracked section,

obtained from the theoretical analysis described above.

The materials defined in the FE analysis are shown in Figure 11.

The properties of the concrete and the reinforcement were

obtained experimentally or as quoted in the codes

j 28-day compressive strength of the concrete (‘high-shrinkage’

mix) was 56.7 MPa

j 28-day modulus of elasticity of the concrete was 36.33 GPa

j Poisson’s ratio of the concrete was 0.2

Figure 9. Specimen for FE analysis (300 mm width, 150 mm

height, 70 mm length)
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j elastic modulus of the steel reinforcement was 210 GPa

j Poisson’s ratio of steel was assumed to be 0.3.

To account for secondary (internal) cracks generated in the region

around the tensile reinforcement of a crack, a reduced elastic

concrete modulus was used for an area 12 of the concrete 12 mm

thick around the reinforcement. This approach has been shown to

be representative (Forth and Beeby, 2013). The elastic modulus

of this ‘special’ region of concrete is 14% of the normal concrete.

The static elastic FE analysis was performed on a model

representing beam B2 at an age of 90 days. In the analysis, the

concrete properties adopted (e.g. strength, modulus of elasticity)

and the loads applied were taken from the theoretical analysis

described in previous sections. The FE analysis determines the

deformation and strain of the specimen. Figure 12 shows the

deformation in the Z-direction where it can be seen that the top

region is being compressed while the bottom is in tension.

Figure 13 further clarifies the deformation in the Z-direction,

illustrating the transition of curvature from the uncracked section

(distance ¼ 0 mm) to the cracked section (distance ¼ 70 mm).

The curvature plotted in Figure 13 is the resultant shrinkage

curvature (i.e. with the elastic curvature removed). The distribu-

tion of curvature over the length increases with distance from the

uncracked section and the maximum value (occurring near the

cracked section) is close to the value for the cracked section

obtained from the section analysis. Also shown in Figure 13 is a

σ �s

σs

σc

Fixed
surface

70 mm 0

Z

Y

Figure 10. Loads and constraints

Y

0

Z

Concrete

Steel

Modulus reduced concrete (MRDCON)

Figure 11. Materials and mesh
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Figure 12. Deformation in the Z-direction
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Figure 13. Analysed curvature distribution and mean curvature

from tests on B2 at age 90 days

9

Structures and Buildings Verification of cracked section shrinkage

curvature models

Forth, Mu, Scott, Jones and Beeby



line that represents the experimentally measured mean curvature

of beam B2. This line almost equals the average of the curvatures

predicted by the FE model from the uncracked to the cracked

position (i.e. area A almost equals area B). From the strain

obtained in the FE analysis, the longitudinal curvature of the

beam portion can be manually derived. From Figure 13, it is

expected that the combined new theoretical and FE models will

predict the mean curvature of the experimental beam reasonably

well.

4.3 Mean shrinkage curvature

The mean curvature at 90 days calculated for beam B2 using the

FE analysis is plotted in Figure 14 along with the curvatures

calculated at 30 and 60 days. As can be seen from the figure, the

predicted curvature is slightly below that of the experimentally

derived curvature, although the trend with time is similar. The

shrinkage curvatures of a cracked and uncracked section of the

beam as predicted by the proposed theoretical approach are also

shown in Figure 14. It can be seen that, in relation to the

uncracked and uncracked boundaries, the mean shrinkage curva-

ture is located closer to the uncracked boundary. B2 was loaded

to achieve a stabilised crack pattern in the constant-moment zone.

In practice, this condition is rarely likely to occur and therefore,

for more practical conditions (not fully cracked), the mean

curvature is likely to be closer to the uncracked boundary.

Another identical beam pair (B4) was also tested and a similar

analysis was performed. A comparison of the measured and

predicted mean shrinkage curvatures for this beam is presented in

Figure 15. Again, it can be seen that the experimental curvatures

were predicted reasonably well. The consistency and accuracy of

the measured and predicted shrinkage curvatures suggest that this

modelling approach could be used to predict the shrinkage of

cracked sections of concrete beams. However, it is necessary to

confirm the influence of section size and steel ratio (the beams

tested here were designed with a 1.34% reinforcement ratio).

5. Verification of code-predicted mean
shrinkage curvatures

Figure 16 compares the shrinkage curvatures derived from codes

BS 8110 and EC2 with the theoretical approach proposed in this

paper for a cracked section. As explained earlier, the curvature

determined according to the code models is exactly the same as

that calculated for the new model proposed in this paper for a

cracked section. The curvature of an uncracked beam, as

predicted by the codes is also provided in Figure 16.

Figure 16 also shows the mean curvature (i.e. combination of the

curvatures for cracked and uncracked sections) using Equations 2

and 3. In EC2, it is not clearly explained whether the distribution

coefficient � should be fixed or should vary with time as �s
changes due to time-dependent behaviour. Figure 16 therefore

presents the EC2 predicted mean curvature with fixed � (EC2-

mean-fixed) and with variable � (EC2-mean-unfixed). Since a

variable � is considered, reflecting the time-dependent effects,

Equation 2 and 3 are also plotted taking � ¼ 1.0 (so that the
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time-dependent effects are not considered twice). From Figure 16

it can be seen that, for the slab-type B2, EC2-mean-unfixed � and

� ¼ 1 predicts the curvature reasonably well, particularly at early

ages (up to 60 days). However, assuming fixed � and � ¼ 0.5 (for

sustained loads), the EC2 equations significantly overestimate the

curvature of a cracked beam. Furthermore, beams that are not

fully cracked (i.e. those normally found in practice) will possess

curvatures that tend towards the uncracked section boundary and,

as such, the predictions offered by the codes will be even more

conservative.

6. Conclusion
j The analytical approach proposed to calculate the curvature

of cracked sections of beams subjected to bending has the

following advantages over the models presented in BS 8110

(BSI, 1985) and EC2 (BSI, 2004): the effect of shrinkage and

creep are taken into account and approximating using a fixed

neutral axis position is unnecessary.

j The proposed model verifies the current code predictions.

However, it was found that although the shrinkage curvature

predicted by the code models for a cracked section is the

same as that obtained with the new approach, this result is

fortuitous. This is because applying the shrinkage later

reduces the modular ratio and hence reduces I but slightly

increases S; these changes almost exactly balance each other.

j The proposed approach coupled with FE analysis accurately

predicted the mean shrinkage curvature of 150 mm deep fully

cracked beams with a 1.34% steel ratio. Further

investigations are required to confirm that this approach is

suitable for deeper beams with a range of steel reinforcement

ratios.

j The experimental methodology appears to have been

successful in isolating shrinkage curvatures.

j The mean shrinkage curvature of fully cracked beams appears

to be overestimated by the models presented in BS 8110 and

EC2 (Equations 1 and 2). However, for this investigation, by

considering varying � and taking � ¼ 1.0 (in an attempt not

to consider the time-dependent effects twice), the curvature is

predicted reasonably well, particularly at early ages.
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