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1 INTRODUCTION 

It is well known that smart fluids (electrorheological (ER) and magnetorheological (MR)) 

provide an effective means to implement semi-active vibration control.  This is achieved 

through alteration of the fluid’s yield stress on the application of an electric or magnetic field.  

MR based devices have received particular commercial success for over a decade, and recent 

examples include the suspension systems featured on the 2007 Ferrari 599 GTB Fiorano 

(Delphi Press Release, 2006b), and the 2007 Audi TT (Delphi Press Release, 2006a).  One 

aspect of the design that has received relatively little attention is related to the effects of 

temperature.  Changes in temperature will alter the smart fluid’s properties, but control 

systems are often designed without due consideration of this fact.  The highly non-linear 

behaviour of smart fluid dampers has also meant that there is still little consensus on how to 

best perform control.  The present study aims to address these issues.  

Smart fluid dampers exhibit temperature changes due to the heating associated with energy 

dissipation.  This effect will be particularly significant in a continuously excited system such 

as a vehicle suspension.  Choi, et al. (2005) noted that in a passenger vehicle, ER dampers 

could reach temperatures of up to 100°C.  Harsh operating environments will also have an 

influence:  In aircraft or building applications there will be large temperature variations.  

Previous work has to a certain degree illustrated the effects of temperature on smart fluid 

dampers.  Gordaninejad and Breese (1999) presented experimental results on different sized 

MR dampers, and illustrated significant reductions in peak force with rising temperature.  

This was attributed to the reduced viscosity of the fluid, although the authors did not consider 

control system effects.  The work was later extended to show how fins can be used to 

augment heat transfer and minimise the rise in temperature (Dogruoz et al., 2003).  Choi, et 

al. (2005) presented ER fluid yield stress data from an electro-viscometer, and demonstrated 



 

an increase with rising temperature.  The data was used to construct a quasi-steady 

temperature dependant model of an ER damper, and subsequently included within a quarter 

car simulation.  Sliding mode control was shown to be effective at two temperatures.    Liu, et 

al. (2003) developed a temperature dependant skyhook controller for an MR vehicle 

suspension.  Using a quasi-steady damper model, simulations were performed to show how 

temperature feedback can improve performance by adjusting the controller for variations in 

viscosity. 

In light of the above it is clear there are some limitations in the work related to temperature 

effects in smart fluid dampers.  More specifically: 

• Previous work has only considered the variation of a single fluid property with 

temperature e.g. viscosity or yield stress.  In practice, all of the fluid properties could be 

affected and impact on control system performance.   

• Investigations are usually based on quasi-steady damper models.  Temperature 

dependant dynamic affects, e.g. fluid compressibility, are likely to be important.   

• Control studies have been based on numerical modelling, and have not been validated 

experimentally.  Furthermore, different control strategies have not been compared.       

The present contribution aims to address the above issues through a numerical and 

experimental investigation of an MR vibration isolator subject to temperature variation.  The 

paper is organised as follows.  First, an experimental facility used to perform MR damper 

tests at different temperatures is described.  Experimental data is then used to identify the MR 

damper’s fluid properties as a function of temperature.  Next, a temperature dependant MR 

damper model that accounts for dynamic effects is developed and experimentally validated.  

The final part of the paper is devoted to the control system investigation.  A single-degree-of-



 

freedom (SDOF) mass isolator is used as a case study and experiments are performed using 

the hardware-in-the-loop-simulation (HILS) method.  Various control strategies are 

investigated in order to assess their relative performance and robustness against temperature 

uncertainty.  Using the temperature dependant MR damper model, simulations are also 

performed to help explain the observed behaviour.   

2 DESCRIPTION OF THE DAMPER TEST FACILITY 

A photograph of the experimental setup is shown in Figure 1.  This comprised an Instron 

servo-hydraulic actuator (Instron Structural Testing Systems, 2007), which was used to excite 

Lord Corporation’s RD-1005 MR damper (Lord Corporation, 2007).  The actuator was rated 

at ±25kN, ±50mm and ±1ms-1, and included a built-in inductive displacement transducer and 

dynamic load cell.  The MR damper is shown schematically in Figure 2.  Here, fluid flows 

through an annular orifice, and the magnetic field is generated via a coil wrapped around a 

steel bobbin.  An accumulator is also included to accommodate for the change in working 

volume as the piston rod displaces.  Current was supplied to the damper using a Kepco BOP 

amplifier (Kepco Inc., 2007), which was used in current control mode.  This ensured that the 

magnetic field was independent of temperature, despite changes in the coil’s resistance.  To 

cool the damper after testing at high temperatures, copper tubing was wrapped around the 

body and fed with cold water (see Figure 1).  This also dictated the minimum temperature for 

the damper tests (≈11°C).  The temperature was measured using a thermocouple positioned at 

the centre of the damper’s body.  The thermocouple was insulated from the surrounding 

copper tubing in order to prevent inaccurate temperature measurements.   To increase the MR 

damper’s temperature, successive 5mm-4Hz sine wave cycles were applied and the current 

was set to 0.25A.  Once the desired temperature was reached, the data from a particular test 

was acquired.  The largest temperature investigated in this study was 75°C, and was dictated 



 

by the maximum safe operating value for the device.  Data acquisition was achieved using a 

National Instruments PCI-MIO-16XE-10 card. 

3 TEMPERATURE SENSITIVE MR DAMPER BEHAVIOUR AND 

MODELLING 

Some typical experimental force/velocity and force/displacement responses for temperatures 

in the range of 14-71°C are shown in Figure 3.  The data corresponds to a 10mm, 8Hz 

sinusoidal excitation and the current was set to 1A.  Clearly, there is a significant change in 

the MR damper’s behaviour, and this could have major implications on the performance of a 

control system.   

A numerical model can help us better understand the behaviour shown in Figure 3.  One 

modelling format, which has been developed and investigated extensively by the present 

authors (Batterbee and Sims, 2005, Sims et al., 2004), is illustrated in Figure 4.  Here, a bi-

viscous damper is connected in series with a mass and a linear spring.  This is a reasonably 

straightforward model in comparison to other frequently adopted modelling formats, for 

example Bouc-Wen (Spencer Jr. et al., 1997).  However, the model can be strongly linked to 

the constitutive behaviour of the device, which makes it highly suitable for understanding the 

effects of temperature.  For example, the valve flow (which is assumed to be quasi-steady) is 

represented by the non-linear function χ and is a function of the quasi-steady velocity 1x&  and 

the control signal I to the smart damper.  This non-linear function contains information about 

the MR damper’s yield force Fy and the fluid’s viscosity, which has two parts – a linear pre-

yield viscosity Cpre and a linear post-yield viscosity Cpost.  The damper stiffness k accounts for 

fluid and accumulator compressibility and this dictates the size of the hysteresis loop in the 

force/velocity response.  This damper stiffness term will be influenced by the fluid’s bulk 

modulus, the volume of entrained air and the compressibility of the gas accumulator.  The 



 

lumped mass m1 represents fluid inertia and gives rise to the oscillations when the piston 

velocity changes direction.  This maintained a constant value equal to 2kg, which was shown 

to correlate well in previous work (Sims et al., 2004).  Finally, the co-ordinate x2 corresponds 

to the displacement of the damper piston.   

With the help of this model description, the three key effects of rising temperature on the 

response shown in Figure 3 can be described as follows: 

• There is a reduction in the yield force Fy, which corresponds to a reduction in the MR 

fluid’s yield stress.   

• The slope of the post-yield force/velocity response decreases (see Figure 3(a)), which 

is associated with a reduction in the fluid’s viscosity.   

• The size of the hysteresis loop in the force/velocity response reduces.  This is 

associated with a change in the damper’s stiffness caused by the rising accumulator 

pressure.  The effect can also be observed in the force/displacement response when the 

damper changes direction.  As shown in Figure 3(b), the slope of the 

force/displacement curve increases with temperature in this region.   

Through more careful observation of Figure 3, it can also be seen that the offset in the 

response slightly increases with temperature due to the rising gas accumulator pressure.  This 

is best observed in Figure 3(a) by noting that the difference in the force at minimum velocity 

is greater than that at maximum velocity.  The model given in Figure 4 does not account for 

this static gas spring force.  Nonetheless, it has generally been found that this accumulator 

offset has an insignificant effect on the performance of MR suspension systems.  This is 

because the parallel stiffness of the accumulator is usually insignificant in comparison to the 

main spring stiffness of the suspension.  In the present study, the validity of the latter 



 

statement holds and thus the effect of the accumulator offset was neglected in the numerical 

modelling in this paper.   

The next stage is to identify the model’s parameters and to establish their relationship as a 

function of temperature.  Sims et al. (2004) described a formal approach for identifying the 

parameters of the model shown in Figure 4.  A more straightforward approach was adopted in 

the present study, and for each stage in the identification process, the most appropriate 

excitation condition was chosen for the parameter under consideration.  It will later be 

important to validate the model against a range of excitation conditions.  For simplification 

purposes, the pre-yield viscosity Cpre was assumed to be independent of temperature.  This 

maintained a constant value equal to 100kNsm-1, which was found to be accurate in previous 

work (Sims et al., 2004).  The post-yield viscosity Cpost was determined as the slope of the 

MR damper’s force/velocity response after yield.  Only decelerating data was used in order to 

remove the effects of fluid inertia, and a 10mm-8Hz sine wave was chosen as the input 

excitation to identify the variable.  This velocity amplitude (0.5ms-1) approximately 

corresponded to the range observed in the controlled suspension system investigations 

(Section 4).  Furthermore, the relatively high velocity excitation maximised the number of 

data points in the post-yield region thus improving the accuracy of the identification.  The 

yield force Fy was calculated by taking the intercept of a straight line fit to the decelerating 

post-yield force/velocity data.  The accumulator offset in the force/velocity data was also 

removed such that the resulting yield forces in the compression and extension phases were 

approximately equal.  As yield force is a parameter defined at zero velocity, a lower velocity 

5mm-4Hz input excitation was used for the identification.  The chosen input also minimised 

the dynamic effects in the yield region (i.e. at low velocities), thus improving the validity of 

the calculation.  Finally, the damper stiffness term k was identified by fitting a straight line to 

the 10mm-8Hz force/displacement data in the region where the piston velocity changes 



 

direction.  Higher current data was used as this amplifies the compressibility effect, and 

provides a better correlation with the experimental data.   

The identified parameters are shown as a function of temperature in Figure 5 for input 

currents between 0-1A.  Figure 5(a) shows the post-yield viscosity data and illustrates a 

significant reduction with increasing temperature.  For example, at 0.8A there is a 34% 

decrease in post-yield viscosity between 15°C and 75°C.  For a given temperature, also note 

how viscosity initially falls and then rises with increasing current.  The yield force data is 

shown in Figure 5(b).  It can be observed that the reduction in yield force with temperature 

becomes increasingly significant as the current magnitude is raised.  Again taking 0.8A as an 

example, there is a 22% reduction in yield force between 15°C and 75°C.  It is also worth 

drawing attention to the yield force that occurs in the zero amps case.  This could be due to a 

combination of seal friction forces and residual magnetism in the device.  Furthermore, this 

zero amp yield force increases slightly with temperature.  This is most likely due to an 

increase in seal friction caused by a change in seal geometry with the rising accumulator 

pressure.   

Finally, the identified stiffness parameter k is presented in Figure 5(c), where approximately a 

300% increase can be observed over the temperature range investigated.  As mentioned 

earlier, this stiffness increase is associated with the pressure change of both the gas 

accumulator and the entrained air in the fluid.  Furthermore, damper stiffness appears to be 

independent of current magnitude, which can be explained as follows.  The volume of fluid 

within the MR valve is relatively small and thus fluid compressibility effects (in the valve) are 

negligible (Sims et al., 2004).  Compressibility effects mainly occur in the large chambers 

either side of the MR valve (particularly on the gas accumulator side), which are not 

influenced by the magnetic field.  It follows that damper stiffness will be independent of 



 

current.  In Figure 5(c), this is illustrated using a wide range of current magnitudes 0.8A, 1A, 

and 2A.  As stated previously, only higher current data was used because it maximised 

correlation with the empirical fitting curve.  It is also worth drawing attention to the apparent 

fluctuations of damper stiffness with temperature.  These fluctuations are attributed to errors 

in the identification methodology.  For example, the stiffness calculation was found to be 

fairly sensitive to the data points used in the identification.  The use of a more formal 

identification approach, such as that described by Sims, et al. (2004), may provide better 

results. 

The above data was used to construct the numerical model shown in Figure 4.  The post-yield 

viscosity and yield force were formulated as three-dimensional lookup tables, with current 

and temperature as the inputs.  The tables were constructed using straight line fits to the data 

(see Table 1), which correlates well with the trends observed in Figure 5.  As damper stiffness 

was largely independent of current, the one ampere data shown in Figure 5(c) was used to 

obtain the linear fit.   

To validate the model, a range of simulations with different excitation conditions were 

performed and compared to equivalent experimental data.  A series of results are presented in 

Figure 6.  For simplicity, temperatures are quoted in terms of an average value Tavg over the 

range of current amplitudes.  In practice the measured temperature varied around the nominal 

value by a few degrees.  Figure 6(a) shows the results for a 10mm-8Hz sine wave and Tavg = 

15°C.  Good correlation is achieved between model and experiment.  Figure 6(b) presents 

results for the same mechanical excitation but Tavg = 75°C.  Here, good agreement is observed 

in terms of damper stiffness and viscosity, but the correlation in yield force is less accurate, 

particularly for higher current magnitudes.   The results for a 5mm-4Hz excitation, and for 



 

Tavg = 15°C and 75°C are shown in Figures 6(c) and (d).  In both cases, the correlation is good 

in terms of yield force and damper stiffness, but poorer in terms of the post-yield viscosity.   

The less accurate predictions for Fy in Figure 6(b), and Cpost in Figures 6(c) and 6(d) are due 

to complex frequency dependant behaviour that the present MR damper model does not 

account for.  Consequently, the identification of Cpost using the 10mm-8Hz input (as described 

above) has resulted in a good Cpost prediction at 10mm-8Hz (Figures 6(a) and 6(b)), but a less 

accurate Cpost prediction for the lower frequency 5mm-4Hz input (Figures 6(c) and 6(d)).  

Similarly, the yield force predictions are particularly good for the 5mm-4Hz excitation case as 

used in the identification.  Despite this frequency dependant behaviour, the model was still 

considered to be of sufficient accuracy to gain some insight into the effects of temperature 

uncertainty on the performance of MR control systems.   

4 SDOF CONTROL SYSTEM CASE STUDY 

In this section, experiments are performed to investigate the effects of temperature on a 

single-degree-of-freedom (SDOF) mass isolator incorporating MR damping.  Various control 

strategies are investigated in order to assess their relative robustness against temperature 

variation.  Furthermore, the temperature dependant model developed in Section 3 is used to 

perform simulations in order to help explain the observed behaviour.   

This section begins with a description of experimental set-up.  The mass isolation system and 

control strategies are then described before proceeding to the key experimental and numerical 

results.     

4.1 The Experimental Setup 

The experiments were performed using the hardware-in-the-loop-simulation (HILS) method.  

This involves testing the physical MR damper, whilst the remaining suspension system 



 

components are modelled in real-time.  The HILS test facility is shown schematically in 

Figure 7, and the various hardware components correspond to those shown previously in 

Figure 1.  Here, a host PC running xPC target is used to both implement the damper control 

strategies and model the non-physical system parameters (the isolated mass and suspension 

stiffness).  The model is then downloaded onto a target PC, which performs the real-time 

simulation by communicating to and from the hardware via a National Instruments data 

acquisition card.  Essentially, the desired damper displacement calculated by the simulation is 

sent to the Instron controller, whilst a load cell provides the force data required to solve the 

equations of motion.  It should be noted that due to the dynamics of the servo-hydraulic 

actuator, the actual damper displacement will differ in phase and magnitude to the desired 

value.  A final output is sent to the Kepco BOP amplifier, which provided high bandwidth 

dynamic current control. 

4.2 The SDOF Mass Isolation System 

The configuration of the mass isolator is shown in Figure 8(a) and the parameters were 

chosen to give a natural frequency equal to 5Hz, and an off-state damping ratio approximately 

equal to 0.2.  The base was excited by a broadband displacement input, generated by passing 

white noise through a low-pass Butterworth filter, designed with cut-off frequency at 25Hz.  

Furthermore, the input signal was limited to a duration of five seconds in order to prevent 

significant variation in temperature during a single test.  The skyhook damping principle, 

which is illustrated in Figure 8(b), was used to develop the control strategies.  Here, the 

damping force is directly proportional to the absolute velocity of the vibrating mass, that is: 

 msky xDF &=  (1) 

where Fsky is the damping force, D is the skyhook damping rate and mx&  is the velocity of the 

mass.  This in fact represents the optimal control force for an SDOF system (Karnopp et al., 



 

1974), but it can only be fully realised using an active control system.   For an MR damper, 

the control current should be switched off when an energy input is required thus minimising 

the energy dissipated.  This condition was common to all of the controllers in this study and is 

governed by the following equation: 

 I = 0A when 0)( <− bmm xxx &&&  (2) 

where I is the control current and bx&  is the velocity of the base input.   

Numerous strategies to control the MR damper when energy dissipation is required can be 

found in the literature.  To name just a few, methods include inverse damper functions using 

neural networks (Xia, 2003) and polynomials (Du et al., 2005), feedback controllers such as 

PID (Lee and Choi, 2000) and proportional control (Sims et al., 1999), sliding mode control 

(Choi et al., 2003, Choi et al., 2005), as well as more straightforward techniques such as on-

off control (Simon and Ahmadian, 2001) and gain scheduling (Choi et al., 2003, Yoshida and 

Dyke, 2004).  In general, there is a lack of consensus on to how to best perform control, and 

few investigations attempt to compare methods (Batterbee and Sims, 2005).  The present 

study helps to rectify this issue by comparing four commonly used strategies which are as 

follows.   

• Proportional, Integral, Derivative Control (PID Control) 

The PID controller dictates the input to the MR damper as follows: 

 eKeKeKI dip &++= ∫  (3) 

where e is the error or the difference between the desired force Fd (given by Equation (1)) and 

the actual damping force F.  The proportional, integral and derivative gains are represented by 

Kp, Ki and Kd respectively, and were tuned experimentally using the well known Ziegler-



 

Nichols method (Ziegler and Nichols, 1942).  This tuning led to the values Kp = 5×10-4 AN-1, 

Ki
 = 0.2 AN-1s-1, and Kd = 3.13×10-7AsN-1.  Furthermore, to prevent integral wind-up when an 

energy input was required, the integral’s initial condition was reset when )( bmm xxx &&& − changed 

sign.  This prevented excessive currents being applied to the damper.   

• Proportional Control (P Control) 

This is a more straightforward form of feedback control where the input current to the MR 

damper is given by: 

 ( )GBFFI d −=  (4) 

where B is the feedback gain, and G is the feedforward gain.  This control strategy, which is 

often referred to as feedback linearisation, was pioneered for use with smart fluid dampers by 

the present authors some years ago (Sims et al., 1999).  Recent numerical (Batterbee and 

Sims, 2005) and experimental (Batterbee and Sims, 2007) studies have shown the technique 

to be particularly robust against changes in the severity of broadband excitation inputs, but the 

controller’s robustness to temperature variation remains to be seen.  The values for the 

feedforward and feedback gain were optimised experimentally as B = 0.6, and G=0.0012AN-1.  

Details regarding the choice of controller gain can be found in references (Sims et al., 2000) 

and (Sims, 2006).   

• Gain Scheduling Control (GS Control) 

In gain scheduling control, an approximate relationship between the damping force and 

control current is assumed.  This avoids the need to measure damping force but the control 

input is not a function of the damper velocity or the damper’s dynamics.  Consequently, the 

controller can underestimate or overestimate the desired damping force.   



 

In this study, the force/current relationship was derived using the quasi-steady yield force and 

post-yield viscosity parameters that were identified at 15°C (see Section 3).  For each current 

magnitude, the resulting quasi-steady damping force Fq was calculated as: 

 ppostyq vICIFIF )()()( +=   (5) 

where vp is the piston velocity, which was chosen as 0.25ms-1.  This approximately 

corresponds to half the maximum value observed in the SDOF simulations, and ensured that 

the controller would equally underestimate or overestimate the force if the velocity was not 

equal to this value.  The resulting function was then used as a lookup table in the controller 

with Equation (1) as the input and current as the output.     

• On/Off Control (OO Control) 

For on/off control, the current to the MR damper is switched to a pre-determined and constant 

value Imax when the skyhook control law requires energy dissipation, that is: 

 I = Imax when 0)( ≥− bmm xxx &&&  (6) 

This does not require force feedback and represents the most straightforward controller 

investigated in this study,   

In the pure simulation, the dynamics of the current supply and MR fluid rheology were 

modelled using a first order lag term with a 3ms time constant.  This value was found to be 

accurate in previous work (Sims et al., 2004).  In the HILS experiments, there are 

complications due to the dynamics of the hydraulic actuator.  In particular, the phase delay 

between the desired and actual displacement should be compensated for so that the controller 

does not pre-empt motion.  Further details regarding this issue can be found in references 

(Batterbee et al., 2005) and (Batterbee and Sims, 2007).  



 

4.3 Results 

Two important performance indicators for an SDOF vibration system are the acceleration of 

the mass mx&& , and the suspension working space, xm-xb.  An effective means to represent these 

data is through the use of a conflict diagram.  Here, the RMS value of one performance 

indicator is plotted against the other as a function of the input variable(s).  This enables the 

inevitable trade-offs in performance to be readily identified.  Figure 9 shows a full set of 

conflict curves for the HILS experiment with proportional skyhook control.  The variable 

parameters are temperature (varied between 15°C and 75°C) and the skyhook set-point gain D 

(varied between 1kNsm-1 and 3.5kNsm-1).  The indicated temperature corresponds to the 

average value over the range of set-point gains.  In practice the true temperature varied by a 

few degrees around this average value.  With increasing set-point gain, it can be observed 

how the acceleration performance must be traded-off with the suspension working space.  

Moreover, increasing temperature has the tendency to enhance the RMS acceleration, whilst 

degrading the RMS working space.  For example, when D = 2kNsm-1, there is an 8% 

reduction in acceleration and a 6% increase in working space as the temperature rises from 

15°C to 75°C.  

To compare control strategies, selected curves from each of the controller’s full conflict 

diagram have been plotted on a single figure.  The HILS experimental results are also 

compared to equivalent simulations that incorporate the temperature dependant model 

developed in Section 3.  To begin, Figure 10 presents the conflict curves for selected 

controller gains as a function of increasing temperature.  The various controllers appear to be 

equally sensitive to temperature variation but a significant difference is that the experimental 

and simulated conflict curves appear in separate parts of the diagram.  This phenomenon was 

investigated and explained in previous work (Batterbee and Sims, 2007, Batterbee et al., 



 

2005), and is not an indication of an invalid model.  Using a validated model of the hydraulic 

actuator, Batterbee et al. replicated this behaviour and illustrated good agreement between a 

HILS experiment and a simulated HILS test (Batterbee et al., 2005).  By subsequently 

removing the actuator from the model, it was shown that the actuator dynamics (particularly 

phase delay) had degraded performance but the relative performance between controllers 

remained unchanged.  This validated the use of the HILS method and is exactly the 

observation that can be made in Figure 10.  For example, despite the general shift in 

performance levels, both simulated and experimental results display similar trends.  Given the 

result from this previous work, it was deemed unnecessary to include actuator dynamics in the 

present study since its inclusion would have served to significantly complicate the numerical 

analysis without adding significant value to the results.   

To better compare the relative performance between controllers, Figure 11 plots the conflict 

curves obtained at the highest and lowest temperatures as a function of the control parameter.  

At low temperature (Figure 11(a)), except for the overall shift in the conflict curves (which 

was explained previously), the simulated and experimental results display similar trends and 

the relative performance between controllers is very similar.  In general, P and PID control 

have a similar performance, and outperform both GS and OO controllers.  GS control 

significantly outperforms OO control.  At high temperature (Figure 11(b)), the conflict curve 

trends between simulation and experiment compare favourably.  The most noticeable 

discrepancy is that GS control appears to have a better performance in the simulation, where it 

can be seen to approach the P and PID controllers.  This can be explained because the GS 

controller gain terms were based on the numerical model.  This model did not account for 

frequency dependant behaviour (see Figure 6), which has resulted in sub-optimal controller 

performance in the experiment.  On the other hand, the use of feedback control desensitises 

performance to such uncertainty, which explains why P and PID controllers perform well in 



 

both simulation and experiment.  In general, the trends of the experimental and simulated 

conflict curves in Figure 11 show good agreement.   

The above analysis has demonstrated a general shift to lower acceleration, and higher 

suspension working space levels as the temperature rises.  Furthermore, each controller 

appears to be equally affected by this temperature variation.  Given the good similarity 

between the experimental and simulated results, the model can be regarded as a valid tool to 

investigate the cause of this temperature sensitive performance.   

Figure 12 presents a numerical sensitivity analysis that illustrates the individual effects of the 

model parameters on the conflict diagram as the temperature rises.  Here, each temperature 

sensitive parameter (τy, Cpost and k) is varied in turn, whilst the remaining parameters are held 

constant at their lowest temperature values.  This analysis was carried out for each control 

system, and for selected controller gains which were held constant.  It can be observed that 

the main affect of increasing the damper stiffness k is to decrease RMS acceleration.  This is 

because of the reduced hysteresis in the force/velocity response, which enhances the 

controllability of the device.  In contrast, the drop in yield stress τy degrades RMS 

acceleration because of a reduction in device controllability.  The post-yield viscosity Cpost 

clearly has the most notable affect on all controllers, where rising temperature causes a 

significant reduction in RMS acceleration and an increase in RMS working space.  This 

performance change occurs when the MR damper current is switched off (i.e. when an energy 

input is required (Equation (2)), which explains why each controller is equally affected.  The 

lower viscosity reduces the off-state damping rate and hence the lower ‘clipped optimal’ 

control bound of the device.  The energy dissipated when the skyhook law requires an energy 

input is therefore minimised, and the controller behaves more closely to an ideal semi-active 

system (i.e. zero damping when an energy input is required).  This serves to enhance the RMS 



 

acceleration, whilst increasing the RMS suspension working space as a result of the lower off-

state damping.    

5 CONCLUSIONS 

This paper has shown that the effects of temperature variation on an MR damper can be 

significant.  Temperature dependant behaviour was quantified between 15-75°C by 

identifying the parameters in a physically meaningful MR damper model.  Under certain 

conditions, the analysis demonstrated a 34% drop in viscosity, a 22% reduction in yield stress, 

and a 300% increase in damper stiffness with rising temperature.  The model was validated 

against experimental data for various temperatures and sinusoidal mechanical input 

excitations.  Good agreement was achieved although there was some frequency dependant 

behaviour that was not accounted for by the model. 

Control systems are often designed without this temperature sensitive behaviour in mind.  

Consequently, the aim was to assess the influence of temperature on a broadband excited 

single-degree-of-freedom (SDOF) mass isolator.  Various controllers were compared in order 

to assess their relative robustness against temperature uncertainty.  These were proportional, 

PID, gain scheduling and on/off control.  Each system was configured to implement a semi-

active skyhook control law.   

Control system experiments were performed at different temperatures using the hardware-in-

the-loop-simulation method.  Here, the MR damper was physically tested, whilst the 

remaining suspension system components were modelled in real-time.  Each of the controllers 

appeared to be equally sensitive to temperature.  It was shown that the main affect of rising 

temperature was to enhance the RMS acceleration, whilst degrading the RMS working space.  

For proportional skyhook control, there was an 8% drop in RMS acceleration and a 6% 



 

increase in RMS working space.  The same conclusions were also drawn from a pure 

simulation study, which utilised the temperature dependant MR damper model.  The main 

benefit of the model was that it enabled the cause of the observed behaviour to be explored in 

greater detail.   

A numerical sensitivity analysis demonstrated that the increase in damper stiffness enhanced 

RMS acceleration, whilst the reduction in yield stress degraded it.  The most significant affect 

on RMS performance was a result of the change in fluid viscosity.  This is because of the 

change in the lower off-state damping level, which modifies the lower ‘clipped optimal’ 

control bound of the device.  This lower bound determines how closely any control system 

can perform to the ideal semi-active case, and thus all types of controller are equally affected.  

Although it was not shown, it is also likely that sliding mode control, which is inherently 

robust against parameter uncertainty, would be just as sensitive to temperature variations.   

The choice of control strategy for smart fluid dampers still remains an unresolved problem, 

and the present study also provided an opportunity to explore this further.  Proportional and 

PID control outperform the gain scheduling and on/off methods, although they are more 

difficult to implement because of the requirement for force feedback.  Furthermore, 

proportional and PID control compare favourably.  The added complexities when 

implementing PID control (e.g. due to differentiated noise and integral wind up) may 

therefore be difficult to justify.  A gain scheduling control scheme is significantly superior to 

on/off control, despite the relatively similar level of controller complexity.  For example, both 

controllers require similar sensing hardware and do not require force feedback.  

Future work could focus on more complex control systems and ER/MR devices with different 

modes of operation e.g. shear/mixed.  Such investigations could yield different results 

especially where devices have less significant viscous behaviour.  It would also be interesting 



 

to investigate sliding mode control, which may be robust to temperature variation but would 

still be subjected to changes in the off state damping.  
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Current 
Viscosity 

change per 
degree 

Viscosity 
Intercept 

Yield force 
change per 

degree 

Yield 
Force 

Intercept

Stiffness 
change per 

degree 

Stiffness 
intercept 

(A)  (Ns/m/°C) (Ns/m)  (N/°C) (N) (kN/m/°C) (kN) 
0 -6.78 1400 0.19 41 150 1500 

0.2 -7.07 1265 -0.53 331 " " 
0.4 -8.11 1451 -1.87 766 " " 
0.6 -8.74 1616 -3.47 1178 " " 
0.8 -8.91 1734 -5.26 1481 " " 
1 -9.43 1824 -6.42 1667 " " 

 
Table 1:  Linear coefficients used in the temperature dependant model.
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Figure 1:  Photograph of the MR damper test facility. 
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Figure 2:  Schematic diagram of Lord Corporation’s RD-1005 MR damper. 
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Figure 3:  MR damper force/velocity (a) and force/displacement (b) curves at different temperatures.  

10mm, 8Hz sinusoidal excitation, I = 1A. 
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Figure 4:  The lumped parameter MR damper model. 
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Figure 5:  Identified model parameters as a function of temperature and current.  (a) Post-yield viscosity 
Cpost and (b) yield force Fy, and (c) damper stiffness k.  Figures 5(a) and 5(b) show data up to 1A.  Figure 

5(c) shows data for 0.8A, 1A and 2A.  
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Figure 6:  Experimental (solid lines) and simulated (dotted lines) force/velocity curves for 0, 0.4, and 0.8A.  
(a) 10mm-8Hz, Tavg = 15°C, (b)  10mm-8Hz, Tavg = 75°C, (c) 5mm-4Hz, Tavg = 15°C and (d)  5mm-4Hz, 

Tavg = 75°C.  
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Figure 7:  Schematic diagram of the HILS testing facility (see Figure 1 for photograph). 
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Figure 8:  SDOF mass-isolator configurations.  (a) MR damping and (b) skyhook damping.   
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Figure 9:  Experimental conflict curves for proportional skyhook control. 
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Figure 10:  Conflict curves as a function of temperature.  T ≈ 15-75°C. 
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Figure 11:  Conflict curves as a function of the control parameter for (a) low and (b) high temperature.       

D = 1-4kNsm-1, Imax=0-0.2A. 
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Figure 12:  Numerical sensitivity analysis. 


