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ABSTRACT 

18
F-Fluoride PET-CT offers the opportunity for accurate skeletal metastasis staging 

compared to conventional imaging methods. 
18

F-Fluoride is a bone specific tracer whose 

uptake depends on osteoblastic activity. The osteoblastic process can also be detected 

morphologically in CT images due to the resulting increase in bone mineralization and 

sclerosis. Whilst CT is characterized by high resolution, the potential of PET is limited by 

its lower spatial resolution and the resulting partial volume effect. In this context, the 

synergy between PET and CT presents an opportunity to resolve this limitation using a 

novel multimodal approach called Synergistic-Functional-Structural Resolution-Recovery 

(SFS-RR). Its performance is benchmarked against current resolution recovery technology 

employing the point-spread-function (PSF) of the scanner in the reconstruction procedure. 

Methods - The SFS-RR technique takes advantage of the multiresolution property of the 

wavelet transform applied to both functional and structural images to create a high-

resolution PET that exploits the structural information of CT. Although the method was 

originally conceived for PET-MRI brain data, an ad-hoc version for whole body PET-CT is 

here proposed.  

Three phantom experiments and two datasets of metastatic bone 
18

F-Fluoride PET-CT 

images from primary prostate and breast cancer were used to test the algorithm 

performances. The SFS-RR images were compared with the manufacturer’s PSF based 

reconstruction using the standardized uptake value (SUV) and the metabolic volume as 

metrics for quantification.  

Results – When compared to standard PET images the phantom experiments showed a bias 

reduction of 14% in activity and 1.3cm
3 
in volume estimates for PSF images and up to 20% 

and 2.5cm
3 

for the SFS-RR images. The SFS-RR images were characterized by a higher 

recovery coefficient (up to 60%) while noise levels remained comparable to those of 

standard PET.  

The clinical data showed an increase in the SUV estimates for SFS-RR images up to 34% 

for SUVpeak and 50% for SUVmax and SUVmean. Images were also characterized by sharper 

lesion contours and better lesion detectability. 
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Conclusion - The proposed methodology generates PET images with improved quantitative 

and qualitative properties. Compared to standard methods, SFS-RR provides superior 

lesion segmentation and quantification, which may result in more accurate tumor 

characterization. 
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INTRODUCTION 

Up to 70% of patients with prostate and breast cancer will develop bone 

metastases (1, 2). 
18

F-Fluoride has shown efficacy in both diagnosis and treatment response 

assessment (3-6) and recent studies on skeletal metastases report improved diagnostic 

sensitivity and specificity when morphologic evaluation from computed tomography (CT) 

scans are combined with functional evaluation of 
18

F-Fluoride positron emission 

tomography (PET) (7, 8). This radiotracer accumulates at skeletal metastatic sites as a 

result of increased blood flow, osteoblastic activity and bone mineralization (9-11). In 

prostate cancer, 
18

F-Fluoride accumulation corresponds to sites of osteosclerosis and 

increased bone density that are usually visible on CT (12). 

Evaluation criteria for tumor staging and response assessment include visual 

and/or quantitative evaluation of the extent, intensity and changes in 
18

F-Fluoride uptake in 

bone lesions (13). In this perspective the influence of the partial volume effect (PVE) is of 

impact (14) when comparing activity and morphological changes pre- and post- therapy 

(15, 16) considering the poor image resolution and quantification bias resulting from 

activity spill-over. PVE in PET has been addressed with several imaged-based partial 

volume correction (PVC) methods (17) that can be classified as either voxel-based 

methods, such as partition-based (18), multiresolution (19, 20), or region of interest (ROI)-

based techniques (21, 22), which are limited by assumptions of radiotracer distribution 

homogeneity in the area of interest. A distinct approach consists of the incorporation of a 

model for the system point-spread-function (PSF) within the image reconstruction 

algorithm to account for resolution degradation (23, 24).  

In this study our aim was to correct for the PVE in whole-body 
18

F-Fluoride PET-

CT to allow a more robust lesion classification in terms of activity quantification and 

volume definition. The methodology was developed from previous work by Shidahara et al 

(20) and exploits the local functional/structural relationship of PET-CT in a synergistic 

fashion for a realistic noise controlled resolution recovery of PET images, hence the name 

Synergistic-Functional-Structural Resolution-Recovery (SFS-RR). Here the SFS-RR 

algorithm is optimized for 
18

F-Fluoride PET given the correlation between functional 

(fluoride uptake) and morphological (sclerosis) signals on PET and CT images. For 
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benchmarking the resulting images were compared to standard reconstructed PET images 

and images reconstructed with the inclusion of the PSF model (25). 

 

MATERIALS AND METHODS 

Image Resolution Recovery 

The Synergistic-Functional-Structural Resolution-Recovery (SFS-RR) algorithm 

was first introduced by Shidahara et al. (20) for partial volume correction of brain PET-MR 

data. The structural information was exploited by segmenting a T1-MRI image through a 

probability atlas (26) defining 83 anatomical regions. Hence, the resolution recovery is 

ROI-based and relies on good co-registration between PET and MRI images as well as 

between MRI and the probability atlas. The idea stems from previous concepts on wavelet-

based resolution recovery (19) and de-noising (27). 

In this work we developed SFS-RR further to fit a novel clinical requirement, 

specifically 
18

F-Fluoride PET-CT for detecting and monitoring bone metastases. The choice 

of the application is not fortuitous; in the first instance, PET-CT images provide synergistic 

information (i.e. both modalities show high image intensity in correspondence of lesions) 

and, secondly, they do not require additional coregistration as for two separate PET and 

MR acquisitions. Furthermore all the structural information of interest is contained in the 

CT and can be automatically segmented for each subject with no need for a universal atlas. 

The algorithm decomposes both functional (PET) and anatomical (CT) images into several 

resolution elements by means of a wavelet transform. The high-resolution components of 

both modalities are then combined together via a statistical model with appropriate scaling, 

resolution correction and weighting, to create a high-resolution PET image that exploits the 

structural information, when present, but preserves PET data when matching structural data 

are not present. 

 

Anatomical Image Segmentation 

In their original work, Shidahara et al. (20) proposed the use of an anatomical 

brain atlas to obtain suitable anatomical images. In brain studies this is a reasonable 

procedure given the possibility of normalizing to a common space (e.g. probabilistic atlas).  
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In whole-body PET-CT, the atlas-based approach is not feasible. In 
18

F-Fluoride 

PET-CT acquisitions the good spatial correlation between morphological and functional 

information is such that the CT images of each subject can be processed individually to 

highlight the structures of interest supplying the required structural base.  

The first step consists of an initial coarse segmentation of the CT images based on 

thresholding the Hounsfield Units (HU) values as follow: bone (100≤HU<1400), soft tissue 

(0≤HU<100) and fat (-150≤HU<0) (28). 

Bone is further segmented into 100 bins after image histogram equalization. New intensity 

values are assigned to all the segmented regions. These intensity values are calculated from 

the average of each corresponding region in the original PET image to obtain the subject-

specific structural reference image used as anatomical information for the SFS-RR 

algorithm (20, 29) (Supplementary Materials Figure 1). 

Image segmentation and the SFS-RR algorithm implementation were both 

performed in Matlab R2011b (The Mathworks Inc., Natick MA, USA). The whole 

procedure is schematically described in Figure 1; for a more detailed mathematical 

exposition the reader is referred to the Supplementary Materials (Synergistic-Functional-

Structural Resolution Recovery Algorithm section).  

 

Phantom Data 

For the evaluation of the SFS-RR method we used the NEMA IEC body phantom 

and an insert with six spheres of different volumes, 26.52 cm
3
 (S1), 11.49 cm

3
 (S2), 5.57 

cm
3
 (S3), 2.57 cm

3
 (S4), 1.15 cm

3
 (S5) and 0.52 cm

3
 (S6), respectively. Compartments 

were filled with both iodinated contrast media (CM) Omnipaque300
TM

 (300 mg/ml organic 

Iodine) and radioactive tracer 
18

F-Fluoride. We aimed to reproduce contrast levels between 

different structures in both the PET and CT images as observed in clinical 
18

F-Fluoride 

bone scans. Specifically, we reproduced PET and CT contrasts as observed in normal soft 

tissue, normal bone and metastatic bone. We performed three different experiments 

changing the layout of CT and PET contrasts. This aimed to account for possible 

mismatches between functional and anatomical images (i.e. whereas a lesion would be 

detectable in only one imaging modality) resulting in a more robust method validation for 
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what concern the phantom experiments. A summary of CM and radiotracer concentrations 

used in each experiment is reported in Table 1. For a detailed description of the 

experimental procedure we refer to Grecchi et al. 2014 (30). 

Images were acquired on a GE Discovery 710 PET-CT scanner (General Electric 

Medical System, Milwaukee, WI, USA). CT scans were performed with a routine clinical 

protocol (115 mA, 140 kVp and 0.5 second gantry rotation speed) followed by a fully 3D 

PET Time Of Flight (TOF) acquisition. PET data were reconstructed using our routine 

clinical protocol, a standard TOF Ordered Subsets Expectation Maximization (OSEM) 

algorithm (24 subsets, 2 iterations) (GE Q.Core VuePoint FX, henceforth called Standard 

PET). The resulting images were then processed with the SFS-RR algorithm. In addition 

we reconstructed the same data with the inclusion of a Point Spread Function (PSF) model 

into the standard TOF-OSEM algorithm (GE Q.Core VuePoint FX-S, henceforth called 

PET-PSF).  

All the images were finally smoothed with a Gaussian 3D filter FWHM 6.4mm; this is 

required by PSF reconstructed images as well when used in clinical routine given that 

increased noise level hamper visual assessment. 

 

Clinical Dataset 

The impact of the proposed resolution recovery technique was tested with two 

different sets of oncological patient data, both characterized by the presence of bone 

metastases. The institutional review board approved this study and all subjects signed a 

written informed consent. 

The first dataset was a prospective observational study of patients with bone-

predominant metastatic prostate cancer, at first diagnosis or at progression of disease, who 

were embarking on docetaxel chemotherapy. The second data set was a prospective 

observational study of patients with bone-predominant metastatic breast cancer, at first 

diagnosis or at progression of disease, who were embarking on a new line of endocrine 

treatment in combination with bone-targeted therapy. In total 7 patients with active skeletal 

metastases were included in the analysis, 4 with prostate cancer and 3 with breast cancer. 
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In each patient a whole body 
18

F-Fluoride PET-CT scan was acquired with a total 

of 8 bed positions, from the base of the skull to upper thighs, 60 minutes after injection of  

approximately 250MBq.  

The image reconstruction protocol for both datasets was the same as for the 

phantom experiment, with the exclusion of the PSF reconstruction, which was not 

performed as it was not included in the clinical protocol.  

 

Data Analysis 

In-house software was used to perform quantitative analysis on both phantom and patient 

data. An ROI was manually drawn on the outer border of each lesion in order to completely 

contain the whole lesion volume (or sphere for the phantom data) and then automatically 

segmented with a threshold of 40% of the maximum value of the ROI. The SUVmean, 

SUVmax, SUVpeak and lesion metabolic active tumor volume (MATV) were then computed 

for the automatically segmented ROI. SUVpeak is computed here as the mean SUV 

measured over a fixed small circular volume of about 1cm
3
, in the hottest area of the tumor 

(more active region).  It is considered more reproducible since it involves the mean value of 

a few voxels involving and surrounding the hottest tumor area. 

Solely for the phantom experiments, knowing the ground truth, we used the Root Mean 

Square Error (RMSE) and Contrast to Noise Ratio (CNR) as additional metrics for image 

quality assessment. Specifically, we evaluated the quantification accuracy and the trade-off 

between contrast improvement and image noise. The two metrics are defined as follow 

RMSE ! 100!
!! ! !!!!∀#∃

!

!!!!∀#∃
!

 

CNR !
!! ! !!∀#∃

!!∀#∃

 

!!!represents the mean activity estimated inside a sphere and !!!!∀#∃! the corresponding 

ground truth while !!∀#∃!is the mean activity estimated in the phantom background and 

!!∀# its standard deviation. 

 

RESULTS 

Phantom Data 
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Figure 2 shows representative transaxial views of structural (CT) and functional (PET) 

images for the three phantom experiments, one for each line. PET images from PSF 

reconstruction (PET-PSF) and from the application of the Resolution Recovery algorithm 

(PET-SFS) are also displayed. In Figure 2 Supplementary Material are reported as well 

representative line profiles for the three experiments for spheres 4-5.  

Improved qualitative resolution for the smaller structures (red marker in Figure 2) is noted 

when the SFS-RR algorithm is applied. Even though larger spheres (green and blue 

markers in Figure 2) are easily detectable in the images from all modalities, it is possible to 

appreciate a reduction in the blurring surrounding the structure when the resolution 

recovery algorithm is implemented.  

Furthermore it is possible to appreciate the robustness of the anatomy-based resolution 

recovery algorithm to unexpected mismatches between anatomy and functional acquisition 

by studying images from Experiment 1. Even though spheres 4-6 cannot be detected on the 

CT they are not lost in the new functional image returned by the SFS-RR algorithm.  

The quantitative evaluation of functional images obtained with the three different methods 

is reported in Table 2. The table reports for each phantom compartment in all the 

experiments the estimates of SUVmean, SUVmax, SUVpeak and MATV together with the 

corresponding ground-truth values.  

A summary of methods performances is summarized in the supplementary materials 

(Figure 3) as the average among the three experiments. The general trend shows that the 

smaller the sphere, the bigger the bias in the activity estimation, regardless of the method 

used. However, with the SFS-RR application the bias decreases with an average range of 1-

5% in the PET-PSF images and 5-19% in PET-SFS images. The same trend applies to 

lesion size estimation where the bias decreases in a range of 0.46-0.95 cm for PET-PSF 

data and 0.56-1.09 cm for PET-SFS data.  

The better performances of the SFS-RR algorithm are upheld by the root mean square error 

(RMSE) and contrast to noise ratio (CNR) comparison in Figure 3. Images resulting from 

the application of the SFS algorithm show lower RMSE on average (up to 15% compared to 

standard PET for the smallest sphere) while being consistent with the trend of the RMSE 

increasing for smaller spheres. It is of note that the improved image resolution does not 
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come with a detriment of image quality as noise levels are contained with CNR either 

higher or comparable with the standard PET image. 

 

Clinical Dataset 

The influence of using the SFS-RR algorithm on real patient data can be appreciated 

qualitatively in Figure 4 (and Figures 4-6 in Supplementary Materials) where the Maximum 

Intensity Projection (MIP) and two different transaxial views are displayed for a 

representative subject. 

There is a clear increase in lesion sharpness following the application of a resolution 

recovery technique. The quantitative characterization of all lesions of this specific subject is 

reported in the Supplementary Materials (Figure 7 and Table 1). The transaxial views of 

Figure 4 is a good example of the effect in lesion definition and characterization using the 

SFS-RR algorithm. Sharper contours and the activity recovery in the PET-SFS images for 

the rib lesion (Figure 4, transaxial view, red marker) and also in the spine (Figure 4, 

transaxial view, blue marker) are evident, and in the spine lesion it is easier to appreciate 

that the activity is in the periphery of the lesion where there is greatest osteoblastic activity 

compared to the relatively photopenic center. In terms of quantitative characterization there 

is an increase in the SUVmean estimates of 60% (rib lesion, SUVPET =30.7 SUVSFS =49.1) and 

43% (spine lesion, SUVPET =23.2 SUVSFS =33.1) from the standard-PET to the PET-SFS. In 

contrast, the automatic segmented MATV has a relative reduction of 25% (rib lesion, 

MATVPET=2.7cm
3
 MATVSFS =2.1cm

3
) and 31% (spine lesion, MATVPET=7.5cm

3
 

MATVSFS=5.2cm
3
). 

A comprehensive comparison of the quantitative differences due to application of the SFS-

RR algorithm is reported in Figure 5. As previously performed for Patient 01 (Figure 7 -

Table 1 Supplementary Materials) we segmented all lesions of the remaining patients and 

collected the corresponding values of SUVmean, SUVmax, SUVpeak and MATV. Figure 5 

reports the relative differences (SUVs and MATV) between lesions segmented in standard 

PET and PET-SFS images for the entire datasets.  

There is a general increment in activity estimates for PET-SFS compared to standard PET. 

The average increments for different indexes are as follow: ΔSUVmean = 49%, ΔSUVmax = 
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47% and ΔSUVpeak = 34%. For low activity lesions the range of differences in the estimates 

is larger than for more active lesions indicating that the algorithm efficiency is dependent 

on signal to noise ratio. For the MATV there is an average reduction of 1.4cm
3
 when 

segmentation is performed on PET-SFS images. When lesion size increases the difference 

reached values of 4-5cm
3
, which might be relevant if patient classification were based on 

characterization of the larger detectable lesions. 

 

DISCUSSION 

In this work we evaluated the influence of a multimodal partial volume correction 

technique on the quantification and assessment of metastatic bone lesions from primary 

prostate and breast cancers. It is worth remarking that this work targets specifically to 
18

F-

Fluoride PET/CT bone scans as SFS-RR obviously produces better results the stronger is 

the correspondence between functional and structural signals. Our results showed an 

average 50% increase in SUVmax and SUVmean and a 30% increase in the SUVpeak for 

partial-volume corrected images when compared with the standard PET, depending on 

lesion size (lesion volume range 0.5–25cm
3
). Our results are in agreement with findings in 

similar experimental settings from previous studies (31, 32). Although SUVmax estimates 

depend on image noise, the 50% increase is not a consequence of noise bursts given the 

comparable RMSE between the SFS-RR corrected images and standard PET images.  

The higher activity recovery and the good noise control from the phantom analysis 

indicate a better image quality when the SFS-RR algorithm is applied. Indeed patient 

images show lesions with sharper and better-defined contours, which result in improved 

lesion conspicuity and segmentation even for smaller volumes. To note that the CNR 

depends on the absolute activity value and that explains why on Figure 3 one set of spheres 

show higher CNR than the other.  

The results from the phantom experiments showed that the SFS-RR images 

outperform both standard PET and PSF images in terms of image quality and quantification 

accuracy. PSF-based image reconstruction is known to contribute to the appearance of 

artefacts (33) and is computationally cumbersome hence is not performed in routine clinical 

studies in our Unit; for this reason standard PET was used as a reference for SFS-RR 
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images when it came to patients image analysis. In this regard, it is worth noting that no 

artefacts have been generally observed in this and previous applications of SFS-RR which 

is now a mature enough technology worth further testing in the clinical setting. 

 It is worth highlighting the robustness of the methodology regarding possible 

mismatch between PET and CT images. Phantom acquisitions showed that even if some 

structures are only visible on the functional images, they are preserved after the application 

of the algorithm. This is of importance because lesions that might be lost in the CT 

segmentation, for example because their size is too small or the metastasis does not show 

sufficient bone mineralization to appear sclerotic, they will still be visible in the final 

enhanced PET images. 

Although the SFS-RR algorithm showed qualitatively and quantitatively better 

images than standard PET, further analyses are necessary to quantify the influence of the 

improved image quality on the assessment of patient skeletal staging and therapy response. 

This may allow better definition and quantification of lesions following therapy or allow 

greater detectability and segmentation of metastatic spread at staging. Of interest would be 

also to evaluate whether lesion heterogeneity is affected by higher resolution and evaluate 

the consequent impact on textural analysis, given its increasing oncological applications 

(34, 35). 

 

CONCLUSION 

We have proposed and tested on a set of phantom studies and demonstrated on clinical data 

a multimodal methodology for quantitative resolution recovery for whole body PET-CT, 

here specifically designed for 
18

F-Fluoride PET imaging of bone metastases. The technique 

allows rapid and straightforward application and  produces  images  of  significant 

improved visual quality and quantitative properties. 

 

ACKNOWLEDGMENTS 

The project is supported by the EPSRC, the NIHR Biomedical Research Centre at Guy's 

and St Thomas' NHS Foundation Trust and King’s College London and UCL 



  12 

Comprehensive Cancer Imaging Centre funded by the CRUK and EPSRC in association 

with the MRC and DoH (England).  

Elisabetta Grecchi is also supported by an EPSRC scholarship (EP/K502868/1). 

Jim O’Doherty is also supported by the Centre of Excellence in Medical Engineering, 

Wellcome Trust and EPSRC grant number WT 088641/Z/09/Z. 

Federico E Turkheimer and Mattia Veronese are supported by the MRC PET Methodology 

Program grant (G1100809/1). 

The views expressed are those of the authors and not necessarily those of the NHS, the 

NIHR or the Department of Health.  

We wish also to acknowledge Dr. Benjamin Taylor for providing us anonymised patient 

data. 

 

DISCLOSURE 

The authors have no conflict of interest to disclose, financial or otherwise. 

  



  13 

REFERENCES 

1. Rubens RD. Bone metastases: incidence and complications. In: Rubens RD, 

Mundy GR, eds. Cancer and the Skeleton. London: Martin Dunitz; 2000:33-42. 

 

2. Coleman RE, Rubens RD. The clinical course of bone metastases from breast 

cancer. British journal of cancer. 1987;55:61. 

 

3. Clamp A, Danson S, Nguyen H, Cole D, Clemons M. Assessment of therapeutic 

response in patients with metastatic bone disease. The lancet oncology. 2004;5:607-616. 

 

4. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the 

response to treatment in solid tumors. Journal of the National Cancer Institute. 

2000;92:205-216. 

 

5. Scher HI, Halabi S, Tannock I, et al. Design and end points of clinical trials for 

patients with progressive prostate cancer and castrate levels of testosterone: 

recommendations of the Prostate Cancer Clinical Trials Working Group. Journal of 

Clinical Oncology. 2008;26:1148-1159. 

 

6. Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD, Fogelman I. 

Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med. 

1988;29:1354-1359. 

 

7. Even-Sapir E, Metser U, Flusser G, et al. Assessment of malignant skeletal 

disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride 

PET and 18F-fluoride PET/CT. Journal of Nuclear Medicine. 2004;45:272-278. 

 

8. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The 

detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar 

bone scintigraphy, single-and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-

fluoride PET/CT. Journal of Nuclear Medicine. 2006;47:287-297. 

 

9. Galasko CSB. The pathological basis for skeletal scintigraphy. Journal of Bone & 

Joint Surgery, British Volume. 1975;57:353-359. 

 

10. Ptáček J, Henzlová L, Koranda P. Bone SPECT image reconstruction using 

deconvolution and wavelet transformation: Development, performance assessment and 

comparison in phantom and patient study with standard OSEM and resolution recovery 

algorithm. Physica Medica. 2014;30:858-864. 

 

11. Woodbury DH, Beierwaltes WH. Fluorine-18 uptake and localization in soft tissue 

deposits of osteogenic sarcoma in rat and man. Journal of Nuclear Medicine. 1967;8:646-

651. 

 

12. Beheshti M, Vali R, Waldenberger P, et al. The use of F-18 choline PET in the 

assessment of bone metastases in prostate cancer: correlation with morphological changes 

on CT. Molecular Imaging and Biology. 2009;11:446-454. 

 

13. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical 

tumour response using [18 F]-fluorodeoxyglucose and positron emission tomography: 

review and 1999 EORTC recommendations. European journal of cancer. 1999;35:1773-

1782. 

 

14. Stefano A, Gallivanone F, Messa C, Gilardi MC, Gastiglioni I. Metabolic impact 

of partial volume correction of [18F] FDG PET-CT oncological studies on the assessment 

of tumor response to treatment. The quarterly journal of nuclear medicine and molecular 

imaging: official publication of the Italian Association of Nuclear Medicine (AIMN)[and] 

the International Association of Radiopharmacology (IAR),[and] Section of the Society of. 

2014;58:413-423. 



  14 

 

15. Hatt M, Groheux D, Martineau A, et al. Comparison between 18F-FDG PET 

image–derived indices for early prediction of response to neoadjuvant chemotherapy in 

breast cancer. Journal of Nuclear Medicine. 2013;54:341-349. 

 

16. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. 

Journal of Nuclear Medicine. 2007;48:932-945. 

 

17. Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in 

PET. PET clinics. 2007;2:235-249. 

 

18. Meltzer CC, Zubieta JK, Links JM, Brakeman P, Stumpf MJ, Frost JJ. MR-based 

correction of brain PET measurements for heterogeneous gray matter radioactivity 

distribution. Journal of Cerebral Blood Flow & Metabolism. 1996;16:650-658. 

 

19. Boussion N, Hatt M, Lamare F, Le Rest CC, Visvikis D. Contrast enhancement in 

emission tomography by way of synergistic PET/CT image combination. Computer 

methods and programs in biomedicine. 2008;90:191-201. 

 

20. Shidahara M, Tsoumpas C, Hammers A, et al. Functional and structural synergy 

for resolution recovery and partial volume correction in brain PET. Neuroimage. 

2009;44:340-348. 

 

21. Aston JAD, Cunningham VJ, Asselin M-C, Hammers A, Evans AC, Gunn RN. 

Positron emission tomography partial volume correction: Estimation and Algorithms. 

Journal of Cerebral Blood Flow & Metabolism. 2002;22:1019-1034. 

 

22. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: 

principle and validation. Journal of Nuclear Medicine. 1998;39:904-911. 

 

23. Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High-resolution 3D 

Bayesian image reconstruction using the microPET small-animal scanner. Physics in 

medicine and biology. 1998;43:1001. 

 

24. Rapisarda E, Bettinardi V, Thielemans K, Gilardi M. Image-based point spread 

function implementation in a fully 3D OSEM reconstruction algorithm for PET. Physics in 

medicine and biology. 2010;55:4131. 

 

25. Alessio AM, Stearns CW, Tong S, et al. Application and evaluation of a measured 

spatially variant system model for PET image reconstruction. Medical Imaging, IEEE 

Transactions on. 2010;29:938-949. 

 

26. Hammers A, Allom R, Koepp MJ, et al. Three‐dimensional maximum probability 

atlas of the human brain, with particular reference to the temporal lobe. Human brain 

mapping. 2003;19:224-247. 

 

27. Turkheimer FE, Boussion N, Anderson AN, Pavese N, Piccini P, Visvikis D. PET 

image denoising using a synergistic multiresolution analysis of structural (MRI/CT) and 

functional datasets. Journal of Nuclear Medicine. 2008;49:657-666. 

 

28. Molteni R. Prospects and challenges of rendering tissue density in Hounsfield 

units for cone beam computed tomography. Oral surgery, oral medicine, oral pathology 

and oral radiology. 2013;116:105-119. 

 

29. Kudo H, Nomura M, Asada T, Takeda T. Image processing method for analyzing 

cerebral blood-flow using SPECT and MRI. Paper presented at: Nuclear Science 

Symposium Conference Record, 2007. NSS'07. IEEE, 2007. 

 

30. Grecchi E, O'Doherty J, Turkheimer FE. Exploiting anatomical information for 

PET image enhancement: a phantom experiment for algorithm validation. Paper presented 



  15 

at: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014 IEEE; 

Nov. 8 2014-Nov. 15 2014, 2014. 

 

31. Hatt M, Le Pogam A, Visvikis D, Pradier O, Le Rest CC. Impact of partial-

volume effect correction on the predictive and prognostic value of baseline 18F-FDG PET 

images in esophageal cancer. Journal of Nuclear Medicine. 2012;53:12-20. 

 

32. Hoetjes NJ, van Velden FHP, Hoekstra OS, et al. Partial volume correction 

strategies for quantitative FDG PET in oncology. European journal of nuclear medicine 

and molecular imaging. 2010;37:1679-1687. 

 

33. Thielemans K, Asma E, Ahn S, et al. Impact of PSF modelling on the convergence 

rate and edge behaviour of EM images in PET. Paper presented at: Nuclear Science 

Symposium Conference Record (NSS/MIC), 2010 IEEE, 2010. 

 

34. Cook GJ, Yip C, Siddique M, et al. Are pretreatment 18F-FDG PET tumor 

texturalfFeatures in non–small cell lung cancer associated with response and survival after 

chemoradiotherapy? Journal of Nuclear Medicine. 2013;54:19-26. 

 

35. Hatt M, Majdoub M, Vallieres M, et al. 18F-FDG PET uptake characterization 

through texture analysis: investigating the complementary nature of heterogeneity and 

functional tumor volume in a multi–cancer site patient cohort. Journal of Nuclear 

Medicine. 2015;56:38-44. 

   



  16 

 

 
 Figure 1 Graphical representation of the SFS-RR algorithm. A) The structural reference 

image required by the SFS-RR algorithm is computed from the CT and PET images; B) 

wavelet decomposition of functional and structural images; C) the functional and structural 

wavelet coefficients are combined to get the new high-resolution PET coefficients; D) 

inverse wavelet transform of the coefficients obtained from step C resulting in the new 

high-resolution SFS-RR PET image. For a detailed mathematical formulation refer to the 

Supplementary Materials. 
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Figure 2 [
18

F]Fluoride PET-CT transaxial images of three different phantom experiment 

acquisitions (one for each line). Alongside the CT image (1
st
 column) are three different 

type of functional images: standard PET images (2
nd

 column), images resulting from the 

inclusion of a PSF model into the reconstruction (3
rd

 column) and images resulting after the 

application of the SFS resolution recovery algorithm (4
th

 column).  

For detailed information on lesions volume, CM and 18F-FDG concentrations we refer to 

Table 1. 

Green markers highlight sphere 2, blue markers highlight sphere 4 and red markers 

highlight sphere 6. 
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Figure 3 Root mean square error and noise analysis. For each sphere (S1-S6) three values 

corresponding to images obtained with different modalities are reported: standard PET 

(dashed circle), PET with PSF reconstruction (white triangle) and PET corrected with SFS-

RR algorithm (black diamond)  

A) Root mean square error for the six spheres obtained as an average among the three 

phantom experiments. B-C) Contrast to noise ratio computed for each sphere against a 

uniform region in the phantom background. Only experiments 1 and 2 are reported for 

consistency reasons (in experiment 3 three spheres have zero activity). 
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Figure 4 Maximum Intensity Projection (MIP) and transaxial views of a representative 

subject (Patient 01). Left Panel - Standard PET; Right Panel - PET corrected with SFS-RR 

algorithm. The red and blue markers highlight two representative lesions (spine and rib 

respectively) that appear sharper in the PET-SFS image compared to the standard PET one. 

Dashed lines indicate the slice position of the transaxial views reported below the MIP. 

  

View #1 

M
a

x
im

u
m

 I
n

te
n

s
it

y
 P

ro
je

c
ti

o
n

 

Standard PET PET-SFS 

View #2 

View #1 

T
ra

n
s

a
x

ia
l 
V

ie
w

 

View #2 



  20 

 

Figure 5 Bland-Altman plots showing the differences in MATV and activity quantification 

when estimates are computed in images obtained with standard PET and PET corrected 

with the SFS-RR algorithm. Each grey circle represents a specific lesion; all lesions of all 

patients are reported. The differences between estimates for SUVmean (A), SUVmax (B) and 

SUVpeak (C) are reported as the relative percentage difference. The MATV (D) is reported 

as absolute difference in cm
3
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TABLES 

Table 1 

CT CONTRAST MEDIA AND PET RADIOTRACER CONCENTRATIONS  

Phantom 

Compartments 

Experiment 1 Experiment 2 Experiment 3  

Iodine CM 

[mg/ml] 

18F-FDG 

[kBq/ml] 

Iodine CM 

[mg/ml] 

18F-FDG 

[kBq/ml] 

Iodine CM 

[mg/ml] 

18F-FDG 

[kBq/ml] 

Sphere Volume 

[ml] 

Background 1.08 * 4.56 * 1.20 * 5.29 * 1.20 * 5.70 * 9700 

S1 6.00 † 53.20 † 6.00 † 66.50 † 1.20 * 5.70 * 26.52 

S2 6.00 † 53.20 † 42.00 ‡ 187.00 ‡ 41.20 ‡ 227.00 ‡ 11.49 

S3 6.00 † 53.20 † 6.00 † 66.50 † 1.20 * 5.70 * 5.57 

S4 1.00 * 148.50 ‡ 42.00 ‡ 187.00 ‡ 41.20 ‡ 227.00 ‡ 2.57 

S5 1.00 * 148.50 ‡ 6.00 † 66.50 † 1.20 * 5.70 * 1.15 

S6 1.00 * 148.50 ‡ 42.00 ‡ 187.00 ‡ 41.20 ‡ 227.00 ‡ 0.52 

Concentrations of Iodine (from Omnipaque300
TM

) and 
18

F-FDG injected in all phantom 

compartments for each experiment. Compartments volumes are also reported. 

To note that spheres 4-6 Experiment 1 and spheres 1,3,5 Experiment 3 are filled with the 

same radioactivity concentration as the background – as a result they are indiscernible in 

the PET image. 

 

* Concentration resulting in image contrast comparable to normal soft tissue 

† Concentration resulting in image contrast comparable to normal bone 

‡ Concentration resulting in image contrast comparable to metastatic bone 

 

 

 


