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Abstract

Telomerase activity is restricted in humans. Consequentially, telomeres shorten in most cells throughout our lives. Telomere
dysfunction in vertebrates has been primarily studied in inbred mice strains with very long telomeres that fail to deplete
telomeric repeats during their lifetime. It is, therefore, unclear how telomere shortening regulates tissue homeostasis in
vertebrates with naturally short telomeres. Zebrafish have restricted telomerase expression and human-like telomere length.
Here we show that first-generation tert2/2 zebrafish die prematurely with shorter telomeres. tert2/2 fish develop
degenerative phenotypes, including premature infertility, gastrointestinal atrophy, and sarcopaenia. tert2/2 mutants have
impaired cell proliferation, accumulation of DNA damage markers, and a p53 response leading to early apoptosis, followed
by accumulation of senescent cells. Apoptosis is primarily observed in the proliferative niche and germ cells. Cell
proliferation, but not apoptosis, is rescued in tp532/2tert2/2 mutants, underscoring p53 as mediator of telomerase
deficiency and consequent telomere instability. Thus, telomerase is limiting for zebrafish lifespan, enabling the study of
telomere shortening in naturally ageing individuals.
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Introduction

Telomeres constitute the ends of linear chromosomes, compris-

ing DNA (TTAGGG)n repeats and its associated proteins, known

as the shelterin complex [1]. Telomeres provide protection against

erosion of chromosome-ends that occurs with each cell division as

a result of the ‘‘end-replication problem’’ [2]. Additionally, they

prevent the recognition of chromosome termini as deleterious

DNA double strand breaks (DSBs). If this function fails,

chromosome-ends induce DNA damage responses (DDRs) that

comprise the activation of p53 [3]. Telomerase, a reverse

transcriptase, counteracts chromosome-end depletion by elongat-

ing telomeres through the action of its catalytic unit (Tert) and

RNA template (Terc) [4,5]. Because telomerase expression is

restricted in human somatic cells, telomeres shorten during our

lifespan [6]. Human somatic cells lose around 100 base pairs of

telomeres per population doubling [7], leading to a limit of about

50–80 cell divisions in culture, known as the Hayflick limit [8].

Impaired tissue homeostasis is at the core of several human

diseases, including ageing-associated degeneration [9]. Premature

ageing syndromes such as Werner, Hutchinson-Gilford and

Dyskeratosis Congenita (DC) share the common trait of shorter

telomeres, accelerated ageing and reduced lifespan [10]. DC, in

particular, can be caused by mutations in the telomerase tert or terc

genes, and there is a direct correlation between telomere length

and disease severity [11].

Telomeres become dysfunctional due to critical shortening,

oxidative damage or uncapping [12]. Dysfunctional telomeres

induce DDRs characteristic of damage-induced DSBs [13].

Depending on the cell type, level of DNA damage and p53/

p63/p73 status, dysfunctional telomeres initiate an apoptotic

response or a G1 cell cycle arrest, leading to senescence [14].

While high levels of DNA damage are thought to trigger apoptosis

via puma (p53 upregulated modulator of apoptosis) activation, low

levels are most likely to cause cell cycle arrest via p21 activation

[14]. Telomere maintenance, therefore, dictates survival and

replicative potential of cells, directing tissue homeostasis.

Most of our knowledge of vertebrate telomeres comes from

inbred mice strains with long telomeres [15]. Several generations

of intercrossing between telomerase deficient mice are needed

before telomere shortening has a noticeable impact at the

organism level [16–18]. Data from late generation telomerase

knockout mice suggest that cell senescence [19] and/or apoptosis

[20] play a critical role in the observed degenerative phenotypes.

Either puma [21] or p21 [19] deletion separately ameliorate

degenerative phenotypes observed in late generation telomerase

knock-out (KO) mice. Stem cell exhaustion via puma-mediated

apoptosis is crucial in limiting the life span of late generation terc

knockout mice [21]. Whether artificially shortening telomeres in

the long telomere mouse strains or the use of other genetic

backgrounds with shorter telomeres reproduces the way in which

human tissues respond to telomere lifetime erosion remains an

open question.

Recently, a wild-derived inbred mouse strain (Cast/EiJ) has

been proposed as a better model for understanding telomere

dysfunction in humans, given its shorter telomeres [22]. Telome-

rase deficiency in this strain gives rise to first generation defects

similar to the ones observed in human DC syndromes [22]. Thus,

telomere length may be limiting for Cast/EiJ longevity, making it
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a promising alternative to the current mouse models. However,

molecular responses to dysfunctional telomeres in this model

remain to be elucidated.

It is critical to investigate complementary vertebrate models to

understand what is the most likely impact of telomere exhaustion

in a biological system that, like humans, has evolved to have

telomere length as an internal cell division ‘‘clock’’. Zebrafish, a

teleost fish that exhibits gradual senescence, is a promising

vertebrate model for telomere biology. Contrary to the inbred

laboratory mouse, zebrafish have heterogeneous telomeres of

human-like length [23]. Despite detection of telomerase activity in

various tissues, zebrafish telomeres shorten with age [24]. Like

humans [6], telomerase expression in zebrafish somatic cells is not

sufficient to prevent telomere shortening [24]. Telomere shorten-

ing was associated with impaired regenerative responses in the

aged fish, denoting a role for telomere in homeostasis of adult

tissues. Accordingly, a zebrafish mutant for the telomere repeat

binding factor 2 (Terf2) accumulates senescence markers and this

is accompanied by central nervous system necrosis and decreased

survival [25].

Here we show that first generation telomerase deficient

zebrafish have shorter telomeres than wild-type siblings and die

prematurely. tert2/2 fish are born and develop normally until

adulthood, but progressively develop accelerated degenerative

phenotypes characteristic of disrupted tissue homeostasis. These

include premature infertility, gastrointestinal atrophy, loss of body

mass, increased inflammation and sarcopaenia at terminal stages.

Underlying these phenomena is a sustained decrease in cell

proliferation, an acute apoptotic response and accumulation of

DDR foci. Removal of p53 function rescues cell proliferation, but

not apoptosis, in high turnover tissues, such as testes and gut. This

implicates p53 as a critical mediator of telomerase-dependent

proliferative defects observed in tert2/2. Thus telomerase and

consequent telomere shortening play a key and limiting role in

tissue maintenance during a zebrafish lifespan.

Results

Telomerase mutant zebrafish have shorter telomeres
In order to examine the consequences of telomerase depletion in

zebrafish, we used the currently available but yet uncharacterized,

terthu3430 line produced by ENU-tilling screen at Utrecht Univer-

sity, Netherlands [26]. This telomerase mutant line carries a TRA

transition in the second exon of the tert gene giving rise to an early

stop codon. For simplicity, we will refer to the terthu3430

homozygous mutant strain as tert2/2.

To test whether tert2/2 mutants had a functional telomerase, we

performed the commonly used Telomere Repeat Amplification

(TRAP) assay [27]. We observed no amplification bands

corresponding to telomere elongation in the TRAP assay as

compared to tert+/+ controls (Figure 1A), indicating that tert2/2

mutants lack active telomerase. The consequence of absence of

telomerase is continuous telomere shortening. Accordingly,

Telomere Restriction Fragment (TRF) analysis by Southern blot

revealed a significant reduction in average telomere size (Figure 1B

and 1D). This attrition was highlighted by the significant reduction

in intensity of the higher molecular weight TRFs (,16 Kbp), as

compared to tert+/+ siblings (Figure 1B), in all tissues tested (Figure

S1). Additionally, a lower molecular weight TRF population of

approximately 6 Kbp is present in both tert+/+ and tert2/2 (arrows

in Figure 1B and 1D and Figure S1). Zebrafish telomere sequences

are exclusively terminal, as all TRF signal disappears after BAL-31

(59- and 39-exonuclease) digestion (Figure S1C).

The presence of two telomere populations in tert+/+ zebrafish is

suggestive of restricted telomerase activity. Accordingly, the lower

population of TRFs shortens over-time both in tert+/+ and tert2/2

(Figure 1B, 1D, 1E). We also observe discrete but significant

shortening of the higher TRF population in tert+/+, suggesting that

telomerase activity is not sufficient to prevent telomere loss. This

bimodal TRF pattern was observed in all tert+/+ tissues except for

blood, where we detect a single TRF of higher molecular weight

(,16 kbp; Figure S1A, S1B) and in sperm, where we observed a

single TRF signal of approximately 6 Kbp (Figure 1C).

Consistent with our TRF analysis, we observe the presence of

cell populations with different telomere intensities by telomere-

PNA FISH (Figure 1E). This technique clearly shows that tert+/+

tissues, such as the gut, are composed of cells with different

telomere intensities. Cells with high intensity in telomere signal

localize primarily to the base of the villus, suggestive of being early

precursor cells. In contrast, tert2/2 tissue shows more homoge-

neous, low intensity, telomere-PNA FISH. Such pattern mirrors

our TRF results of high and low telomere lengths and suggests that

telomerase expression is restricted to certain cells types as observed

in humans [6].

Telomerase zebrafish mutants die prematurely of body
wasting

First generation tert2/2 mutants, resulting from a heterozygous

incross, are born healthy and develop past sexual maturity without

any obvious defects (Figure 2A). From 4–6 months onwards, we

observed a consistent gradual decrease in body mass reflected in

declining width/length body ratios (Figure 2B). This wasting

phenotype was observed in all tert2/2 individuals at their time of

death (n = 24). In contrast, we were unable to detect wasting in any

of the tert+/+ siblings (n = 45) until the end of the experiment (22

months). Wasting (also known as cachexia) is a common

phenotypic alteration in aged organisms, including humans, and

is usually associated with muscle sarcopaenia and frailty

syndromes [28].

Progressive wasting in tert2/2 fish was accompanied by an

increase in mortality (Figure 2C). tert2/2 mutants die significantly

earlier than their tert+/+ siblings (average lifespan of 9 versus .22

months, p,0.005). Due to a male sex bias in our crosses that

affected all tert+/+, tert+/2 and tert2/2 progeny, we were unable to

obtain significant numbers for female analysis and so the data

hereafter presented reflects the study of males alone. Sex

Author Summary

Telomerase mutations in humans give rise to premature
ageing syndromes. In animals, the wealth of knowledge in
telomere biology has been biased by the almost exclusive
analysis of long-telomere mice. The role of telomere
shortening requires investigation in organisms that, much
like humans, have evolved telomere length as an internal
cell division ‘‘timer.’’ We provide evidence for such a
model. We show for the first time that telomerase is
required during zebrafish lifespan. In contrast to mice, first-
generation telomerase zebrafish mutants display degen-
erative phenotypes and die prematurely by one year of
age. Furthermore, we show that most telomerase defi-
ciency in this model leads to time- and tissue-specific
apoptotic and senescence responses, highlighting differ-
ent tissue thresholds to telomere dysfunction. Our results
show that telomeres are maintained just above a critical
threshold and that telomerase function is truly limiting for
zebrafish lifespan and tissue homeostasis, closely mimick-
ing the human scenario.

Telomerase Is Required for Zebrafish Lifespan
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determination in zebrafish is still largely unknown, but it is thought

to be highly influenced by environmental factors [29].

Telomerase depletion produces a time- and tissue-
specific degeneration

Histopathological analysis of different tissues revealed important

phenotypic alterations in tert2/2 mutants. Telomere shortening

has been shown to affect primarily high turnover tissues in both

humans [10] and late generation terc KO mice [30]. Accordingly,

we noticed an order of events during tissue atrophy of tert2/2

zebrafish. tert2/2 zebrafish testes were the first to depict

histopathological abnormalities; second were the liver, intestine,

gills and pancreas; the third to be affected was the kidney and

remaining organs, including the muscle (Figure 3, Figure 4 and

summarized in Table S2).

Figure 1. Telomerase mutant zebrafish have shorter telomeres than WT siblings. A) Representative image of TRAP assay showing that
telomerase is not active in the tert2/2 zebrafish, as compared to tert+/+ siblings. Here shown are caudal fin and skin protein extracts. Hela cell extract is
shown as positive control. N = 4. B) Representative image of restriction fragment analysis of caudal fin genomic DNA of 3 different individuals at
different ages, by southern blot (random primer-labelled telomeric probe (CCCTAA)12

32P-dCTP). tert+/+ Zebrafish have heterogeneous telomeres,
with two distinct peaks of different lengths. In tert+/+ the highest peak (,16 Kb, top red arrow) becomes more distinct after 1 months of age and
decreases in length over-time (B and D). The lowest peak of telomere intensity also decreases in length (bottom red arrow, B and D). tert2/2 zebrafish
have shorter telomeres than tert+/+ siblings in different tissues (see also Figure S1A and S1B), observed by the decrease in length of the higher TRF
peak. The shortest TRF peaks accompany those of tert+/+ siblings, and decrease over-time at similar rates. C) Testes fractionation in tert+/+ reveals the
two-telomere length populations in whole testes, whereas mature sperm only shows the shorter TRF smear of about 6 Kb, suggesting different
telomere lengths in different cells within a tissue. D) TRF mean sizes were calculated as described in [50]. E) Telomere PNA-FISH in 6-month-old gut
tissue shows cells with different telomere intensities in the wild type, mainly localizing to the proliferative niche. In contrast tert2/2 mutants display
cells with less bright and more homogeneous telomere intensity.
doi:10.1371/journal.pgen.1003214.g001

Telomerase Is Required for Zebrafish Lifespan
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Figure 2. First-generation telomerase mutant zebrafish show progressive body wasting and die prematurely. A) Representative
images of tert+/+ and tert2/2 zebrafish show that tert2/2 fish are born and develop normally until reproductive maturity at ,3 months of age, but
progressively lose body mass since then, B) represented as an overall reduction in width/length ratios as compared to wild-type siblings N$6
p,0.001. This progressive wasting phenotype is accompanied by increase in mortality. C) Kaplan-Meier curve showing that tert2/2 zebrafish have
significantly reduced survival when compared to tert+/+ siblings (AVG lifespan 9 versus .22 months (p,0.005)). N = 24 tert2/2; N = 45 tert+/+. Data are
represented as mean +/2 SEM. Scale bar = 1 cm.
doi:10.1371/journal.pgen.1003214.g002
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Figure 3. Telomerase depletion leads to a time- and tissue-dependent degeneration. A) Representative images of tissue sections of tert2/2

Zebrafish and tert+/+ siblings, stained with hematoxilin-eosin. tert2/2 zebrafish show progressive tissue deterioration. Severe histological abnormalities
are first evident in proliferative tissues (testes, gut and head kidney marrow) and later in non-proliferative (muscle). tert2/2 Zebrafish show reduced
sperm in testes lumen (L) (Ab and d; p,0.001). The head kidney shows progressive defects in the marrow area (white asterisks) (Ag and i, which
correlates with a decrease in total blood (p = 0.0228) cells when compared to tert+/+ siblings from an early age (3 months, N$5) (Aj). Mesonephric tubules
in the head kidney also degenerate in tert2/2 (Ag and i dashed outlines). Gut atrophy in tert2/2, reflected as decreased villi length (Al, n, o), becomes
significant from the age of 6 months (p,0.001). Muscle fibres are significantly thinner (p,0.001) at terminal time-points (c.12 months) (Aq, s, t, dashed
outline); N$5. B) tert2/2 display progressive thickening of gut lamina propria, indicative of inflammation (Bb, c, yellow bar and arrow, N$4). Data are
represented as mean +/2 SEM. Scale bar = 50 mm.
doi:10.1371/journal.pgen.1003214.g003
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Figure 4. Proliferative tissue degeneration is accompanied by a sustained decrease in proliferation, acute apoptotic responses, and
progressive accumulation of DDR foci. Representative immunofluorescence images of tissue sections in F1 tert2/2 and tert+/+ zebrafish show
levels of proliferation (PCNA), apoptosis (TUNEL), DNA damage (53BP1) and senescence-associated b–galactosidase at the ages of 3 to c.12 months.
Proliferative tissues such as A) testes, B) head kidney and C) gut sections show sustained significant decrease in proliferation in tert2/2 as compared
to tert+/+ siblings (panels b, d and e) (p,0.001) and an acute apoptotic response at 3 months of age (p,0.001), which clears by c. 12 months (panels
g, i and j). This is accompanied by a progressive increase in 53BP1 foci, reaching maximum significance at c. 12 months (panels l, n and o; p,0.001).

Telomerase Is Required for Zebrafish Lifespan
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Testes of tert2/2 zebrafish show a severe imbalance, as early as 3

months of age, in size and ratio of the main spermatogenic classes:

spermatogonia, spermatocytes and spermatids [31]. There was an

atrophy of the differentiating and maturing spermatogenic stages

(Figure 3Ab and 3Ad). This atrophy is consistent with what was

observed in spermatogonia in the late generation terc KO mice [30]

and tert KO mice [18,32]. A consequence of these alterations is the

significant decrease in mature sperm volume observed in the lumen

of seminiferous tubules of tert2/2 male fish (L in Figure 3Ab and

3Ad). Consistently, we observed that tert2/2 zebrafish males are

prematurely infertile (Figure S2). The scarce progeny originating

from a tert2/2 incross was not viable and displayed embryonic

deficiencies consistent with lack of cell proliferation, such as failure

to close the neural tube and body truncations (Figure S2). Female

tert2/2 mutants were initially fertile (Figure S2) but became infertile

later in life, when body wasting became apparent (data not shown).

Similar to telomerase deficiencies in humans and mice with

critically short telomeres, tert2/2 zebrafish display blood defects,

translated into a mild but significant decrease in total blood cells

(Figure 3Aj). Accordingly, histopathological analysis of the head

kidney marrow (the major hematopoietic organ in fish) revealed a

trend towards depletion of the hematopoietic compartment, partic-

ularly at late time points (asterisks in Figure 3Ai). Other proliferative

tissues, such as the gut, show a progressive decrease in microvilli

length (Figure 3Al,n,o) and increased inflammation of the lamina

propria, significant after the age of 6 months (Figure 3Bc). These

changes progress into severe gut degeneration (necrotizing enteritis),

most visible at terminal stages (Figure 3An). During this period, we

observed a pervasive mucosal thickening (sloughing; bar in

Figure 3Bb), denuded villous tips, and inflammatory cell infiltration

(arrows in Figure 3Bb). Atypical intestinal epithelium compatible with

severe dysplasia was also observed (data not shown).

Low-proliferative tissues such as the muscle (Figure 3Ap–t and

Figure 4Dp–t) and liver (data not shown) only exhibit obvious

degeneration at the latest time points of the tert2/2 zebrafish lifespan.

We observed acute and significant muscle degeneration (sarcopaenia)

at terminal stages (Figure 3As) consistent with the wasting phenotype

(Figure 2A and 2B). These observations suggest that low-proliferative

tissues are also targets of telomere dysfunction, as has been suggested

before in mice models [33–35]. Whether this happens in a cell

autonomous or non-autonomous manner remains to be clarified.

Severe gut degeneration (necrotizing enteritis) is a prime

candidate for cause of death of tert2/2 zebrafish. This could

account for mal-nutrition, consequent loss of muscle and wasting.

Consistently, exocrine pancreas of 12 month-old tert2/2 zebrafish

lacked large numbers of bright secretory granules, characteristic of

actively feeding fish (Table S2). Lastly, we did not observe

neoplastic changes in any of the tissues studied.

Tissue atrophy is preceded by lack of cell proliferation,
apoptosis, and senescence

Telomere depletion was shown to affect primarily proliferative

tissues with a high cell turnover. Quantification of cell division in

tert2/2 zebrafish using the S-phase marker PCNA revealed an

overall decrease in cell division in proliferative tissues (Figure 4A–

4C, panels a–e). This was particularly clear in the spermatogenic

zone of the testes (filled-line outline in Figure 4Ab,d). Spermato-

genesis is initiated by the proliferation of stem cells (Spermatogo-

nia A and progenitor stem cells - Spermatogonia B). These are

responsible for the continuous renewing of this highly proliferative

tissue. Decrease in cell proliferation in the testis was accompanied

by an initial burst in apoptosis, as detected by TdT-mediated

dUTP nick end labelling (TUNEL; dashed line outline in

Figure 4Ag). This burst of apoptosis in tert2/2 is restricted to the

germinal centres, as shown by co-localization with the specific

germ cell marker PLZF [36] (Figure 4E), explaining why tissue

homeostasis is compromised in these animals, as shown in mice

[37]. Initial increase of apoptosis was followed by a progressive

decline, losing statistical significance at later time points

(Figure 4Ag,i,j).

A second player in disrupting tissue integrity is the accumulation

of senescent cells [9,20,38]. We observed a progressive increase

in cells presenting strong 53BP1 foci in tert2/2 testes, indicative of

persistent or irreparable DNA damage (Figure 4Al,n,o and

Figure S3d). Persistent 53BP1 has been described as a hallmark

of cell senescence, accumulating preferentially at telomeres

[39,40]. Consistently, we observed an increase in senescence-

associated b-galactosidase (SA-b-gal) staining at later time points

(Figure 4As,t).

Similar to testes, both kidney marrow and gut show an initial

up-regulation of apoptosis, statistically significant at 3 months

old (Figure 4Bg,j and 4Cg,j). The head kidney in zebrafish has

a dual function of excretion and haematopoiesis [41].

Apoptosis is up regulated both in the kidney mesonephric

tubules and haematopoietic tissue (dashed outline and arrow,

respectively, in Figure 4Bg), consistent with the decreased

blood cell levels observed (Figure 3Aj). In the gut, this increase

in apoptosis is accompanied by decreased proliferation at the

base of the villi, statistically significant from 6 months onwards

(Figure 4Ca–e). Decreased cell proliferation in the gut is

accompanied by progressive increase in DNA damage foci, as

detected by 53BP1 staining (Figure 4Ck–o and Figure S3b). In

all proliferative tissues, 53BP1 staining reached its peak at

terminal stages, where no apoptosis is detected (Figure 4A–4C,

panels n,o). Senescent cells have been described to be resistant

to apoptosis [42]. Consistently, in proliferative tissues, we

noticed that 53BP1 foci containing cells corresponded to

regions where SA-b-gal staining was evident (panels n and s in

Figure 4A–4C).

Low-proliferative tissues, such as the muscle, only show

significant defects at later time points. Muscle sarcopaenia is

accompanied by an acute increase in cells stained with 53BP1

(Figure 4Dn,o). Contrary to proliferative tissues, 53BP1 staining in

the muscle (Figure 4Dn) did not correlate with an increase in cell

senescence, as we were unable to detect significant SA-b-gal

staining (Figure 4Ds,t).

This coincides with the presence of senescence-associated b –galactosidase at c.12 months (panels s and t). Note in the testes that most of apoptosis
(TUNEL) seems to localize to the spermatogenic zone (Ag, dashed outline) and panel E, where we see an increase in TUNEL-labelled germ cells,
labelled with the specific marker PLZF. Most of DNA damage (53BP1) locates to the proliferative zone of maturing spermatocytes (Al, uniform outline).
Note in the head kidney B), both the proliferative haematopoietic tissue (Ba–d, arrows) and the non-proliferative mesonephric tubule epithelium (Ba–
d, dashed outline) are affected by increased apoptosis (Bg, I, j), DNA damage (Bl, n and o) and senescence (Bs and t) in the tert2/2. D) Muscle, a largely
non-proliferative tissue (Da–d) shows significant accumulation of DNA damage foci at in tert2/2 by the age of c.12 months (Dn and o; p,0.001),
when the muscle fibres are already atrophic (Dn, dashed outline). Quantifications were performed in at least 3 different fields of view of at least 3
different individuals of each genotype at the different time-points indicated in the graphs. Gut IF quantifications were calculated as number of
positive cells per ‘‘crypt’’ zone (C) uniform square outline exemplified). Other tissues’ IF was quantified as overall % positive cells. b-galactosidase was
quantified as % area stained blue, per field of view. Data are represented as mean +/2 SEM. Scale bar = 50 mm.
doi:10.1371/journal.pgen.1003214.g004

Telomerase Is Required for Zebrafish Lifespan

PLOS Genetics | www.plosgenetics.org 7 January 2013 | Volume 9 | Issue 1 | e1003214



p53 expression leads to puma-apoptosis and ccng1-
senescence

In late generation telomerase KO mice, telomere shortening

activates a p53 dependent DDR that culminates in apoptosis and

cell-cycle arrest [21]. Similarly, we observed a p53 response in

proliferative tissues of tert2/2 zebrafish, such as the testes and gut

(Figure 5A). This response is accompanied by an acute up-

regulation of puma (Figure 5B a, c). Consistent with our apoptosis

data, puma expression is reduced at later stages (c.12 months of age;

Figure 5B a, c). In the gut, puma expression is replaced by sustained

up-regulation of the cell cycle arrest targets cdkn1a and cyclin G1

(Figure 5Cc and 5Dc). Recently, cyclin G1 has been depicted as a

p53-dependent target in zebrafish [43]. Consistently, up-regula-

tion of cell cycle inhibitors through p53 activation led to G1 arrest

and cell senescence. This has been described as recurrent

phenomena in telomerase knockout murine tissues with dysfunc-

tional telomeres [19]. Finally, we do not detect a significant p53

response in either the head kidney (an heterogeneous tissue), or in

the muscle, a low-proliferative tissue.

Elimination of tp53 function partially rescues tert2/2

phenotypes
Our data show that telomerase deficiency in zebrafish gives rise

to a p53 response, which ultimately culminates in cell cycle arrest

(Figure 5), as observed in mice models [19]. Accordingly, tp53

deletion in mice was shown to ameliorate late generation tert KO

phenotypes such as infertility [44]. To test whether p53 could be

mediating the phenotypes observed in the tert2/2 zebrafish, we

Figure 5. Tissue degeneration is accompanied by p53 induction with a puma acute response and sustained increase of cyclin G1 and
cdkn1a expression. A) Immunoblot analysis of p53 in 10-month old WT and tert2/2 testes and gut lysates. 6 month-old WT zebrafish were injected
with the DNA damaging agent doxorubicin to serve as positive control for p53 activation. Asterisk depicts a non-specific cross-reactive band that
serves as loading control. RT-qPCR analysis showing expression of B) pro-apoptotic (puma) and cell cycle arrest targets (C) cyclin G1 and D) cdkn1a) in
testes, head kidney, gut and muscle of 1, 3, 6 and c.12 months old WT and tert2/2 zebrafish (N = 3 to 8 fish per genotype). Data are represented as
mean +/2 SEM. Rel. mRNA refers to relative mRNA levels of each gene normalized to beta-actin.
doi:10.1371/journal.pgen.1003214.g005
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crossed tert+/2 with tp532/2 mutants (tp53 zdf1/zdf1 [45]) to produce

double mutant tert2/2tp532/2 zebrafish. Mortality was signifi-

cantly rescued, since at c.12 months, approximately 87% of tert2/2

tp532/2 (N = 31) were alive, compared to 0% of tert2/2 (N = 24).

Immunofluorescence analysis in tert2/2 tp532/2 proliferative

tissues, revealed a dramatic rescue of cell proliferation in tissues

that were most affected in tert2/2 (testes and gut at c.12 months;

Figure 6Ac, d and 6Bc, d).

This rescue in cell proliferation, however, was not sufficient to

prevent testis atrophy and decreased number of mature sperm in

tert2/2 tp532/2 (Figure 6Aa,b). In contrast, rescue of the

proliferative capacity in the gut of the double mutant clearly

suppressed tert2/2 gut villi length defects (Figure 6Ba,b). Despite

an increased cell proliferation, this partial phenotypic rescue was

accompanied by a significant increase in TUNEL-labelled cells in

the tert2/2 tp532/2 testis (Figure 6Ae, f) and gut (Figure 6Be, f)

and maintenance or slight decrease in 53BP1 staining (Figure 6Ag,

h and 6Bg, h). Thus, similar to the mouse model [44], p53 appears

to mediate tert2/2 phenotypes, as tp53 function depletion partially

rescues or delays proliferative tissue degeneration observed in

tert2/2 zebrafish.

Discussion

Most of our knowledge on how vertebrates respond to short

telomeres derives from laboratory mice, which are particularly

different from humans not only in what respects telomere length,

but also in cell immortalization and entry into senescence [46].

Zebrafish has recently emerged as an attractive complementary

vertebrate model for studying telomere biology. Zebrafish possess

short telomeres that decline with age and correlate with impaired

tissue repair [24]. These observations motivated us to investigate

Figure 6. Elimination of tp53 function partially rescues tert2/2 degeneration in proliferative tissues. tert2/2tp532/2 show increased
proliferation and apoptosis in both testes (Ac, d and e, f) and gut (Bc, d and e, f), as compared to tert2/2 alone. In the testis, dashed outline represents
spermatogenic zone, uniform outline proliferative zone of maturing spermatocytes and L the lumen where mature sperm is located. Elimination of
tp53 function partially rescues mature sperm numbers (Aa, b) but completely rescues gut villi length (Ba, b). DNA damage as assessed by 53BP1 is
maintained in tert2/2tp532/2 testes (Ag and h) and decreased in the gut (Bg and h), as compared to tert2/2. N$3. Data are represented as mean +/2
SEM. Scale bar = 50 mm.
doi:10.1371/journal.pgen.1003214.g006
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the impact of telomere shortening in a biological system that, like

humans, may have evolved to use telomere length as an internal

cell division ‘‘clock’’.

In our current work, we show that zebrafish telomerase mutants

have premature degenerative phenotypes and decreased lifespan

in the F1 generation. This contrasts with results obtained from

telomerase KO mice, where degenerative phenotypes are only

observed upon several generations of null crosses [16–18,32]. The

phenotypes we observe correlate well with the accumulation of

short telomeres in tert2/2 zebrafish, along with the disappearance

of long telomeres. The two telomere populations may reflect

different phenomena: 1) Presence of undigested genomic DNA; 2)

Distinct populations of sub-telomeric sequences in the same cells

or 3) Telomeres of different lengths present in distinct cells. We

excluded the first two possibilities. Regarding the first point,

undigested genomic DNA samples used as controls run at different

sizes to the long TRF population (ND in Figure 1B). As for the

second, different DNA methylation patterns in tert+/+ and mutants

could account for the presence of unequal TRF populations due to

restriction enzyme sensitivity. To exclude this possibility, we used a

restriction enzyme insensitive to DNA methylation, Tru9I, and

observed an equivalent TRF pattern (data not shown).

We favour the third hypothesis in which high molecular weight

TRFs are derived from cells with longer telomeres present in the

same tissue. This is probably the case for testes. Mature sperm

from the same individual exhibited only the shorter TRF

population, whereas whole testes tissue possesses both. Thus, cells

that comprise the testes, other than sperm, must have longer

telomeres and are maintained through time by telomerase. In

contrast to mature sperm, blood cells isolated from WT individuals

exhibited exclusively long telomeres. Consistent with other tissues,

tert2/2 zebrafish also have shorter telomeres in blood.

The hypothesis that tissues harbour cells with telomeres of

different lengths is corroborated by our telomere PNA-FISH data.

tert+/+ tissues, such as the gut, have cells with very different

telomere intensities suggestive of shorter and longer telomeres. In

contrast, tert2/2 tissues show more homogeneous, low intensity,

telomere-FISH. Notably, the majority of high-telomere-intensity

cells in tert+/+ are located to the villus proliferative zone. These

cells are generally absent in the tert2/2 tissues, suggesting that cells

with longer telomeres are strictly telomerase dependent. This

suggests that telomerase is activated during embryogenesis and

elongates telomeres in stem and early precursor cells. In tert2/2

mutants this cannot happen and, even though cells proliferate

initially, their telomeres shorten with each cell division giving rise

to populations with shorter telomeres.

Together, our data support the idea that telomerase is limiting

for zebrafish telomere maintenance, since we observe long and

short telomeres in WT. Accordingly, shorter telomeres in tert+/+

are equivalent in size to the ones present in tert2/2 zebrafish

mutants. Shorter telomeres decline rapidly in the first three

months of life both in tert+/+ and mutant fish, steadily decreasing

for the next three to six months. This period of fast telomere

shortening correlates with intense body growth preceding sexual

maturity, was also observed in humans [47].

Our work describes a choreography of defects caused by

telomere shortening in different tissues over-time. Consistent with

the late generation telomerase KO mice, tert2/2 zebrafish die

prematurely due to an acute depletion of proliferating cells [30].

The choice between senescence and apoptosis in different cells

may dictate the homeostatic threshold of individual tissues. This

regulation will determine how the whole organism responds to

telomere dysfunction. Proliferative tissues, such as testes, gut and

kidney marrow are affected first. Progressive gut degeneration,

with severe necrotizing enteritis, is the most likely cause for body

wasting and premature death. We observed different apoptotic

and senescent responses in different tissues. Immunofluorescence

data identified an acute apoptotic response in proliferative tissues,

namely the testes and gut and, to a lesser extent, in head kidney.

This correlated with increased p53 levels and puma expression

measured by RT-qPCR, particularly evident in proliferative

tissues, such as the gut and testes. This increase in apoptosis is

largely cleared at later time points, where DNA damage and

senescence became the dominant phenomena in degenerated

tert2/2 tissues.

Interfering with tp53 function in tert2/2tp532/2 double mutants

significantly increased proliferation in testes and gut, partially

rescuing degenerative phenotypes. This indicates that p53 is a

crucial mediator of the tert2/2 degenerative phenotypes in

proliferative tissues. Rescue of cell proliferation is not without

consequence, since cells continue to accumulate 53BP1 DDR

markers and enter apoptosis. However, the apoptotic response in

tert2/2tp532/2 zebrafish differs from the tert/tp53 KO mice

[44,48], since apoptosis increases in comparison to tert2/2 single

mutants, whereas it decreases in mice. Increase in apoptosis in

tert2/2tp532/2 zebrafish is mediated via p53-independent mech-

anisms, such as those under the control of p63 or p73 [14]. This

suggests different mechanistic responses in zebrafish to telomere

dysfunction to those in present in the mouse. It also reinforces the

idea of separate homeostatic thresholds in different tissues, since

p53 removal can only partially rescue testes integrity whereas gut

villi length is completely restored in tert2/2tp532/2.

In conclusion, zebrafish is a suitable model system to

understand the effects of telomere shortening during lifespan of

an organism. Telomerase is also required for low-proliferative

tissue homeostasis. Whether this occurs in an autonomous or non

cell-autonomous manner remains to be clarified. Nevertheless,

tert2/2 also have shorter telomeres in low-proliferative tissues,

suggesting that both scenarios are possible. Reduced or absent

telomerase may trigger whole body degeneration by blocking cell

proliferation causing an unbalanced tissue homeostasis, and this is

largely p53-mediated in high proliferating tissues.

Materials and Methods

Ethics statement
All Zebrafish work was conducted according to National

Guidelines and approved by the Ethical Committee of the DGV

(Portuguese Veterinary Authority) and the European Union

Regulatory Agency.

Zebrafish lines and maintenance
Zebrafish were maintained in accordance with Institutional and

National animal care protocols. The telomerase mutant line tert AB/

hu3430 possesses a TRA point-mutation in the tert gene. Zebrafish

mutant lines were generated by N-Ethyl-N-nitrosourea (ENU)

mutagenesis (Utrecht University, Netherlands) [49]. Briefly, adult

male zebrafish were randomly mutagenized with ENU and

outcrossed against wild-type females. A library of F1 animals

was then constructed. Genomic DNA of these F1 animals was

isolated and arrayed in PCR plates. The DNA was screened for

mutations in target genes by re-sequencing or TILLING. Animals

with interesting mutations were recovered from the library (either

re-identified from a pool of living F1 fish or recovered by in vitro

fertilization with frozen sperm) and outcrossed against wild-type

fish.

tert AB/hu3430 line is available at the ZFIN repository (ZFIN ID:

ZDB-GENO-100412-50) from the Zebrafish International Re-
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source Center (ZIRC) and was generously provided to us by Dr. L.

Bally-Cuif at the Zebrafish Neurogenetics Department, German

Research Center for Environmental Health. The tertAB/hu3430 used

in this paper was subsequently outcrossed 5 times with WT AB for

clearing of potential background mutations derived from the

random ENU mutagenesis from which this line was originated.

The terthu3430/hu3430 homozygous mutant is referred in the paper as

tert2/2 and was obtained by incrossing our tertAB/hu3430 strain.

Genotyping was performed by PCR of the tert gene (Table S1)

followed by sequencing.

Overall characterization of tert2/2 zebrafish was performed in

F1 and F2 animals produced by tert+/2 incross. All 1, 3 and 6

months analysis refers to F1 animals and 12 months analysis refers

to F2. The premature death phenotype depicted in Figure 2C

refers to F1 animals only

Telomerase activity assay (TRAP)
Telomerase activity was measured using the TRAPEZE

Telomerase Detection Kit (S7700, Millipore, MA, USA) as

described by manufacturers. Briefly, fish were sacrificed in

200 mg/L of MS-222 (Sigma, MO, USA) and a small portion of

skin and fin were extracted from at least three different individuals

of the different genotypes. Protein extracts were prepared by

mashing tissue sections on ice with a micro-pestle in a 1.5 ml

eppendorf tube, in 100 ml of CHAPS buffer with proteinase

inhibitors cocktail (Sigma, MO, USA) and RNase inhibitor

(200 U/ml, Invitrogen, UK). Cell extracts were incubated on ice

for 30 minutes and centrifuged at 12,0006g for 20 minutes at

4uC. The supernatant was quantified using Bradford protein

quantification reagent (Pierce, IL, USA) and the TRAP assay was

performed using 2 mg of protein/sample. The positive control was

provided by the TRAP kit and used as described (S7700,

Millipore, MA, USA).

Telomere restriction fragment (TRF) analysis by Southern
blot

TRF analysis was performed as previously described [50].

Briefly, genomic DNA extraction from freshly isolated tissue was

performed using extraction buffer (50 mM Tris-HCl pH 8;

50 mM EDTA; 10 mM NaCl; 1% SDS) supplemented with

1 mg/ml Proteinase K (Sigma, MO, USA) and RNase A (1:100

dilution, Sigma, MO, USA) prior to use. Samples were incubated

at 50uC for 18 h in a thermomixer and genomic DNA was

extracted by equilibrated phenol-chloroform (Sigma, MO, USA)

and chloroform-isoamyl alcohol extraction (Sigma, MO, USA).

Blood genomic DNA was extracted with TNES buffer (10 mM

Tris pH 7.4; 100 mM NaCl; 10 mM EDTA; 0.5% SDS),

supplemented with RNase A (1:100 dilution, Sigma, MO, USA)

prior to use. Samples were incubated 10 minutes at RT and

extracted as for other tissues. Genomic DNA was quantified and

normalized so the same amount of DNA was digested with RSAI

and HINFI enzymes (NEB, MA, USA) as described previously

[50] for 12 h at 37uC. BAL31 (NEB, MA, USA) digestion was

performed at 30uC for different time points. Samples were ran on

a 20 cm 0.6% agarose gel, in 0.5% TBE buffer, at 4uC for 17 h at

110 constant voltage. Southern blotting was performed as

previously described [51].

Histological preparation and phenotypic analysis
Fish were sacrificed as described above, fixed overnight in 4%

paraformaldehyde and decalcified in 0.5 M EDTA for 24–48 h at

4uc. Whole fish were then paraffin-embedded and 5 micrometer

sections were stained with Hematoxylin-Eosin for histopatholog-

ical analysis. Embryos were fixed overnight in 4% PFA at 4uC as

above and then placed in 100% methanol at 4uC before

processing. After several washes in PBS (phosphate buffer saline)

the embryos were cryoprotected on a sucrose 15%/PBS solution

and then embedded in 7,5% pork skin gelatine (Sigma)/15%

sucrose/PBS for one hour at 37uC. The 1 cm2 blocks were frozen

in isopenthane/liquid nitrogen and stored at 280uC until

sectioning. The embedded samples were cut in 12 um sections

with a cryostat (Leica CM 3050S). Hematoxilin-Eosin staining was

performed in serial cuts.

Immunofluorescence (IF) and confocal analysis
Whole fish slides were sub-boiled for 10 minutes at 800 W in a

microwave in citrate buffer (10 mM Sodium Citrate, pH 6) for

antigen retrieval. Slides were washed 3 times in dH20 for

5 minutes each, followed by TBST (Tween 0.1%) for 5 minutes.

After washes, slides were blocked for 1 hour at RT in 0.25% BSA

in PBST (Triton 0.3%). The following primary antibodies were

used: rabbit monoclonal antibodies against Proliferation Cell

Nuclear Antigen (PCNA, Santa Cruz, CA, USA, 1:50 dilution),

53BP1 (Life-span Biosciences, WA, USA, 1:100) and anti-PLZF

(Life-span Biosciences, WA, USA, 1:100). Incubation with primary

antibodies was performed overnight in the dark, at 4uC, followed

by 5 minutes, 1 hour and two 10 minutes PBS washes. Secondary

antibody Alexa Fluor 568 goat anti-rabbit (Invitrogen, UK, 1:500

dilution) was then applied overnight at 4uC, followed by final

washes in PBS, as described for the primary antibody washes.

Apoptosis was detected using the In Situ Cell Death Detection Kit

(Roche, SW) according to manufacturer’s instructions. Briefly,

after de-parafinization, slides were incubated with 40 mg/ml

Proteinase K in 10 mM Tris-HCl pH 7.4, 30 minutes at 37uC.

Slides were washed in 265 minutes in PBS and then incubated

with TUNEL labelling mix (protocol indicated by the supplier).

Washes were performed as previously described. Slides were

incubated with TO-PRO3 (Molecular Probes, Invitrogen, UK,

1:5000 dilution) and DAPI (Sigma, MO, USA, 1:2000 dilution)

nuclear staining for 30 minutes at room temperature in the dark,

followed by two 5 minutes’ washes with PBS. Coverslips were then

mounted with DAKO Fluorescence Mounting Medium (Sigma,

MO, USA). Confocal images were acquired on Leica TCS SP5 II

(Leica Microsystems, GER) equipped with Leica Las AF Lite

software and with appropriate configurations for multiple colour

acquisition. For quantitative and comparative imaging, equivalent

image acquisition parameters were used.

Telomere PNA-FISH
Immuno-FISH was performed as in [39]. Briefly, zebrafish

paraffin sections, processed as for IF were hydrated by incubation

in 100% Histoclear, 100, 95 and 70% methanol for 5 min and in

distilled water for 5 min. Whole fish slides were sub-boiled for

10 minutes at 800 W in a microwave in citrate buffer (10 mM

Sodium Citrate, pH 6) for antigen retrieval. After cooling the

slides were washed with distilled water for 5 min (26). Slides were

washed three times in PBS and dehydrated with 70, 90 and 100%

ethanol for 3 min each. Sections were denatured for 5 min at

80uC in hybridization buffer (70% formamide (Sigma), 25 mM

MgCl2, 1 M Tris pH 7.2, 5% blocking reagent (Roche)) contain-

ing 2.5 mg/ml Cy-3-labelled telomere specific (CCCTAA) peptide

nuclei acid probe (Panagene), followed by hybridization for 2 h at

room temperature in the dark. The slides were washed twice with

70% formamide in 26SSC for 15 minutes, followed by 10 min-

utes wash with 26SSC and PBS. Sections were incubated with

DAPI (SIGMA), mounted and imaged. Z stacking was performed
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(a minimum of 40 optical slices with 6100 objective) followed by

Image-J deconvolution.

Senescence-associated b-galactosidase assay
b-galactosidase assay was performed as previously described

[25]. Briefly, sacrificed zebrafish adults were fixed as before and

then washed 3 times for 1 h in PBS-pH 7.4 and for a further 1 h

in PBS-pH 6.0 at 4uC. b-galactosidase staining was performed for

24 h at 37uC in 5 mM potassium ferrocyanide, 5 mM potassium

ferricyanide, 2 mM MgCl2 and 1 mg/ml X-gal, in PBS adjusted

to pH 6.0. After staining, fish were washed 36 for 5 minutes in

PBS pH 7 and processed for de-calcification and paraffin

embedding as before. Sections were stained with hematoxilin for

nuclear detection and images were acquired in a bright field

microscope (Leica DMLB2, GER).

Real-time quantitative PCR
Age- and sex-matched fish were sacrificed in 200 mg/L of MS-

222 (Sigma, MO, USA) and portions of each tissue (gonads, gut,

liver, head kidney and muscle) were retrieved and immediately

snap-frozen in liquid nitrogen. RNA extraction was performed in

TRIzol (Invitrogen, UK) by mashing each individual tissue with a

pestle in a 1.5 ml eppendorff tube. After incubation at RT for

10 minutes in TRIzol, chlorophorm extractions were performed.

Quality of RNA samples was assessed through BioAnalyzer

(Agilent 2100, CA, USA). Transcription into cDNA was

performed using random primers (20 mg) (Promega C1181, WI,

USA). Quantitative PCR (qPCR) was performed using PerfeCTa

SYBR Green FastMix, ROX (Quanta, MD, USA) and an ABI

7900HT Sequence Detection System (Applied Biosystems, CA,

USA). qPCRs were carried out in triplicate for each cDNA

sample. Relative mRNA expression was normalized to beta-actin

and rpl13 a (data not shown) mRNA expression using the DCT

method (derived from the Livak & Schmittgen method, 2001). Primer

sequences are listed in Table S1.

Immunoblot analysis
Each tissue was dissected and homogenized in HEPES buffer

(HEPES 10 mM, KCl 300 mM, MgCl2 3 mM, CaCl2 100 mM,

Triton X-100 0.45%, Tween-20 0.05%, pH 7.6) including

complete protease inhibitor cocktail (Roche Diagnostics). Cell

extracts were incubated on ice and centrifuged at 13,000 rpm for

10 minutes at 4uC. The supernatant was collected and quantified

using Bradford protein quantification reagent (Pierce). Loading

mix was added to protein extracts, heated at 95uC for 5 minutes

and loaded onto a 12.5% SDS-PAGE gel (80 mg of protein/

sample).

After electroblotting the gel onto a PVDF membrane,

incubation was performed overnight at 4uC with anti-Tp53

(AnaSpec, 55342) specific for zebrafish, in TBS-T with 5% milk

powder (using a 1:300 dilution). Chemiluminescence detection was

performed with an ECL KIT (Amersham).

Western blots were performed on WT and tert2/2 10 month-

old tissue samples (N = 3–4).

Doxorubicin assay
To induce a DNA-damage p53-dependent response, adult fish

were anesthetized in MS-222 (Sigma) and doxorubicin (Sigma)

was injected intraperitoneally. A dosage of 15 mg/kg body

weight was used. Fish were allowed to recover for 24 h, after

which they were sacrificed in 200 mg/L of MS-222 (Sigma) and

the organs collected for analysis of p53 protein levels by western

blot.

Statistical analysis
Immunofluorescence. Image edition was performed in

Adobe Photoshop CS5.1. All statistical analysis was performed

in GraphPad Prism5, using Mann Whitney’s unpaired t-test when

only two points were compared. More than one point comparison

over-time was performed by two-way ANOVA test with

Bonferroni post-correction. A critical value for significance of

p,0.05 was used throughout the study.
Real-time quantitative PCR. Statistical analysis was per-

formed in GraphPad Prism5, two-way ANOVA with Bonferroni

post-correction. A critical value for significance of p,0.05 was

used throughout the study.

Supporting Information

Figure S1 tert2/2 zebrafish have shorter telomeres than tert+/+ in

all tissues tested. A) Representative southern blots and TRF

analysis of different tissues at the age of 3 months, show decreased

telomere sizes in tert2/2 as compared to tert+/+ siblings. Note that

all tissues have both long and short TRF populations in the tert+/+,

except the blood, where only a long TRF of approximately 15 Kb

is detected. tert2/2 show a severe decrease of these long telomeres,

and mainly show the short TRF smear of approximately 6 Kb. B)

Mean TRF peak quantifications of the southern blot shown in A).

C) Representative southern blot and TRF analysis of Bal31 (a 59

and 39 terminal exonuclease) restriction of fin genomic DNA

shows that all telomeric signals correspond to terminal sequences.

N$3. Data are represented as mean +/2 SEM.

(TIF)

Figure S2 First generation tert2/2 show premature male

infertility. A) tert2/2 mutant males are infertile by 6 months of

age, represented here as percentage of non-fertilized eggs per cross

(Mean nr. of non-fertilized eggs/total number of eggs produced by

the female). Number of crosses = 3. B). The few F1 maternal

zygotic progeny are not viable due to gross abnormalities during

embryonic development. N$3. Data are represented as mean +/

2 SEM.

(TIF)

Figure S3 tert2/2 proliferative tissues accumulate strong 53BP1

foci. Panel showing representative images of cells in testis and gut

of wild-type and tert2/2 fish at c.12 months of age. tert2/2 tissues

accumulate cells presenting strong 53BP1 foci, as highlighted by

the yellow arrows, compared to a more diffuse 53BP1 staining in

most wild-type cells.

(TIF)

Table S1 List of primers used in RT-qPCR expression analysis

and tert genotyping.

(DOC)

Table S2 Time-dependent histopathological changes in tert2/2

zebrafish. Semi-quantitative histopathological analysis was per-

formed using a score ranging from (2) to (+++), depending on the

severity and extent of the lesions: (2) none, (+) minimal to mild,

(++) moderate, (+++) severe.

(DOC)
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