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Abstract We numerically investigate Taylor-Couette flow in a wide-gap configuration, with ri/ro =
1/2, the inner cylinder rotating, and the outer cylinder stationary. The fluid is taken to be electrically
conducting, and a magnetic field of the form Bz ≈ (1 + cos(2πz/z0))/2 is externally imposed, where
the wavelength z0 = 50(ro−ri). Taylor vortices form where the field is weak, but not where it is strong.
As the Reynolds number measuring the rotation rate is increased, the initial onset of vortices involves
phase slip events, whereby pairs of Taylor vortices are periodically formed and then drift outward, away
from the midplane where Bz = 0. Subsequent bifurcations lead to a variety of other solutions, including
ones both symmetric and asymmetric about the midplane. For even larger Reynolds numbers a different
type of phase slip arises, in which vortices form at the outer edges of the pattern and drift inward,
disappearing abruptly at a certain point. These solutions can also be symmetric or asymmetric about
the midplane, and co-exist at the same Reynolds number. Many of the dynamics of these phase slip
solutions are qualitatively similar to previous results in geometrically ramped Taylor-Couette flows.

1 Introduction

The flow between differentially rotating cylinders, known as Taylor-Couette flow (TC flow), is one of
the oldest problems in fluid dynamics, but continues to attract considerable experimental [1–3] as well
as numerical [4–6] interest. Another indication of its continuing relevance is the number of distinct
branches it has spawned. Two of these are: (a) ramped TC flow, where the inner and/or outer radii of
the cylinders are not uniform, but vary along the axial direction, and (b) magnetic TC flow, where the
fluid is taken to be electrically conducting, and magnetic fields are externally applied. In this work we
combine these two branches, by using magnetic fields to impose the axial modulation that is otherwise
created by the geometrical ramping. We demonstrate that the phenomenon of phase slip, whereby
pairs of Taylor vortices are either created or destroyed, carries over from geometrically to magnetically
ramped TC flows. We suggest that magnetically modulated TC flow may be a more convenient system
to numerically study some of the resulting pattern formation effects.

The configuration of greatest interest in ramped TC flow is when the radii of the cylinders gradually
vary in such a way that parts of the domain can be above the critical Reynolds number for the onset
of Taylor vortices while other parts are still below. Refs. [7,8] considered such subcritical ramps in
a general pattern formation context, and showed that the usual Eckhaus-stable wave-number band
instead collapses to a single wave-number. Riecke & Paap [9] applied this so-called phase-diffusion
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equation approach specifically to TC flows, and demonstrated that “there exist ramps which do not
permit any static patterns but force them to drift.” That is, once the wave-number is fixed, at the
transition point(s) from locally subcritical to supercritical, that can force the wave-number in other
parts of the supercritical region to be Eckhaus-unstable. The pattern responds with a phase slip
event, essentially an attempt to move the wave-number toward Eckhaus stability. The resulting Taylor
vortices drift away though, forcing a new phase slip, and so on indefinitely. (Note however that not all
subcritically ramped systems necessarily lead to phase slip behaviour; for reviews of various pattern-
forming systems without phase slip see [10].)

Occurring in parallel with the theory of Riecke & Paap were a series of experiments [11–13] which
confirmed many of these ideas, including the uniqueness of the selected wave-number and the possibility
of drifting patterns. Paap & Riecke [14] in turn followed up with further work demonstrating that the
phase equation approach yields quantitatively accurate agreement with many of these experimental
results. They further suggested that it should be possible to construct ramps where the phase slip events
occur irregularly, resulting in spatiotemporal chaos in the pattern. Ref. [15] took up this challenge
experimentally, and succeeded in obtaining a period-doubling cascade to chaotic phase dynamics. We
therefore conclude our overview of ramped TC flow by noting that there is a broad variety of possible
patterns, and a good theoretical framework for understanding many of these results.

Turning next to magnetic TC flow, the current focus of attention is primarily on the magne-
torotational instability (MRI), whereby a magnetic field can destabilize a rotation profile that would
otherwise be stable according to the Rayleigh criterion. First discovered in 1959 in TC flows [16], the
MRI lay largely dormant until it was suggested that it might play a crucial role in astrophysical accre-
tion disks [17]. This discovery reignited interest in the MRI in TC flows, and specifically the possibility
of obtaining it [18,19] or variants of it [20,21] experimentally. The standard MRI has not yet been
obtained [22,23], but the helical [24] and azimuthal [25] variants have. A further recent magnetic TC
experiment [26] has measured the so-called ω-effect.

However, here we wish to return to some of the earliest work [27–29] on magnetic TC flows, dating
back over 50 years. In the standard configuration where the outer cylinder is stationary (and the
Rayleigh criterion therefore does not enforce hydrodynamic stability), both theory [27] and experiment
[28,29] agree that imposing a uniform axial magnetic field has a stabilizing influence, that is, delays
the onset of Taylor vortices to greater Reynolds numbers. It is this stabilizing feature that forms the
basis of our work here. In particular, suppose one were to impose not a uniform axial field, but instead
Bz ≈ (1 + cos(2πz/z0))/2 [the precise form is given below in Eq. (3)]. That is, the field reaches a
maximum at integer multiples of the basic periodicity z0, and drops to zero at half-integer multiples
of z0. We would then expect to obtain Taylor vortices where the field is weak, and no Taylor vortices
where it is strong – the same subcritical ramping effect as before in the geometrically ramped problem.

2 Equations

We consider the standard wide-gap Taylor-Couette configuration with radii ri and ro satisfying ri/ro =
1/2. The inner cylinder rotates at a rate Ω, and the outer cylinder is stationary. In the so-called
inductionless limit, the suitably scaled Navier-Stokes and magnetic induction equations become

Re
∂U

∂t
= −∇p+ ∇2U −ReU · ∇U +Ha2(∇× b) × B0, (1)

∇2b = −∇× (U × B0). (2)

Length has been scaled by ri, time by Ω−1, and U by Ωri. B0 is the externally imposed magnetic
field, and b the induced field. The two nondimensional parameters in these equations are the usual
Reynolds number

Re =
Ωr2i
ν

measuring the inner cylinder’s rotation rate, and the Hartmann number

Ha =
B0ri√
µρνη
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measuring the strength of the imposed field. The quantities µ, ρ, ν, and η are the fluid’s permeability,
density, viscosity, and magnetic diffusivity, respectively. See also [30,31] for a more detailed derivation
of these equations in the inductionless limit, in the context of magnetic spherical Couette flow. For
experiments in magnetic spherical Couette flow see [32,33] and further references therein.

The spatial structure of the imposed field B0 is given by

B0 =
[

(1 + cos(κz)I0(κr))/2
]

êz +
[

sin(κz)I1(κr)/2
]

êr, (3)

where κ = 2π/z0, and I0 and I1 are the modified Bessel functions [34]. The wavelength z0 is an
adjustable parameter, but once fixed, the rest of the structure is completely determined by the re-
quirements that B0 be a potential field, and imposed from the region r > ro rather than r < ri. That
is, with a suitable array of external Helmholtz coils one could actually impose such a field, a point we
will return to in the conclusion. Note finally that the r-dependent parts of B0 are necessary to satisfy
∇ · B0 = 0 and ∇× B0 = 0, but are in fact quite small. Using the asymptotic properties I0(κr) ≈ 1
and I1(κr) ≪ 1 for κr ≪ 1, one obtains B0 ≈ [(1 + cos(κz))/2] êz, as desired to create the magnetic
ramping effect.

These equations (1-3), together with boundary conditions no-slip for U and perfectly conducting
for b, were numerically solved using an axisymmetric, pseudo-spectral code [35]. Very briefly, U and
b are expanded as

U = ∇× (ψ êφ) + v êφ, b = ∇× (a êφ) + b êφ,

then ψ, v, a and b are further expanded in terms of Chebyshev polynomials in r and Fourier series in
z. Typical resolutions used were 20 − 30 Chebyshev polynomials and 200 − 300 Fourier modes. The
time-stepping of Eq. (1) is second-order Runge-Kutta, modified to treat the diffusive terms implicitly.
Eq. (2) is directly inverted for b at each time-step of Eq. (1). Typical time-steps used were 0.02−0.05.

After preliminary scans in the range z0 = 20− 80 yielded qualitatively similar phase slip solutions,
the axial length was fixed at z0 = 50. For comparison, the spatially ramped experiment [15] most
closely related to our magnetic case had a nondimensional length of 29. Again after some preliminary
scans, it was found that Hartmann numbers in the range 2− 10 also yielded similar solutions, so only
Ha = 5 was investigated in further detail. The single remaining parameter, the Reynolds number, was
then varied throughout the interval Re = 67 − 85. The reason for the lower limit is simple: in the
non-magnetic problem the critical Reynolds number for the onset of Taylor vortices is known [36] to be
68.2, so one would hardly expect anything interesting to happen before then in this problem. The upper
limit was chosen partly because enough interesting things had already happened by then, and partly
because the calculations become more time-consuming beyond that point. Eventually of course one
would also expect the solutions to become three-dimensional, although in the non-magnetic problem
at least non-axisymmetric instabilities do not arise until much larger Reynolds numbers, around three
times supercritical [37] versus less than 30% supercriticality considered here.

Finally, it is worth noting that at least some of the cases required extremely long integration times
before periodic solutions emerged. This is a natural consequence of having z0 ≫ 1: the diffusive time-
scale between two points separated by the maximum possible distance z0/2 is Re(z0/2)2 = O(105), so
very long time-scales are almost inevitable.

3 Results

Figure 1 shows the flow at Re = 67, still below the onset of Taylor vortices. There is in fact already
a deviation from the ideal Couette profile, most noticeably in the meridional circulation ψ, which is
identically zero in the ideal basic state, but now consists of four large circulation cells centered on
the midplane z = 25. These cells already appear for all Re > 0, and are analogous to the Ekman
cells obtained in cylinders with top and bottom endplates [12,38]. In this case they are caused by the
r-dependent parts of B0; if the imposed field were exactly Bz = (1+cos(κz))/2, then the ideal Couette
profile v = C1r+C2/r would also be an exact solution of the Navier-Stokes equation, along with ψ = 0.
By taking z0 to be sufficiently large, these deviations from the ideal profile can thus be made as small
as desired. Geometrically ramped TC flows also have deviations from the ideal Couette profile, caused
by similar dynamics as the endplate-induced Ekman cells. These deviations from the ideal profile are
not crucial though to any of the phase equation results, including the existence of drifting patterns [9].
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Fig. 1 The solution at Re = 67. The top row shows the meridional circulation ψ, with a contour interval of
10−3, and blue/red indicating clockwise/counter-clockwise circulation. The second row shows v, with a contour
interval of 0.25. The horizontal axis corresponds to length z along the cylinders; the regions z < 8 and z > 42
are not shown as all the relevant dynamics occur in the middle region. On the vertical axis ri is on the top and
ro is on the bottom.

z10 20 30 40

Fig. 2 The solution at Re = 77. The contour interval for ψ is now 0.01; everything else is as in figure 1. Note
the Taylor vortices between z ≈ 14 and 36, in the region where the field is weak. Based on the local value of the
field, the flow should be linearly unstable to Taylor vortices in the region 13 < z < 37, in excellent agreement.

Figure 2 shows the flow at Re = 77. As expected, we find Taylor vortices in the middle, where the
imposed field is weak, but not near the ends, where it is strong. This solution is in fact steady, without
either drift or phase slip events. However, it is also not the initial onset of Taylor vortices; instead, these
solutions exist only in the range 76.5 < Re ≤ 81.3. Note how much stronger the meridional circulation
in the Taylor vortices is, in comparison with the background cells from figure 1. This background
circulation is still present even here, but is overwhelmed by the Taylor vortices, with the result that
clockwise and counter-clockwise vortices are almost the same strength.

If figure 2 does not represent the initial onset, then at what Reynolds number do the Taylor vortices
first arise, and how? The bifurcation point occurs at Re = 67.4, via a supercritical Hopf bifurcation,
that is, a drifting pattern. Two further comments are also in order regarding this initial bifurcation.
First, the slight reduction from 68.2 in the non-magnetic case [36] to 67.4 here is caused by the presence
of the background cells, and does not indicate a subcritical bifurcation. Second, as a transition from a
steady to a periodic solution, it is a true bifurcation. This is different from TC flows with endplates,
where the background Ekman cells cause the bifurcation to be imperfect [39], from one steady pattern
to another, but without any true bifurcation.

To best illustrate the full time-dependence of the drifting pattern, including the phase slip events
that form a crucial part of it, we begin by noting that the radial structure of the vortices is relatively
straightforward: ψ = 0 at either boundary, and in between is positive/negative for clockwise/counter-
clockwise vortices. Simply focusing on the middle r = 1.5 will therefore capture all the essential
features. Contour plots of ψ(t, z, 1.5) will then reveal the structure in both time and length along the
cylinder.

As illustrated in figure 3, the solution consists of a series of phase slips at the midplane z = 25. The
newly created Taylor vortices drift outward, eventually fading away at |z−25| ≈ 10, where the magnetic
field becomes too strong for them to persist. Note also the slight asymmetry between the two phase
slip events that constitute one period of the pattern. This is again caused by the weak background
circulation; newly created vortices with circulation in the opposite sense as the background (figure 1)
persist slightly longer than vortices with circulation in the same sense. The period of these solutions
gradually increases from T = 1243 at Re = 67.4 to T = 4393 at Re = 74.5, the value shown in figure
3.

The next two bifurcations occur at Re = 74.8 and Re = 75.8. The first one breaks the midplane
symmetry ψ(t, z) = −ψ(t, 50 − z) seen in figure 3, but still preserves the shift-and-reflect symmetry
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Fig. 3 Contour plots of ψ(t, z, 1.5) at Re = 74.5, with a contour interval of 0.01. Blue/red represents
clockwise/counter-clockwise Taylor vortices. On the horizontal axis τ = t/T , where the period T = 4393
at this Reynolds number. Note the midplane symmetry ψ(t, z) = −ψ(t, 50− z), and the slightly uneven timing
between the two phase slips per period.
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Fig. 4 As in figure 3, but at Re = 75.5, where the period T = 13334. Note the shift-and-reflect symmetry
ψ(t, z) = −ψ(t+ T/2, 50 − z), and the four phase slips per period.

ψ(t, z) = −ψ(t + T/2, 50 − z). Correspondingly, the average value of the asymmetric component over
a period is still zero. The second one breaks the shift-and-reflect symmetry as well. There are thus
two solutions, with average asymmetric components of either sign (just as in a pitchfork bifurcation).
Figures 4 and 5 show examples of these solutions, at Re = 75.5 and Re = 76. The first bifurcation
already causes the period to double, since it now takes two of the original cycles for the asymmetry to
occur first in one half and then in the other. Beyond that, the periods still continue increasing, from
T = 13334 at Re = 75.5 to T = 22616 at Re = 76. Both of these symmetry-breaking bifurcations are
also supercritical, with no hysteresis if Re is reduced again.

Figure 6 shows the pattern at Re = 76.5. We notice two differences in comparison with figure 5.
First, the asymmetry is considerably greater, with the pattern shifted so much in z that there is now a
Taylor vortex sitting right on the midpoint z = 25. Figure 7 compares the entire range 67 ≤ Re ≤ 77,
and quantifies items such as how the strength of the Taylor vortices gradually increases, how the degree
of asymmetry increases, and how the period varies.
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Fig. 5 As in figure 3, but at Re = 76, where the period T = 22616. Note the four phase slips per period, and
the uneven timing between successive pairs; this is the most obvious manifestation of the loss of the previous
shift-and-reflect symmetry in figure 4.
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Fig. 6 As in figure 3, but at Re = 76.5, where the period T = 54388. Note the two phase slips per period, and
the extreme disparity in timing between the two, with the pattern almost stationary for most of the cycle.

The second difference is that the pattern in figure 6 has only two phase slip events per period,
whereas in figure 5 there are four per period. The most natural way to connect the two therefore would
be to have a period-doubling bifurcation as Re is reduced from 76.5 back toward 76. Pinning down
exactly where this bifurcation occurs was unfortunately not possible. For Re ≤ 76.05 the solutions
have four phase slips per period, and for Re ≥ 76.25 they have two per period. However, between 76.05
and 76.25 they not only have very long cycle times (see figure 7), but even after integrating to t = 106

the solutions still had not settled in to a precise periodicity. It is possible of course that the solutions
in this narrow gap really are chaotic, and bifurcate to a four-cycle at one end and a two-cycle at the
other.

Increasing Re even further, the pattern in figure 6 persists up to Re = 76.63, where a turning point
is reached, and the solution collapses back to the steady, symmetric state as in figure 2. Reducing
Re again, the figure 2 solutions become unstable to a subcritical pitchfork bifurcation at Re = 76.53.
There is thus a small but measurable degree of hysteresis in this transition. Somewhere on the unstable
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Fig. 7 Panels (a) and (b) both show the kinetic energy in the meridional circulation (period-averaged for the
time-dependent solutions). Note how the energy is essentially constant before the onset of Taylor vortices, and
increases linearly thereafter (including in the gap 70 < Re < 74 between the two panels). Panel (c) shows
the fraction of the energy that is contained in the asymmetric component. Note how it increases from 0 for
Re < 74.8 toward almost 1 at the turning point Re = 76.6. Panel (d) shows the period; note the extreme
variation over more than two orders of magnitude. Different line segments correspond to the different types of
solutions discussed in the text.

branch between 76.53 and 76.63 the solution presumably also undergoes a Hopf bifurcation, thereby
acquiring the time-dependence that it has in the figure 6 solutions.

Finally, on the steady, symmetric figure 2 branch, what happens if Re is increased rather than
decreased? At Re = 81.4 a Hopf bifurcation occurs, or rather two essentially simultaneously, cor-
responding to symmetric and asymmetric perturbations. As a result, attempting to unravel the full
details of the bifurcation diagram proved fruitless. The underlying dynamics are quite straightforward
though. Figures 8 and 9 show two solutions that both exist at Re = 85. We note first that they are
very different from the previous phase slip solutions. Rather than having pairs of vortices created in
the middle and then drifting outward, we now have vortices moving in from the edges, and then being
abruptly destroyed when |z − 25| is around 8 or 9. Based on the local value of the field, the flow
should be linearly unstable to Taylor vortices in the region 11 < z < 39. All of these dynamics are
thus happening within the expected region, but it is not clear what singles out the particular location
where the phase slips occur.

Comparing figures 8 and 9, the most obvious difference between them is that figure 8 is symmetric,
whereas figure 9 is asymmetric. That is, in figure 8 the phase slips in the top and bottom halves
are in phase in time, whereas in figure 9 they are exactly half a period out of phase. This pattern
presumably also explains why the two perturbation types both arose at virtually the same critical
Reynolds number: If the two time-dependent regions are separated in space by such a large region that
is essentially stationary, then the coupling between them is extremely weak, so there is almost nothing
to fix their relative phases in time. This very weak coupling between the two regions also means that
very long runs were required in some cases before a definite phase relationship emerged. Indeed, there
may also be some Reynolds numbers where no definite relationship ever arises, resulting in some type
of quasi-periodic solution. It is difficulties like these that lead us to concentrate on the single value
Re = 85, rather than attempt to map out a full bifurcation diagram over the range Re ≥ 81.4.

One further, not quite so obvious difference between figures 8 and 9 is revealed by counting the
number of vortices in the stationary region, between the phase slip events. In figure 8 there are 18,
in figure 9 only 16. The easiest way to spot that the number is certainly different is simply to note
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Fig. 8 One possible solution at Re = 85, with T = 638. Note the midplane symmetry, and the 18 essentially
steady Taylor vortices separating the two time-dependent regions. The contour interval is 0.012.
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Fig. 9 Another solution at Re = 85, with T = 755. Note the shift-and-reflect symmetry, and the 16 essentially
steady Taylor vortices separating the two time-dependent regions. The contour interval is 0.012.

that the coloring just above/below z = 25 is blue/red in figure 8, but red/blue in figure 9. These
particular solutions were obtained by starting from a number of different, essentially random initial
conditions. Motivated by these results though, one obvious question to ask would be: do there exist
symmetric solutions with 16 vortices, and/or asymmetric solutions with 18 vortices? Various plausible
initial conditions were therefore constructed, but all attempts invariably equilibrated back to either of
figures 8 or 9.

4 Conclusion

We have seen in this work how a magnetically ramped Taylor-Couette system can yield qualitatively
similar phase slip dynamics as in the more familiar geometrically ramped system. It would be of
considerable interest to make the comparison more quantitative, by deriving the equivalent of the Riecke
& Paap [9] phase-diffusion equation, and seeing whether it can indeed explain the results presented
here. An analysis of the numerically computed wave-numbers unfortunately proved inconclusive; the
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results never vary by more than a few percent from the expected non-magnetic values. Note for example
how all the bands in figures 3, 8 and 9 have essentially the same axial extent, corresponding to round
Taylor vortices. It is thus not entirely clear why our solutions exhibit phase slip at all, let alone two
different types, occurring in different locations. A weakly nonlinear analysis as in other pattern-forming
systems [10] might also be fruitful.

Future numerical extensions of this work include a systematic search for the spatiotemporal chaos
predicted by Paap & Riecke [14]. This will likely require imposing fields consisting of harmonics κ,
2κ, etc., analogous to the special choices of ramps needed in the Paap & Riecke formulation. Also of
interest is the magnetorotational instability mentioned in the introduction, where the magnetic field
has a destabilizing rather than stabilizing influence; we would then expect to find Taylor vortices where
the field is strong rather than weak.

More generally, it is noteworthy that there do not appear to be any direct numerical simulations of
any of the geometrically ramped experiments mentioned in the introduction. The only related numerical
work is [40], who did not address subcritical ramping though; instead they considered a scenario where
the radii of the cylinders vary along the length, but in such a way that the onset of Taylor vortices
still occurs simultaneously everywhere. This configuration yields vortices that form at one end and
monotonically drift toward the other, but without any bifurcations beyond the initial transition from
steady to periodic flows.

The most likely reason for this almost complete absence of numerical work in geometrically ramped
TC flows is that the geometry then becomes too complicated to allow the very long integration times
that are required for equilibrated solutions to emerge. In contrast, by keeping the geometry simple, in
this work we were able to exploit efficient pseudo-spectral numerical methods that do allow very long
integration times. We suggest therefore that for numerical studies of general pattern formation effects
the magnetically ramped problem is more convenient.

Finally, it would be of great interest to see actual experiments done on this problem. Imposing mag-
netic fields as in Eq. (3) would be straightforward, simply by a suitable array of periodically spaced
external Helmholtz coils. The required field strengths are also easily achievable; the existing PROMISE
experiment [24,25] already operates at slightly larger Hartmann numbers. The main difficulty would
most likely be that the Reynolds numbers here are considerably lower than in the PROMISE experi-
ment, where they are O(103). The entire flow velocities are then also reduced, which could make them
difficult to measure with the techniques commonly used in liquid metal experiments of this type [41,
42]. If these difficulties could be overcome though, then magnetically modulated Taylor-Couette flows
would undoubtedly offer a rich variety of phenomena to study experimentally.

Acknowledgements RH was supported by STFC grant ST/K000853/1. FK’s visit to the United Kingdom
was supported by the Higher Education Commission of Pakistan.
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