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a b s t r a c t

Whilst much is known about the properties of silks, the means by which native silk feedstocks are spun
still represent a gap in our knowledge. Rheology of the native silk feedstocks is germane to an under-
standing of the natural spinning process. Yet, an overview of the literature reveals subtle limitations and
inconsistencies between studies, which has been largely attributed to sample-to-sample variation when
testing these exquisitely flow-sensitive materials. This ambiguity has prevented reliable, consistent in-
ferences from standard polymer rheology and constitutes an obstacle to further development.

To address this challenge, we present the largest study to date into the rheological properties of native
silk feedstocks from Bombyx mori larvae. A combination of shear and oscillatory measurements were
used to examine in detail the relationships between concentration, low shear viscosity, relaxation times,
complex modulus and estimates of the molecular weights between entanglements. The results from this
highly detailed survey will provide a sound basis for further experimental or theoretical work and lay the
foundations for future bio-inspired processing of proteins.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Silks are natural protein fibres spun by many types of arthro-
pods in the classes Arachnida, Insecta and Myriapoda [1e11]. This
may be a significant example of convergent evolution, as the ability
to produce silk appears to have arisen independently at least 23
times [8]. Spiders provide the most widespread and obvious ex-
amples of silk production, with some recently evolved spider spe-
cies producing at least seven different types throughout their entire
lifecycle, as distinguished by chemical compositions, gland mor-
phologies, physical properties and the ways the fibres are used by
the animal [1e4]. The larvae of various lepidoptera (i.e. caterpillars)
appear to produce only one type of silk at any time, although the
quantities and compositions vary between species [5] and devel-
opmental stage [12]. Most notably, as a result of millennia of se-
lective human intervention, the domesticated mulberry silkworm
Bombyx mori, produces relatively large quantities of cocoon silk,
which has achieved considerable importance as a textile fibre
[13e16].

Although the amino-acid sequences vary, the main proteins in
lepidoptera and spider silks (i.e. fibroins and spidroins) appear to

follow a common theme. A large (up to 500 kDa) highly repetitive
core section accounts for the high degree of order and partial
crystallinity that can be observed in silk fibres [16e25]. The core is
flanked by short non-repetitive globular terminal domains (typi-
cally 10e15 kDa), which appear to promote association with other
chains in solution, through physical interactions initiated by a
decrease in pH and changes in ion content [26e31].

Typically, several different proteins are present in a single type
of silk fibre. In B. mori silk the main fibroin component consists of a
‘heavy’ (fibH) chain, with molecular weight around 350e400 kDa
[32e35]. This is joined by a disulphide bond near its C-terminus to a
‘light’ (fibL) chain with molecular weight around 25e30 kDa
[34e38]. This fibH-fibL dimer appears to be important for efficient
secretion of fibroin and maintaining good solubility within the silk
gland, as ‘naked pupa’ mutants lacking genes for fibL chain
expression produce only small amounts of exclusively fibH silk
[39e41]. The fibH-fibL dimer forms non-covalent interactions with
a ‘P25’ chaperone (ca. 27e30 kDa) glycoprotein [42e45], to give a
(fibH-fibL)6P251 complex of molecular weight around 2.3 MDa [46].
There is evidence that complexes of this type may be common,
though not universal in lepidopteran silks [47] and may facilitate
intracellular transport [46], although any subsequent role in silk
spinning remains unknown.

In addition to the major fibroin components of lepidopteran
silks, many minor components have been observed. Analyses of
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materials from B. mori silk glands revealed several components of
sericin, which forms an adhesive sheath around the fibrous fibroin
core, and over 500 minor species with molecular weights ranging
from 15 to 100 kDa [12,34,38,48]. These appeared to include
chaperones, heat-shock proteins, protease inhibitors and other
metabolic enzymes, although their contributions to the spinning
process also remain unknown.

Hence, given the considerable structural, compositional and
functional diversities shown by silks, their means of production (i.e.
spinning) may provide a more appropriate definition, as suggested
by Porter and Vollrath [49]. It is a characteristic of all silks that they
are initially produced as hydrated protein feedstocks (typically
20e30 % w/w), stored within the animal in specialised glands then,
when required, extruded relatively quickly into fibres
[1,2,5,8,18,49e51]. Typically, silkworms produce fibre for cocoon
construction at 4e15 mm s�1 and spiders can produce major
ampullate (i.e. dragline) silks at 20e60 mm s�1 [52,53], while take-
up speeds of 400 mm s�1 have been achieved during forced reeling
[54]. This ‘on demand’ nature of silk spinning is in stark contrast to
other fibres produced by animals (i.e. hair or wool), which grow
continuously at relatively slow speeds; for example, Downes and
Sharry [55] reported a growth rate of around 0.3e0.4 mm per day
for sheep wool. The importance of the spinning process on silk fibre
mechanical properties has beenwell documented and is considered
to be as crucial as the feedstock itself [21,52,54,56e61].

While much has been written concerning the remarkable
properties and uses of silk fibres [16,19,21,49e53,62], we suggest
that the natural spinning route represents the most inspirational
feature of silks. During silk spinning, the animal is able to convert a
high molecular weight polymer from an aqueous (solution or gel)
phase into a water-insoluble fibre, rapidly and at ambient tem-
peratures [3,18,19,48,52,53,55,63,64]. This transition to a solid silk
fibre appears to be initiated by flow-induced alignment of the
protein chains [54,65,66], probably after the system has been
activated by changes in pH and ionic content within the silk duct
[26e31,66e69]. The only significant energy input for this process
would appear to be the work required to convey the protein
feedstock along the silk duct and draw it into a fibre.

By comparison, melt-spun fibres of thermoplastic polymers (e.g.
polyolefins or polyesters) are typically extruded around
200e300 �C above ambient temperature, while wet- or dry-spun
fibres (e.g. viscose rayon, acrylics or cellulose acetate) involve
large amounts of harmful and potentially dangerous solvents or
other processing chemicals [70,71]. Each of these processing routes
incurs a significant energy penalty (e.g. for process heating or sol-
vent recovery, where applicable) andmay also produce pollution in
the form of spent or unrecoverable process chemicals. This
disparity in energy efficiency between natural silks and synthetic
polymers has been recently highlighted by Holland et al. [64], who
estimated that the energy required to initiate the phase-change in
silk would be several orders of magnitude smaller than that
required to melt-spin high density polyethylene.

Rheology provides a convenient and informative method for
characterising the behaviour of polymer-based and colloidal sys-
tems [72e76]. Meaningful measurements can be made on a wide
range of flowable media (including solutions, suspensions, melts,
gels, pastes and granular systems) under realistic conditions, using
modest quantities of materials (i.e. consistent with the volumes of
silk feedstock contained in the ducts of B. mori, other silkworms and
reasonably large spiders). Moreover, in polymer-based systems, a
suitable analysis of oscillatory measurements can yield information
on chain entanglements, relaxation rates and molecular weight. In
view of the role generally ascribed to interchain interactions, flow-
induced orientation and phase transformations, information of this
type is considered to be germane for a complete understanding of

natural silk spinning. Consequently, a large body of work has
already been published concerning rheological properties of native
silk feedstock from B. mori [65,66,77e85], other silkworms [82,83],
spiders [84,86,87], as well as reconstituted silk feedstocks prepared
using various chaotropic solvents [85,88e94].

This has revealed some important generic rheological charac-
teristics across all native silk feedstocks tested to date. Specimens
undergo shear-thinning (i.e. the viscosity decreases as shear rate
increases) [65,78e87] accompanied by flow-induced orientation
[65,66,81]. They also exhibit significant viscoelasticity, with the
elastic or storage modulus (G’) exceeding the viscous or loss
modulus (G00) at high frequency and a cross-over to viscous
behaviour (G0<G00) at low frequency [65,78,80e85]. These obser-
vations are typical of a concentrated polymer solution above the
overlap threshold, where the rheology is dominated by interchain
entanglements [72e76]. Moreover, comparisons between speci-
mens from B. mori and wild types suggest that silkworms can
produce superficially similar fibres from protein solutions with
somewhat different rheological characteristics [82,83].

Nevertheless, a careful examination of the details reveals several
limitations and inconsistencies amongst this work. For example, for
native silk feedstocks from B. mori, the reported values of low
shear-rate (i.e. _g <0.1 s�1) viscosity range from 103 to 108 Pa s
[65,66,77e85]. Also, the cross-over from elastic to viscous behav-
iour (at G0 ¼ G00) has been reported at angular frequencies ranging
from 1 to 10 rad s�1 [65,78,80e85]. By contrast, the data presented
by Ochi et al. [77] was more characteristic of a gel, with G0>G00 over
the entire frequency range. It is possible that these apparent in-
consistencies may reflect inherent variations in a natural biological
system, or they may have resulted from poor handling of a highly
sensitive material. This ambiguity has prevented reliable, consis-
tent inferences based on standard polymer rheological analysis and
constitutes a considerable obstacle to further development of the
field. We propose that this may be addressed by adopting a more
statistical approach to the analysis of native silk rheology and
studying the distributions of properties.

The purpose of the present work was to provide a thorough
analysis of the rheological characteristics exhibited by native silk
protein feedstock from a statistically meaningful population of the
silkworm B. mori at 25 �C. To that effect, combinations of shear and
oscillatory measurements were used to extract information on
molecular relaxation behaviour and chain entanglements. This will
provide the background for subsequent work on silk protein solu-
tions, including measurements of the activation energy of flow,
investigating shear- and temperature-induced gelation, compari-
sons between native feedstocks from other animals and the char-
acterisation of redissolved silk protein systems.

2. Experimental

B. mori silkworms in the 5th instar were housed at ambient
humidity until ready for use. Once the silkworms had stopped
feeding, they were housed at around 10 �C, in order to delay pu-
pation (normally by no more than 10 days). In addition to visual
examination, the weights of some silkworms were monitored in
order to assess their condition during storage.

Native silk feedstocks were extracted from silkworms that had
just started to construct the cocoon. The silk glands were removed
followingmethods similar to those described previously [65,82,85].
Using a dissection microscope, glands were carefully separated
from the rest of the tissue, then transferred to cold (ca. 5 �C)
distilled water in order to peel off the epithelial membrane using
tweezers. This was achieved as quickly as possible (typically within
5 min) to minimise dilution of the silk gland contents. The coiled
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posterior gland and thin anterior duct (shown diagrammatically in
Fig. 1) were separated off and discarded.

Close examination of the middle gland under the microscope
revealed the presence of two concentric phases in the middle and
anterior (MM andMA) divisions. The central regionwas believed to
be fibroin solution, which was produced in the posterior gland,
while the outer was ascribed to the addition of sericin in themiddle
gland [34,46,48]. Hence, to optimise the extraction of fibroin so-
lution, while minimising the inclusion of sericin, only the single-
phase contents obtained from the hindmost section of the middle
division (MP) of the silk gland was used for rheological measure-
ments. It may be noted that a similar approach was also used
previously by Boulet-Audet et al. [81].

Small portions of gland contents (ca. 0.01e0.02 g) were carefully
collected between the tips of tweezers; excess surface water was
removed by dabbing against tissue paper, before gently placing the
specimen onto the rheometer plate. Excessive handling stresses
were avoided throughout this procedure, to minimise the risk of
shear-induced gelation [65,84]. At the same time, a larger sample
(ca. 0.08e0.1 g) was also collected from the adjacent part of the silk
gland, which was used to measure the solids content (c) gravi-
metrically, after drying to constant weight under vacuum at 60 �C.

2.1. Spectroscopic characterisation

Fourier-transform infrared spectroscopy (FTIR) was performed
using a Nicolet 380 spectrometer (Thermo Scientific, Madison, USA)
fittedwith an attenuated total reflection (ATR) device (Golden Gate,
45� single-bounce diamond anvil, Specac, UK). The optical path
through the spectrometer and ATR device was purged using dry air
from which CO2 had been removed, in order to minimise back-
ground absorbance. Liquid specimens of gland contents were
simply placed on the ATR device and covered with a microscope
cover slip to prevent water evaporation. Solid residue was first cast
into a thin film by diluting the gland contents in distilled water
(approx. 20 � with gentle swirling), pouring the diluted solution
into a plastic weighing boat and allowing the water to evaporate in
a stream of flowing air; the film was subsequently peeled off the

weighing boat and clamped to the ATR device. Spectral data be-
tween 800 and 4000 cm�1 was obtained by collecting 32 scans at
4 cm�1 resolution. Corrections for background absorbance and
sampling depth of the ATR method were applied.

2.2. Rheology

Rheological measurements were performed using a Bohlin
Gemini (Malvern Instruments, UK) rheometer, incorporating a
Peltier (heating and cooling) stage, with a CP1/10 cone and plate
geometry (5.00 mm radius, 1� opening angle and 30 mm trunca-
tion). Silk protein solution, sufficient to completely fill the geom-
etry, was placed on the plate (fixed) and the cone (driven) was
lowered to the required gap setting (30 mm); the closing speed was
reduced to the minimum (ca. 0.1 mm s�1) before the cone touched
the fibroin solution. Excess solution was allowed to squeeze out
from under the cone and was not removed, to avoid shear induced
gelation at the edge of the geometry. To avoid the specimen drying
out and forming a skin, the area outside the cone was flooded with
distilled water and loosely enclosed using an environmental
chamber, which was designed to fit around the cone and drive shaft
without touching.

The majority of experiments were performed in two stages.
First, a constant shear rate of _g ¼ 1 s�1 was applied for 100 s at
25 �C, in order to ensure the specimen was distributed evenly be-
tween the cone and plate and to establish a uniform rheological
state (i.e. superseding any residual stress from sample loading). The
shear viscosity at _g ¼ 1 s�1 (h1) was obtained by averaging data
from the final 30 s of this stage. Then, a series of oscillatory mea-
surements of elastic (i.e. storage) and viscous (i.e. loss) moduli (G0

and G’’) were performed from 25 to 0.1 Hz (equivalent to 157 to
0.63 rad s�1), using an applied strain of 0.02, which is within the
linear viscoelastic limit of the silk protein solution (see supple-
mentary information given by Holland et al. [84]).

In order to investigate certain experimental observations in
greater detail, a few experiments were also performed incorpo-
rating modified or repeated stages, as described in the text below.

3. Results

In order to confirm the composition of the silk protein feed-
stocks used, FTIR spectra of the native silk protein solution and
dried films are presented in Fig. 2, along with assignments of the
main bands. The solution spectrum was dominated by the strong
OeH stretching (3000e3700 cme1) and weaker bending
(1630 cm�1) bands of water, which was the largest component.
Only the relatively strong amide II (1520 cm�1) and amide III
(1230 cm�1) bands of the protein could be observed clearly. By
comparison, a large number of peaks associated with protein were
evident in the spectra of the dried films. These included the amide I,
II and III bands (at 1633,1512 and 1230 cm�1), the broad absorbance
(between 3200 and 3600 cm�1) due to multiple OeH and NeH
stretching vibrations and the small peaks ascribed to aliphatic CeH
stretching (around 2900 cm�1). The small peak at 3062 cm�1 may
be ascribed to the aromatic CeH stretching band of tyrosine [95],
which constitutes around 5% (molar) of the amino acids in B. mori
silk proteins [16,34,35]. The peaks around 983, 1050 and 1400 cm�1

may be ascribed to CeO stretching and CeOeH bending vibrations
of serine [96,97], which constitutes around 12% (molar) of the
amino acids in B. mori fibroin or 30% in sericin [16,34,35]. At least
another 10 small, unassigned peaks were also evident between 900
and 1500 cm�1.

Comparison between films prepared using solutions from the
MP and MM sections of the gland revealed slightly larger peaks
ascribed to serine (ca. 983, 1050 and 1400 cm�1) in the latter. These

Fig. 1. Diagram of B. mori silk gland, showing portions used for measurements.
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differences suggested a higher proportion of sericin in the MM
section, compared with the MP section, which agreed qualitatively
with results from gel electrophoresis reported by Gamo et al. [34].
In conjunction with reports of the relatively small amounts of
inorganic salts present in the native silk solution [98], these results
suggested that fibroin was the main solid component of the spec-
imens used for rheology, although it is likely that minor amounts of
sericin may have also been present.

3.1. Gland contents concentration

The solids contents measured in samples of native silk protein
solutions are presented in Fig. 3. Due to the limited quantity of
material available (generally less than 0.1 g of native solution,
containing less than 0.02 g of solids), the uncertainty due to
weighing errors was typically ± 1%w/w. Nevertheless, considerable
variations in concentration were observed, which exceeded this
uncertainty.

Based on the analysis of 124 samples, the solids contents ranged
from 18.7 to 30.0 % w/w, with a mode around 24% w/w, as shown in
Fig. 3a. The results appeared to approximately follow a normal
distributionwith amean of 24.0% and standard deviation of 2.5%w/
w. This range also encompassed the compositions reported previ-
ously [65,66,77e85].

It was found that the silkworms lost around 3% of body mass per
day, during storage at ambient humidity and 10 �C. Nevertheless,
there appeared to be negligible change in the solids contents of the
native silk feedstocks over 15 days storage under those conditions,
as shown in Fig. 3b. It should also be noted that silkworms for
rheological experiments were normally not stored for more than 10
days.

These results indicated significant sample-to-sample variations
in solids content, in spite of taking only specimens from similar
portions of the silk ducts (MP section e see Fig. 1) of silkworms at
similar stages of development (5th instar at the start of pupation
and up to 10 days storage at 10 �C), using consistent handling
procedures.

3.2. Shear viscosity measurements

Plots of apparent viscosity at _g ¼ 1 s�1 measured over 100 s are
compared in Fig. 4. Apparent shear viscosities were estimated by
averaging the final 30 s of each measurement. For the examples
shown in Fig. 4, the results ranged from 418 to 3304 Pa s; this range

Fig. 2. FTIR spectra of native silk protein solution (soln.) and dried films (at ambient moisture), prepared using solution samples collected from the middle (MM) and posterior (MP)
divisions of the middle gland. Peaks attributable to serine are marked (Ser).

Fig. 3. (a) Histogram showing the distribution of native silk protein concentrations,
based on the population size shown; the continuous line represents the normal dis-
tribution approximating the results obtained, with the mean and standard deviation
shown. (b) Plot of silk concentration against the number of days specimens were
stored at 10 �C, for two batches of silkworms (filled and open symbols); the horizontal
error bars represent ± 0.25 days, the vertical error bars represent the uncertainty (±1%
w/w) in determining the solids contents of the small (ca. 0.1 g) specimens measured.
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was considerably greater than the expected uncertainty in the in-
dividual measurements and demonstrated the considerable varia-
tions in h1 shown by these silk protein solutions. Further
demonstration of this variation is also provided in Fig. 5; based on
measurements of 125 specimens, h1 ranged from 50 to 6018 Pa s.
The distribution of values appeared to be skewed, with the mode
around 1200 Pa s, the mean at 1722 Pa s, a standard deviation of
935 Pa s and an extended tail towards higher viscosities. There also
appeared to be some evidence of bimodality, with clustering
around a subsidiary mode at h1 z 1800 Pa s. No obvious

correlations could be found between the viscosity, physical condi-
tion of the silkworm or storage time.

It is generally expected that the viscosity of a polymer solution
increases with concentration, following power-law behaviour in
the form of:

hfca (1)

where a is a constant [72e74]. This was tested for the native silk
protein solutions by plotting h1 against c in Fig. 6, based on the
complete set of 124 specimens for which reliable viscosity and
concentration data were available. The vertical error bars represent
±100 Pa s, which is expected to be considerably larger than the
actual uncertainty in measuring the viscosity; the horizontal error
bars (±1% w/w) represent the uncertainty in determining the solids
content. The continuous curve in Fig. 6 represents the best fit for a
power-law relationship, which was achieved with a ¼ 2.26. It may
be noted that an exponent close to 2 appears to match previously
reported results for native B. mori silk protein feedstocks [85] and
fits with expectations for a polymer solution in the ‘semi-dilute’
concentration range [73]. The correlation coefficient (R2) was only
0.21, however, suggesting that most of the variation observed in the
viscosity was due to factors other than concentration.

Several factors may be invoked to explain the rest of the vis-
cosity variation. Firstly, for polymer solutions above the entangle-
ment threshold concentration, the viscosity is expected to depend
strongly on molecular weight [72e76]:

hfM3:4 (2)

As noted by Craig and Riekel [17], genes encoding for silk pro-
teins are prone to recombination errors due to their length, re-
petitive nature and codon biases. Manning and Gage [33] observed
considerable polymorphism in the silk fibroin genes from different
inbred stocks of B. mori, which produced a range of fibroin proteins
with the molecular weight of the longest (ca. 410 kDa) around 15%
higher than the shortest. Although this may be expected to produce

Fig. 4. Variation in (apparent) shear viscosity over 100 s at _g ¼ 1 s�1; the values ob-
tained by averaging the final 30 s of data from each specimen are shown; the bracket
indicates duplicate measurements on the same specimen.

Fig. 5. Histogram showing the distribution of shear viscosity at _g ¼ 1 s�1, based on the
population size shown; continuous line represents the normal distribution approxi-
mating the results obtained, with the mean and standard deviation shown.

Fig. 6. Plot of shear viscosity at _g ¼ 1 s�1 against silk protein concentration (% w/w dry
residue); the continuous line represents the best fit power-law relationship. The
horizontal error bars represent ±1% w/w, the vertical error bars (±100 Pa s) are ex-
pected to be considerably larger than the actual uncertainty in viscosity
measurements.
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significant differences in viscosity, it does not appear sufficient to
account for the distribution of observed values, even in combina-
tion with the variations in concentration. In view of the expected
power-law behaviour described by Equation (2), if the viscosity
variation were entirely due to the length of the fibroin protein
chains, the observed variations of h1 would require the highest
molecular weight to be around 2.2 times the lowest. This is
considerably more than the variation observed by Manning and
Gage [33] and thus appears unlikely to provide the complete
explanation.

Even if the molecular weights of the fibroin proteins remained
constant, a second explanation may involve changes in the relative
amounts of species present. Although the fibroin components were
expected to constitute the main proteins in the portions of silk
gland contents used, a number of other species may have also been
present [12,34,37,38,46e48]. Hence, variations in the effective
molecular weights of the mixtures could have arisen through
changes in their relative proportions.

A third potential explanation may involve differential
complexation between the fibH-fibL dimer and the P25 chaperone
[44]. The dissolution of protein as free chains or in the (fibH-
fibL)6P25 complex would represent considerable differences in the
effective molecular weights of the polymers, which would be ex-
pected to produce correspondingly large changes in viscosity.

The viscosity may also be affected by the quality of the solvation
and the relative strength of interactions between chain segments.
This is usually described by a ‘monomer friction coefficient’ in the
various theoretical viscosity models [72e76,99]. Previous work has
suggested that interchain interactions may be affected by pH and
ion content [26e30,67e69], while Terry et al. [65] have already
demonstrated the effect of pH on the viscosity of silk protein
feedstocks. A full investigation into these (and any other) potential
explanations is beyond the scope of the present work, but will be
addressed in subsequent studies.

In addition to the obvious differences between specimens, var-
iations in the apparent viscosities were also observed during each
measurement. As shown in Fig. 4, each plot appeared to follow a
similar trend, rising steeply to a peakwithin the first few seconds of
measurements (as the rheometer responded to the onset of flow),
followed by a gradual decline (equivalent to around 10% of the peak
value) during the rest of the experiment. This gradual decrease in
the apparent viscosity at constant shear rate during the measure-
ment was typical of all the shear data obtained in the present work
and has been alluded to previously [65], although no definite
explanation could be found in any of the previously reported
rheological studies of silk protein feedstocks.

In principle, there may be several possible explanations for this
behaviour, involving practical issues of the cone and plate geometry
or physical behaviour of the material. These include dilution of the
specimen due to the surrounding water, detachment of excess
sample from outside the cone circumference, partial ejection of the
specimen from between the cone and plate due to normal stress,
stress-induced depolymerisation, a yield stress (i.e. typical of a
Bingham fluid), residual stress from extensional flow during sam-
ple loading, non-linear viscoelastic effects and ‘stress overshoot’ as
the specimen responded to the onset of shear flow. Clearly, it was
important to investigate this behaviour, as it might have affected
subsequent measurements. Consequently, the method was modi-
fied to include a second steady shear rate measurement (9 exper-
iments) or a series of shear rate jumps (5 experiments) after the
initial shear measurement and oscillatory sweep.

Typical results from repeated steady shear measurements are
shown (bracketed) in Fig. 4. Although the second run gave a slightly
lower viscosity (1542 Pa s) than the first (1636 Pa s), both followed
similar shapes. Artefacts due to residual stress from loading

appeared unlikely in the later measurements, which followed the
initial shear and oscillatory sweep measurements (i.e. at ca. 7 min.
into the rheology experiment). Also, the second plot started at a
higher apparent viscosity than the end of the first plot; this argued
against ‘one way’ hypotheses such as stress-induced depolymer-
isation or dilution, while any sample ejection or detachment from
the cone circumference must have been accompanied by effective
recovery mechanisms.

Shear stress results from the initial steady shear measurement
are also compared with data from a series of shear rate jumps be-
tween _g ¼ 0.0005 and 1.0 s�1, in Fig. 7. Again, although the sub-
sequent measurements were slightly lower than the initial results,
all the data at _g ¼ 1 s�1 showed similar trends (Fig. 7a).

Fig. 7. Variations in shear stress during shear measurements. (a) Initial measurement
over 100 s at _g ¼ 1 s�1 compared with subsequent measurements at 1 and 0.0005 s�1;
the dashed line indicates the shear stress at the end of the final period at 1 s�1. (b)
Stress decay over time, following steps down from _g ¼ 1 to 0.0005 s�1 (measurement
periods ringed in a); the different coloured symbols represent data from different
experimental stages; the continuous line represents the multiple exponential decay
model described by the equation with the fitting parameters shown (greyed data from
oscillatory measurements).
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Examples of stress relaxation results following the abrupt de-
creases in shear rate are presented in Fig. 7b. (The measurement
periods are ringed in Fig. 7a.) Although measurements under static
conditions were not possible with the present apparatus, repro-
ducible results were obtained under ‘quasi-static’ conditions, at
_g ¼ 0.0005 s�1. Following each step down to low shear rate, the
stress appeared to decrease in a highly consistent manner. The
largest part of the stress (over 95%) relaxed within 2 s; however, a
small but significant fraction persisted until the end of each mea-
surement period (50 s).

From a theoretical perspective, linear viscoelasticity is usually
described using the Maxwell model, in terms of a conceptual sys-
tem of a spring and dashpot in series [72e76]. In this mechanical
analogy, an instantaneously applied step strain is initially accom-
modated by the spring stretching and an associated stress (s) that
decays exponentially as the dashpot responds:

sðtÞ ¼ s0$exp
��t

t

�
(3a)

where the characteristic time constant (t) is given by the ratio of
the viscosity to the shear modulus:

t ¼ h

G
(3b)

While this simple conceptual model can reproduce the main
features of polymer rheology, real systems generally exhibit mul-
tiple relaxation modes that may be described using a number of
Maxwell models in parallel:

sðtÞ ¼
Xn
i¼1

si exp
��t
ti

�
(3c)

where si and ti are the stress contribution and relaxation time of
the ith component.

A model of this form with at least three terms was found to fit
the data shown in Fig. 7b well. The parameters for the two slower
modes were obtained by fitting the stress relaxation data, using the
Solver tool in Excel, which gave relaxation times of 2.9 and 54.9 s.
Comparable values (3.4 ± 0.5 s and 66 ± 22 s) were also obtained
from similar measurements on other specimens.

This brief investigation suggested that the flow behaviour of silk
protein solutions included contributions from relatively slow
relaxation processes, which could affect apparent viscosity mea-
surements for a considerable time (over 100 s). These relatively
slow relaxation modes were probably associated with deformation
of the average coil geometry in response to sudden changes (in-
creases or decreases) in shear rates. Hence, it appears that most of
the variations in apparent viscosity during individual experiments
were probably caused by stress overshoot, due to these relatively
slow relaxation modes, although minor contributions due to other
effects cannot be completely ruled out. This will be explored in
more detail during subsequent work.

It was not possible to extract the terms in Equation (3c) corre-
sponding to the fastest stress relaxation modes (occurring within
2 s) directly from the stress relaxation measurements. Neverthe-
less, good agreement with the experimental data was achieved
using parameters calculated from oscillatory measurements, as
described in the next section.

3.3. Oscillatory measurements

Results from duplicate oscillatory sweeps at 25 �C, for a typical
specimen of native silk feedstock are shown in Fig. 8. Note: this was
the same specimen as used in the previously described stress

relaxation experiments, with the second oscillatory sweep per-
formed after the stress relaxation measurements (i.e. approxi-
mately 6 min after the first oscillatory sweep). Only very small
decreases in modulus values were observed from the first to the
second oscillatory sweep; the experimental uncertainty over the
timescales used for these experiments corresponded to less than
±6% of the values obtained.

In general, the plots of elastic and viscous moduli against
angular frequency (u) were characterised by two distinct regions:
the elastic modulus dominated at higher frequencies (G0 > G00),
indicating that the applied oscillations were faster than the domi-
nant molecular relaxation process; by contrast, the viscous
modulus dominated at lower frequency (G0 < G00), where the
applied oscillations were slower than the dominant molecular
relaxation. This behaviour has been reported previously for native
silk protein solutions [76,80e85] and is typical of a polymer melt or
concentrated solution, where entanglements constrain the rates of
molecular relaxations in response to the applied oscillating strain.

The precise values of modulus (GX) and angular frequency (uX)
at the cross-over were obtained by interpolation. As the cross-over
frequency may be regarded as the demarcation between solid-like
and liquid-like behaviour, if provides an indication of the overall
relaxation rate of the specimen. The values of GX and uX also pro-
vide convenient means of comparison with previously published
oscillatory measurements.

Generally, examination of data from repeated oscillatory sweeps
revealed uncertainties of less than±6% in the values obtained for GX

and uX. The distributions of results from 122 specimens are pre-
sented in Fig. 9. Values of GX (in Fig. 9a) appeared to be roughly
normally distributed, with mean 3338 Pa and standard deviation
666 Pa; uX (Fig. 9b) appeared to be significantly skewed, with a
mode around 4.0 rad s�1, a mean of 5.6 rad s�1, a standard deviation
of 2.5 rad s�1 and a considerably extended tail towards higher
values. The ranges of results were considerably larger than the
expected experimental uncertainties, indicating significant differ-
ences between the specimens analysed. Again, however, no obvious
correlations could be found between these results and the physical
conditions or storage times of the silkworms.

Fig. 8. Plots of elastic and viscous moduli vs. angular frequency, for native silk protein
solution at 25 �C; the filled and open symbols represent duplicate measurements on
the same specimen, before and after the stress relaxation measurements shown in
Fig. 7. The continuous lines represent the best fits to G0 and G’’ data using the binary
model described by the equations, using the parameters shown.
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These distributions of results appeared to be consistent with
most of the previously reportedwork. Themean values of GX anduX

were similar to those reported by Terry et al. [65] and Holland et al.
[82,84,85], slightly lower than those reported by Boulet-Audet et al.
[81] but somewhat higher than those reported by Jin et al. [80]. By
contrast, the results reported by Ochi et al. [77] did not show a
cross-over, with the elastic modulus larger than the viscous
modulus over the entire frequency range, suggesting that those
specimens had gelled.

3.4. Determining modulus and relaxation times

For oscillatory measurements of viscoelasticity using a sinusoi-
dal strain, the simple Maxwell model leads to the following well-
known expressions:

G0ðuÞ ¼ GN

�
u2t2

1þ u2t2

�
(4a)

G00ðuÞ ¼ GN

�
ut

1þ u2t2

�
(4b)

GN represents the pure elastic modulus of the network of
polymer chains, which corresponds to the ‘plateau modulus’ of G0

measured at very high frequency. Although this simplistic model
can qualitatively describe viscoelastic behaviour, real polymer
systems generally involve multiple relaxation processes, corre-
sponding to multiple ‘Maxwell units’ in parallel [72e75]. This leads
to the following general expressions for the elastic and viscous
moduli:

G0ðuÞ ¼
X∞
i¼1

piGi

 
u2t2i

1þ u2t2i

!
(5a)

G00ðuÞ ¼
X∞
i¼1

piGi

 
uti

1þ u2t2i

!
(5b)

where pi is a weighting term that describes the relative abundance
and Gi represents the modulus contribution of the ith mode.

In the present work, it was found that both the elastic and
viscous moduli could be described reasonably well by binary
expressions:

G0ðuÞ ¼ g1

 
u2t21

1þ u2t21

!
þ g2

 
u2t22

1þ u2t22

!
(6a)

G00ðuÞ ¼ g1

 
ut1

1þ u2t21

!
þ g2

 
ut2

1þ u2t22

!
(6b)

where gi combines the modulus term and the weighting (i.e.
gi ¼ pi.Gi). This binary model is compared with typical data from a
specimen of native silk protein solution in Fig. 8. The model, rep-
resented by the continuous lines, provided a good fit to the G00 data
below log(u) ¼ 1.6 (corresponding to u ¼ 40 rad s�1), although it
deviated at higher frequencies. It also appeared to provide a good fit
to the G0 data across the majority of the rangemeasured, with small
undershoots at the lowest and highest frequencies. Note: the pa-
rameters listed in Fig. 8 are quoted for i ¼ 3 and 4; as this was the
same specimen as used for the stress relaxation measurements
(Fig. 7), the parameters with i ¼ 1 and 2 correspond to the slowest
modes evaluated in that experiment.

Closer fits to experimental data achieved by including more (i.e.
three or four) terms in the model. In particular, where it was
available, a slightly better fit to the low frequency data was ach-
ieved by incorporating terms representing the slower modes
evaluated from stress relaxation under quasi-static conditions.
Following abrupt decreases in shear rate from _g ¼ 1 to 0.0005 s�1,
the modulus contributions for the slowest modes were calculated
using:

gi ¼
si
_gti

(7)

where the shear rate corresponded to the faster flow ( _g¼ 1 s�1) just
prior to the relaxation measurements. This was only available in a
relatively few experiments, however. In other cases, attempts to
evaluate the slower relaxation modes from the oscillatory data
alone were unreliable. Models for G0 and G00 incorporating three or
more terms were prone to poor convergence, such that multiple
attempted fits to the same data yielded variable values for the
fitting parameters. Hence, the additional complexity was not
justified for the experiments performed in this work.

The distributions of relaxation time constants revealed by ana-
lysing the oscillatory data from 115 experiments using the binary
model are summarised in Fig. 10. Generally, the larger contribution

Fig. 9. Histograms showing the distributions of cross-over results for native silk pro-
tein solution specimens at 25 �C, based on the population size shown: (a) modulus, (b)
angular frequency. The continuous lines represent the normal distributions approxi-
mating the results obtained, with the means and standard deviations shown.
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to the model (i.e. gi ¼ 7145 ± 1721 Pa, mean ± standard deviation)
corresponded to the shorter relaxation time (ti¼ 55± 16ms), while
a smaller contribution (gi ¼ 3701 ± 1744 Pa) corresponded to a
longer relaxation time (ti ¼ 442 ± 122 ms). Moreover, the distri-
bution of the fastest relaxation times appeared to be bi-modal, with
the main peak around t ¼ 60 ms and a subsidiary peak around
t ¼ 30 ms. Again the expected uncertainties in measuring these
data and fitting the model were less than ±6% of the values ob-
tained for each parameter. Hence, these results also indicated sig-
nificant variability between the specimens analysed.

In addition, to the relatively short relaxation modes revealed by
oscillatory measurements, as previously described, two longer
modes with ti around 3.4 and 66 s were obtained by fitting stress
relaxation data, as in Fig. 7.

The different time constants may be ascribed to different
relaxation mechanisms operating within the silk protein feedstock,
with the slower modes involving longer range or concerted mo-
lecular motion [72e76,99]. Hence, it seems likely that the fastest
relaxation (t z 55 ms) may correspond to changes in short-range
turns and loops of a polymer chain within its reptation tube;

these can relax or return to equilibrium by local motion of a few
amino acid units, without affecting the tube contour. Other modes
(tz 442 ms or 3.4 s) may correspond to retraction of polymer coils
along their reputation tubes or changes in the overall tube con-
tours. Following this hypothesis, the longest timescale (t z 66 s)
suggests considerable concerted motion of neighbouring chains,
involving whole protein molecules or even groups of molecules.
These present suggestions are only conjectural, however, and
considerable further work would be required to fully identify the
processes involved.

3.5. Correlation between shear and oscillatory measurements

As a further check on the reliability of the experimental data, the
shear viscosity measured at _g¼ 1 s�1 was compared with estimates
of the zero shear viscosity (h0) based on oscillatory data. According
to the Maxwell model [72e75], h0 is expected to be related to the
modulus contributions and relaxation time constants by:

h0 ¼
X∞
i¼1

giti (8a)

As the oscillatory data was fitted well using a binary model
(Equation (7)), it should be possible to estimate h0 from the cor-
responding values of gi and ti:

h0 ¼ g1t1 þ g2t2 (8b)

As shown in Fig. 11, the calculated values of h0 correlated very
well with the measured values of h1 (correlation coefficient,
R2 ¼ 0.96). This demonstrates the good accuracy of both the shear
and oscillatory measurements, as random errors in either would
decrease the correlation. Hence, the ranges of results observed for
shear viscosity (Figs. 4e6) and viscoelasticity (Figs. 9 and 10)
appear to reflect real variations within the specimens used. It is
uncertain whether these variations were inherent in the native silk
protein feedstocks within the silkworms or as a result of some
poorly controlled (and presently unidentified) aspect of the sample

Fig. 10. Histograms showing the distributions of relaxation time constants revealed by
analysing oscillatory data at 25 �C using the binary Maxwell model (Equation (6)),
based on the population size shown: (a) for the faster relaxation process; (b) for the
slower relaxation process. The continuous lines represent normal distributions
approximating the results obtained, with the means and standard deviations shown.

Fig. 11. Zero shear rate viscosity calculated by Equation (8b), using parameters from
the binary Maxwell model (Equation (6)) against the shear viscosity measured at
_g ¼ 1 s�1. The continuous line represents the best fit constrained to pass through the
origin.
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preparation or experimental methods. Inherent natural variation in
the silk feedstock seems more likely, however, in view of the
consistent procedures used to extract and analyse these specimens.

The ‘best fit’ straight line was constrained to pass through the
origin (0,0), consistent with expectations. The resulting slope of
1.24 suggested that h0 was slightly higher than h1, which may be
explained by a small amount of shear thinning that was expected at
the shear rate ( _g ¼ 1 s�1) used [85]. Moreover, the slight upward
curvature may be ascribed to slightly more shear thinning for the
higher viscosity specimens, consistent with their slower relaxation
rates.

3.6. Calculating molecular weight between entanglements

Formeasurements at sufficiently high frequency, entanglements
between polymer chains have insufficient time to relax and behave
as permanent cross-links. Under these conditions, as a rough
approximation, the polymer chains in the silk protein solutions
were expected to behave as a network of entropic springs. Hence,
GN was expected to depend on the number of contributing seg-
ments per unit volume (i.e. the chain segment density, rc):

GN ¼ rckBT (9a)

where kB is the Boltzmann constant and T is temperature. This leads
to a simple estimation for the average molecular weight between
entanglements (Me):

Mez
rcNAkBT

GN
(9b)

¼ rcRT
GN

(9c)

where R is the gas constant. The bulk density (r) of the native
fibroin solution was estimated from the measured solids concen-
tration, based on the assumption of conserved volume mixing of
silk protein (density ca. 1300 kg m�3 [16,100,101]) and water.

It was not possible to observe the plateau modulus directly from
the values of G0, which appeared to continue increasing beyond the
highest frequency measurement used. Instead, GN was estimated
from the modulus contributions obtained by fitting the binary
Maxwell model to the experimental data. At sufficiently high fre-
quencies, uti>>1 and (from Equation (6a)):

GNzg1 þ g2 (10)

As shown in Fig. 12b, the resulting values of Me appeared to be
normally distributed, with a mean of 66 kDa and standard devia-
tion of 18 kDa.

It may be noted that similar or slightly (up to ca. 5%) higher
estimates of Me were also obtained by using the value of G0 at the
highest measured frequency as an approximation for GN. This
method was generally considered less reliable, however, since it
depended on the accuracy of a single measurement.

These estimates of Me were significantly smaller than the mo-
lecular weight of a heavy fibroin chain and corresponded to roughly
one sixth of the fibH-fibL dimer. In other words, these results
suggested around 6 to 7 entanglements per chain, which may seem
surprisingly few for a reasonably concentrated solution (i.e. ca. 25%
w/w) of a high molecular weight polymer (i.e. ca. 400 kDa for the
fibH-fibL dimer). A potential explanation may be that the protein
reduces its scope for entanglements by maintaining a rather dense
coil configuration, such as the ‘string of beads’ model proposed by
Vollrath and Porter [50]; this could arise due to the prevailing

hydrophobicity of the repetitive amino acid sequences, as sug-
gested by Sehnal and �Zurovec [20].

These estimates were also significantly smaller than the value
reported by Moriya et al. [78], based on a similar analysis of com-
parable data. It appears, however, that their estimate contained an
error; by omitting the concentration term, in effect, they obtained
the molecular weight of solution (i.e. polymer chain plus associated
water) between entanglements. Allowing for concentration (ca.
25%), their result would be around 85 kDa, which is comparable to
our estimates.

4. Discussion and conclusions

The results from the present work are summarised in Table 1.
These suggest that, provided they are handled appropriately, native
silk feedstocks are well-behaved viscoelastic systems, with char-
acteristics similar to other conventional polymer solutions. Our
results were generally consistent with previously published data
and constitute the largest dataset obtained to date, providing
representative, ‘gold standard’ data for B. mori. Hence, this will form
a sound basis for further investigations into the polymer science
underlying silk fibre production, including parameterisation of flow
simulations and assessing the quality of biomimetic feedstocks.

Nevertheless, the results exhibited considerable variability,
which cannot readily be explained by experimental uncertainties in
the measurements made. This was manifest in the solids content,
shear viscosity and viscoelastic properties (i.e. cross-over modulus
and frequency), as well as the derived properties (i.e. relaxation
time constants and molecular weight between entanglements).

It is known that the native silk feedstocks are exquisitely sen-
sitive to flow [54,65] and may be induced to gel by excessively
vigorous handling. This did not appear to be a contributory factor in
the current work, however, whichwas built on a decade of in-house
experience handling these materials and carefully refined experi-
mental techniques. On the other hand, a certain amount of natural
variability might be expected in the silk feedstocks, as a result of
differences between the individual silkworms e even though the
specimens for analysis were all obtained from B. mori larvae at a
similar developmental stage. This aspect of inherent natural vari-
ability has been rather overlooked in previous work.

Fig. 12. Histograms showing the distribution of the molecular weight between en-
tanglements, based on the population size shown, calculated using Equation (9) and
the plateau modulus estimated from the binary Maxwell model (Equations (6) and
(10)). The continuous lines represent the normal distributions approximating the re-
sults obtained, with the mean and standard deviation shown.
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In spite of the evident variability in the gland contents, however,
it appeared that all the silkworms used were capable of spinning
normal silk to form normal cocoons. Indeed, most specimens were
sacrificed during the early stages of pupation, having laid down
anchor lines and started on cocoon construction. It would be
interesting to explore whether the rheological variations observed
in this work could affect the silkworm's ability to spin or the
physical properties of the resultant silk.

Although the present work demonstrated considerable vari-
ability in shear viscosity and viscoelasticity, along with the derived
estimates of average molecular weight between entanglements, it
did not explore the causes in any detail. Clearly, this must be a key
objective for further work. In particular, specific methods to
investigate the molecular weight distributions (e.g. gel permeation
chromatography, gel electrophoresis or ultracentrifugation) and
solution structure (e.g. small-angle X-ray and neutron scattering)
could be very informative and are the subject of current in-
vestigations, which will be reported subsequently.
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Table 1
Summary of rheological results for native silk protein solution specimens (from the MP gland division of 5th instar B. mori silkworms at the start of cocoon construction).

Measurement method Physical property Mean Standard deviation (population size)

Gravimetry Protein concentration [% w/w] 24.0 2.5 (N ¼ 124)
Shear viscosity Viscosity at _g ¼ 1 s�1 [Pa s] 1722 935 (N ¼ 125)
Stress relaxation Time constant, t1 [s] 66 22 (N ¼ 5)

Modulus contribution, g1 [Pa] 0.11 0.08 (N ¼ 5)
Stress relaxation Time constant, t2 [s] 3.4 0.5 (N ¼ 5)

Modulus contribution, g2 [Pa] 9.3 4.3 (N ¼ 5)
Oscillatory sweep Time constant, t3 [s] 0.442 0.016 (N ¼ 115)

Modulus contribution, g3 [Pa] 3701 1744 (N ¼ 115)
Oscillatory sweep Time constant, t4 [s] 0.055 0.016 (N ¼ 115)

Modulus contribution, g4 [Pa] 7145 1721 (N ¼ 115)
Oscillatory sweep Cross-over modulus [Pa] 3338 666 (N ¼ 122)

Cross-over frequency [rad s�1] 5.6 2.5 (N ¼ 122)
Mol. wt. between entanglements [kDa] from binary model 66 18 (N ¼ 118)
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