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ABSTRACT: Autozygosity mapping is a powerful tech-
nique for the identification of rare, autosomal recessive,
disease-causing genes. The ease with which this category
of disease gene can be identified has greatly increased
through the availability of genome-wide SNP genotyp-
ing microarrays and subsequently of exome sequencing.
Although these methods have simplified the generation
of experimental data, its analysis, particularly when dis-
parate data types must be integrated, remains time con-
suming. Moreover, the huge volume of sequence variant
data generated from next generation sequencing experi-
ments opens up the possibility of using these data instead
of microarray genotype data to identify disease loci. To
allow these two types of data to be used in an integrated
fashion, we have developed AgileVCFMapper, a program
that performs both the mapping of disease loci by SNP
genotyping and the analysis of potentially deleterious vari-
ants using exome sequence variant data, in a single step.
This method does not require microarray SNP genotype
data, although analysis with a combination of microar-
ray and exome genotype data enables more precise delin-
eation of disease loci, due to superior marker density and
distribution.
Hum Mutat 36:823–830, 2015. Published 2015 Wiley Periodi-
cals, Inc.∗
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Introduction
Autozygosity mapping using individuals from complex consan-

guineous families [Lander and Botstein, 1987; Mueller and Bishop,
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1993] has been used to localize the genes causing many rare, auto-
somal recessive diseases. Initially, the pace at which autozygous re-
gions could be delineated was a significant hurdle for new mapping
projects. However, the development of high-density genome-wide
SNP-genotyping microarray reagents rendered this step compara-
tively simple, once suitable analysis packages had been developed
to scrutinize the data [Carr et al., 2006, 2009; Seelow et al., 2009].
Similarly, the identification of possibly deleterious sequence vari-
ants was formerly a major undertaking. Once again, with the advent
of exome sequencing, the practical aspects of variant detection be-
came facile, while bioinformatic analysis became more complex.
The latter required computer programs that could both detect se-
quence variants and then filter them against a number of specified
parameters, including position, predicted effect, quality score, and
genotype [Li et al., 2009; McKenna et al., 2010; Watson et al., 2014].

While the huge information content of genome- or exome-wide
sequence variant data has complicated its analysis, it has also opened
up the possibility of analyzing the sequence data itself to map disease
loci, without the use of SNP microarray genotypes [Alkuraya, 2013;
Carr et al., 2013; Görmez et al., 2013]. An important additional
opportunity afforded by exome data is that parent and sibling data
can be directly inspected to identify possibly deleterious de novo
mutations [Pagnamenta et al., 2012; Blue et al., 2014].

There are a number of practical difficulties in using exome variant
data rather than SNP microarray genotypes to map a disease locus
[Carr et al., 2013]. For instance, the exome data may have higher
genotyping error rates (especially for variants within duplicated
regions), and may show poor coverage of regions with low gene
densities. These issues do not typically affect microarray SNP geno-
type datasets; these generally have many more verified variants dis-
tributed evenly across the genome, making it possible to define the
extent of a disease locus more accurately. The sites of locus-defining
recombination events can be more accurately mapped using high-
density SNP microarray data than is possible with exome sequence
data, especially when recombination occurs in regions of low gene
density. Some of these limitations can be abrogated by the use of
variant data from whole genome (rather than exome) sequencing
(WGS). The falling cost of WGS will eventually make this more com-
monplace. However, substantial read depths are required to permit
reliable SNP genotyping from WGS, so that at today’s prices, afford-
able (if imperfect) mapping information is more readily obtained
by SNP genotyping and exome sequencing.
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Given the practical advantages of combining exome variant data
with microarray SNP genotype data to identify disease genes, we de-
veloped AgileVCFMapper. This program uses NGS variant datasets,
with or without microarray SNP genotype data, to aid the character-
ization of disease loci and the rapid identification of the correct can-
didate deleterious variant(s). The program creates a variant dataset
of the exome-derived variants from all individuals in the analysis.
Read depth data for each patient can also be imported and used to
distinguish homozygous reference positions from those where read
depths are too low for accurate genotyping.

AgileVCFMapper can then identify variants in shared autozy-
gous regions or de novo mutations. Alternatively, for nonautozy-
gous pedigrees, the variant dataset can be exported to allow its
analysis by other genetic mapping software. In the former case,
AgileVCFMapper can mirror the analyses performed by AutoSNPa
[Carr et al., 2006] or IBDFinder [Carr et al., 2009] to identify
shared regions of autozygosity (with or without a common dis-
ease haplotype). The analysis can be extended by importing mi-
croarray SNP genotype data, so that regions of autozygosity de-
fined by exome and microarray SNP genotype datasets can be
integrated. Since the exome data may contain the actual disease-
causing variant, it is then possible to interactively view variants
in a region on a per-gene basis. This feature is particularly use-
ful when analyzing conditions with either a known or candidate
disease gene; in such cases, the rapid identification of deleterious
variants in these genes can save a significant amount of effort by
negating the need for further variant screening and filtering. This
program, along with an extensive user guide, can be downloaded
from http://dna.leeds.ac.uk/agile/AgileVCFMapper/.

Methods

Library Preparation, Sequencing, and Variant Identification

Genomic DNA (3 μg) was first sheared into 200- to 300-bp frag-
ments using a Covaris S2 sonicator (Covaris, Inc., Woburn, MA)
and then purified using a QiaQuick column (Qiagen, Chatsworth,
CA). Illumina-compatible sequencing libraries were prepared using
Agilent library preparation reagents as per the manufacturer’s in-
structions. A five-cycle enrichment PCR was used to generate the
libraries, which were captured using the Agilent v5 exome reagent
hybridization probe set followed by ten cycles of posthybridization
enrichment PCR. Paired-end, 100-bp reads were generated using a
HiSeq 2500 in high-output mode with five samples pooled per lane.
The sequence data were aligned to the human genome (hg19) using
BWA [Li and Durbin, 2009] and variants identified using GATKlite
[McKenna et al., 2010]. Nucleotide numbering uses +1 as the A of the
ATG translation initiation codon in the reference sequence, with the
initiation codon as codon 1. Similarly, amino acid numbering uses
+1 at the initiating methionine residue of the reference sequence.

Microarray SNP Genotype Data Requirements

Genotyping should be performed using very high-density SNP
microarrays, such as the Affymetrix SNP 5.0, SNP 6.0, or Axiom
chips. If genotype data from Illumina microarrays are used, the
files must first be annotated using the appropriate Illumina2Affy
conversion program. These accessory programs are available from
http://dna.leeds.ac.uk/illumina2affy/.

Subjects

Ethical approval for this project was obtained from South York-
shire Research Ethics Committee (Ethics ID: 11/H1310/1).

Pedigree 1: It consisted of a consanguineous nuclear fam-
ily with two offspring both affected by mitochondrial DNA
depletion syndrome-5 (MIM# 612073), due to a homozy-
gous mutation in the SUCLA2 gene (NM 003850.2:c.998A>G,
NM 003850.2(SUCLA2 i001):p.(Asp333Gly)), for which both par-
ents were heterozygous carriers. While the parents were first cousins,
there is no other history of consanguinity in the pedigree. Exome
variant data were available for both affected siblings and their par-
ents. This variant has been previously reported as pathogenic [Mati-
lainen et al., 2015] and has been submitted to the SUCLA2 variant
database at http://databases.lovd.nl/shared/genes/SUCLA2.

Pedigree 2: It consisted of a highly consanguineous fam-
ily affected by primary ciliary dyskinesia (CILD19; MIM#
614935) caused by a homozygous mutation in LRRC6
(NM 012472.4(LRRC6 v001):c.630del, NM 012472.4(LRRC6
i001):p.(Trp210Cysfs∗12)). Exome variant data were only available
for two affected siblings, while Affymetrix SNP 6.0 microarray
SNP genotype data were available for a third affected sibling
and two unaffected siblings. This pedigree was described pre-
viously [Watson et al., 2014], and the variant was submitted
to the LRRC6 gene variant database at http://databases.lovd.nl/
shared/genes/LRRC6.

Pedigree 3: It consisted of the nonconsanguineous NIGMS
CF1038 nuclear family (http://ccr.coriell.org/sections/collections/
nigms/ExtendedFamilies.aspx?PgId=52). Affymetrix SNP 6.0 geno-
type data and exome variant data were available for both parents
and four siblings, of whom two have cystic fibrosis (MIM# 219700)
(Supp. Table S1).

Pedigree 4: To demonstrate the ability to identify de novo muta-
tions, the data file for patient NA07383 from pedigree 3 was modi-
fied to include rs28931614:G>A as a heterozygous variant in FGFR3.
This variant causes achondroplasia (MIM# 100800) and is one of
the most frequently observed recurrent de novo germline mutations
in the human genome (Bellus et al., 1995).

Identification of Autozygous Regions in Exome Sequence
Variant Data

Exome variant datasets can be generated using a wide range of
aligners and variant callers, with an almost unlimited number of
analysis parameter combinations. Consequently, before autozygous
regions can be identified using AgileVCFMapper, it is necessary to
standardize the variant calling. Irrespective of the genotype given in
the VCF file, AgileVCFMapper redetermines each variant’s genotype,
according to the following rules:

(1) If >80% of reads match the reference sequence, the genotype is
set to homozygous reference (AA).

(2) If >80% of reads suggest the same alternative (nonreference)
sequence, the genotype is set to homozygous variant (BB).

(3) If 40–60% of reads identifies the same variant sequence, the
genotype is called as heterozygous (AB).

(4) If the variant’s genotype is not identified by any of the previous
steps, it is flagged as a “no call.”

The minimum read depth used to identify autozygous regions
is independent of the minimum read depth value used to display
variants. It varies depending on whether an “rs” number is linked
to the variant in the VCF file. If a variant has an rs number, the min-
imum read depth is set to 15 reads for homozygous and 30 reads
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for heterozygous genotypes, respectively. If the variant has no rs
number, the minimum read depth is increased to 75 and 150 reads
for homozygous and heterozygous positions, respectively. Once the
genotypes have been reassigned, runs of homozygous variants are
identified. If two consecutive homozygous regions, containing more
than 25 variants each, are interrupted by a single heterozygous vari-
ant, the heterozygous variant’s genotype is reassigned as “No call”
and the homozygous runs are recalculated. Again, heterozygous
variants interrupting homozygous runs are discounted. This pro-
cess is reiterated four times before the final list of homozygous runs is
fixed and used to identify autozygous regions over 500 kb in length.

Identification of Autozygous Regions in Microarray SNP
Genotype Data

Since microarray genotype calling is more consistent than exome
variant genotyping, it is not necessary to regenotype the microarray
data. However, it is still necessary to detect and discount aberrantly
called heterozygous positions interrupting autozygous regions. This
is performed in the same manner as described for exome data, ex-
cept that the minimum length of homozygous runs that can be
interrupted by a single heterozygous variant is set to a value calcu-
lated by multiplying the number of SNPs on the microarray by 7 ×
10–4. Although this effectively limits the analysis to microarrays with
more than 10,000 genotypes, it is not a significant problem, since
most microarray genotyping chips produced since 2007 are more
complex than this.

Implementation

Importing variant data into AgileVCFMapper

AgileVCFMapper is primarily aimed at identifying deleterious
variants in exome data; while the analysis can incorporate microar-
ray SNP genotype data, the use of the latter is optional. The exome
data should be formatted as a standard VCF file, and include the
reference and variant allele read depths in the optional informa-
tion columns. The exome data are used to create a unified dataset
of all the variants in the analysis. However, since individual exome
data files typically only contain data for heterozygous and homozy-
gous variant (nonreference) alleles, the internal variant dataset may
lack read depth data for positions where an individual is either ho-
mozygous reference or has low read depth at that position. While
it is not essential to add this missing read depth data for all pos-
sible analysis methods, it is particularly useful when identifying de
novo mutations or exporting the unified dataset to be analyzed by
other programs such as Phaser [Carr et al., 2012], as described below.
Read depth data are imported using data formatted as GATKLite read
depth files. All the data files should be placed in an empty folder with
the variant data files having a ∗.vcf extension. The read depth files
have the same names as the corresponding variant files, but with
a ∗.txt extension. Once the exome variant data, read depth data,
and the minimum read depth at which variants are retained have
been selected, the unified variant dataset is created. Once created,
AgileVCFMapper displays the “analysis methods” window, which
allows the selection of each of the analysis method pipelines.

Exporting genotype data as a unified variant dataset

Once the data files have been imported, the variant data can be
exported as a unified dataset, which can then be used by other

mapping programs. However, if the optional read depth data are
not imported, this dataset will contain a large number of “no call”
genotypes at positions which are homozygous for the reference
sequence in an individual, and so missing from the variant file.
Since an excess of “no call” genotypes may severely limit the value of
the dataset for any subsequent scrutiny, it is strongly recommended
to include the optional read depth data files in the analysis. Figure
1 shows a comparison of the mapping of the cystic fibrosis locus by
Phaser with exome data (Fig. 1A) or Affymetrix SNP 6.0 microarray
genotype data (Fig. 1B), for Pedigree 3. Both methods identify the
correct locus. However, the lower number of variants in the exome
data, and their uneven distribution, results in a larger disease interval
than when using microarray data. This is mirrored in the analysis of
the other autosomes (Supp. Fig. S1); the regions of common descent
tend to appear larger in the exome data than in the comparable
microarray data.

Analyzing variant data with AgileVCFMapper

AgileVCFMapper allows the visualization of exome data and the
detection of possible recessive disease-causing variants in consan-
guineous individuals. It can also identify de novo mutations.

Analyzing data from consanguineous patients

AgileVCFMapper extends the methods of both AutoSNPa and
IBDFinder by allowing the analysis to be performed on exome se-
quence data. By selecting the “Consanguineous” analysis method,
the user is prompted to identify the disease status for each of the
data files. AgileVCFMapper then identifies the locations of autozy-
gous regions, as described above in the section “Identification of
autozygous regions in exome sequence variant data.” Autozygous
regions from affected and unaffected individuals are highlighted as
pale blue or pink rectangles, respectively.

Identifying concordant and nonconcordant autozygous
regions

Figure 2A and B shows the visualization of the two nonconcor-
dant overlapping autozygous regions in Pedigree 1 (not at the disease
locus). The “autozygous regions” display option mirrors the corre-
sponding function of IBDFinder, with black and yellow vertical lines
indicating the positions of homozygous and heterozygous variants,
respectively. This enables autozygous regions from individuals with
no disease haplotype in common to be scanned for shared regions
of autozygosity (Fig. 1A). Alternatively, when patients are believed
to share the same disease haplotype, the “common regions” option
should be used. Note that because of the limitations of image resolu-
tion, if a position on the image represents data for multiple variants,
that position is marked by a black or a yellow line if all the geno-
types are concordant homozygous or all heterozygous, respectively.
However, for positions that contain nonconcordant genotypes, the
line will be yellow, orange, or black if <80%, 80–90%, or >90%
of the genotypes are concordant for the same homozygous geno-
type. In this way, nonconcordant regions are easily identified and
discounted. This option requires the presence of homozygous ref-
erence variant genotypes and so only functions correctly when the
analysis includes the optional read depth data.
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Figure 1. Mapping of the CFTR locus in a nonconsanguineous CEPH family (Pedigree 3, see the section Methods), using variant data derived
either (A) from exome sequencing or (B) from microarray SNP genotyping (Affymetrix SNP 6.0). Display of Chromosome 7 haplotypes was performed
using Phaser [Carr et al., 2012]. In this display, blue and pink vertical bars denote the haplotypes inherited by the first affected offspring from
the father and mother, respectively. The disease locus must be located in a region where all affected individuals share the same combination of
maternal (pink) and paternal (blue) haplotypes as this first individual. This is denoted by a purple color in the central vertical bar (region of overlap
between the affected paternal and maternal haplotypes). Unaffected offspring should be discordant with their affected siblings at the disease
locus (i.e., no purple bar). In this example, the actual position of the CFTR gene is marked by a horizontal red line. It can be seen that the candidate
region containing CFTR is considerably smaller in (B), due to the superior resolution and distribution of the microarray SNPs.

Figure 2. Autozygosity mapping using exome variant data. The blue regions indicate the extent of autozygous regions deduced by AgileVCFMap-
per. The black and yellow vertical lines indicate the genotypes of variants as described in the section “Identifying concordant and nonconcordant
autozygous regions.” A: The option “autozygous regions” has been selected; B: The option “common regions” has been chosen; consequently, in
(B) some variants that are homozygous but nonconcordant between the two individuals under study have changed from black to yellow. The red
horizontal bar indicates a region of overlapping but nonconcordant autozygosity.

Including microarray SNP genotype data in the analysis

It is possible to view the exome data in the context of au-
tozygous regions identified in other individuals using microarray
SNP genotype data, rather than exome data. However, since ex-
ome and microarray datasets contain very few variants in com-
mon, it is not possible to identify haplotypes in common be-
tween exome and microarray genotype data. Consequently, only
autozygous regions are displayed for microarray data. Again, these
are shown as blue or pink rectangles, representing regions in
affected and unaffected individuals, respectively (Fig. 3). Supp.

Figure S2 shows a comparison of autozygous regions identi-
fied by AgileVCFMapper using exome versus microarray genotype
data.

Identifying possible disease-causing variants

In contrast to mapping disease loci using microarray SNP geno-
type data, when using exome data it is possible or probable that the
disease-causing variant itself is present in the variant dataset. Ac-
cordingly, AgileVCFMapper can filter the dataset for variants, which
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Figure 3. Visualization of Chromosome 8 exome (upper two rows) and microarray genotype (lower three rows) data for five siblings from Pedigree
2. The blue and pink rectangles indicate the positions of autozygous regions in affected and unaffected individuals, respectively. A: The black and
yellow vertical lines identify homozygous and heterozygous exome positions, respectively. In contrast, in (B) more restrictive display settings are
selected; black vertical lines identify exome variants that are homozygous in both affected individuals for which exome data are available and have
no associated rs number in the original VCF variant data files. The variant at approximately 133.5 Mb, lying within the region of shared autozygosity,
is a frameshift mutation in the LRRC6 gene and is thought to be the disease-causing variant.

have only the homozygous variant genotype in affected individuals,
by selecting the “affected genotypes” option. If the data are anno-
tated with rs numbers, it is also possible to filter the variants further
by excluding those that have an rs number (using the “affected
genotypes without RS ID” option). This can be a powerful filtering
technique if unaffected close relatives of the patients are included in
the analysis (Fig. 3).

Identification of genotypes showing non-Mendelian
inheritance

If the dataset consists of data from a nuclear family, with both
parents and at least one affected offspring, it is possible to screen
the data for de novo mutations, which result in either loss or gain
of heterozygosity. Since single-base de novo mutations predomi-
nantly occur at positions that are homozygous for the reference se-
quence allele in both parents, they can be identified as heterozygous
genotypes in affected offspring at positions that are homozygous
reference sequence in both the parents and unaffected siblings. By
selecting the “show heterozygous variants only” option, variants
whose genotype suggests this mode of inheritance will be high-

lighted, with the genotypes shown as blue, red, black, or gray lines
indicating homozygous reference sequence, homozygous variant se-
quence, heterozygous variants, and uncalled genotype, respectively.
Similarly, de novo or previously unidentified deletions can be iden-
tified by the presence of unexpected homozygous genotypes, which
can be viewed by selecting the “show homozygous variants only”
option, with genotypes color coded as described above.

Examination of the variants in conjunction with gene
sequence data

An increasingly important step in novel disease gene identifica-
tion will be the detection of individuals with deleterious mutations
in known disease genes. To allow the rapid screening of individuals
for deleterious variants in such genes, AgileVCFMapper can rapidly
examine variants in them. This analysis is performed by entering a
file containing sequence data and the exon coordinates for all the
genes, in either a CCDS dataset [Pruitt et al., 2009] or the RefSeq
dataset [Pruitt et al., 2014]. This ∗.GAF file can be created using
AgileGAFCreator (http://dna.leeds.ac.uk/agile/AgileGAFCreator/).
Once these data have been imported, each variant in a gene may be
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Figure 4. A: Visualization of a simulated heterozygous de novo mutation in FGFR3, introduced in silico into the VCF data file of one patient
NA07383 of Pedigree 3 (NIGMS CF1038). This individual is marked “A” to the left, the other three siblings as “U.” The parents are designated “F”
and “M.” The heterozygous de novo variant appears as a black vertical bar; the homozygous reference genotype in all other individuals is indicated
in blue. B: The displayed meta-information for the variant describes its location in the gene, its effect on the protein’s sequence (if any), and the
read depth information for each individual in the analysis.

viewed with respect to its effect on the resultant protein sequence,
possible exon splicing, and read depths for each individual (Fig. 4).
When viewing variant data that have been filtered (i.e., the “show
heterozygous variants only,” “show homozygous variants only,” “af-
fected genotypes,” or “affected genotypes without RS ID” options),
the currently displayed variants are selected, while for other visu-
alization options it is possible to select a gene by name and then
iterate through a list of variants in that gene. This allows variants in
known disease genes to be rapidly selected and screened as possible
deleterious variants.

Results
To illustrate the functionality of AgileVCFMapper, the program

was used to analyze exome data from Pedigrees 1, 2, and 3.
Since the Pedigree 1 data contained exome data for two affected

siblings and both of their parents, it was analyzed by first identifying
variants that were homozygous in affected individuals, but not in

their parents. This excluded 99.4% of the variants in the unified
variant dataset, with only 822 variants retained. This number was
reduced to just 24 when variants with an rs number were removed,
and of these, only 11 variants were found to lie within autozygous
regions. Finally, the locations of the remaining variants were ob-
served relative to the positions of exon sequences, with only four
variants directly affecting a protein’s sequence. A subsequent litera-
ture review of the genes containing these variants identified SUCLA2
as the probable causative disease gene, since it had previously been
identified as a cause of mitochondrial DNA depletion syndrome-5,
with which the patients had been diagnosed.

In Pedigree 2, the lack of exome data for unaffected relatives of
the two affected siblings prevents filtering variants by disregard-
ing those that are homozygous in unaffected individuals. However,
77% (31392) of variants could be discounted just by selecting those
that are homozygous in both affected siblings. By screening for
homozygous variants in the regions of common autozygosity, the
number of possible deleterious variants was reduced to 115. Since
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microarray SNP genotype data were available for a third affected
and two unaffected siblings, it was possible to refine the disease
locus to a single region on Chromosome 8 (130.7–134.5 Mb) that
contained just 49 variants in 10 genes. By using AgileVCFMapper to
observe the variants’ positions in each gene, it was determined that
only 12 affected an encoded protein sequence. Of the involved genes,
it was found that LRRC6 had previously been identified as causing
primary ciliary dyskinesia and so was the most likely disease gene.
LRRC6 was homozygous for a frame shift mutation, which resulted
in the loss of the final 256 amino acids, strongly suggesting that this
would disrupt the protein’s function. Also this variant was the only
one in this region that did not possess an rs number, indicating it to
be a rare variant.

The analysis of Pedigree 3 was completed using both Ag-
ileVCFMapper, to create and export a unified variant dataset, and
Phaser [Carr et al., 2012], an external mapping application, to de-
fine the locus using the exported variant data. Since both exome
and microarray SNP genotype data were available for all the in-
dividuals in this analysis, it was possible to compare the mapping
results obtained using the two types of data with Phaser (Fig. 1 and
Supp. Fig. S1). Blue bars indicate sequences inherited from the fa-
ther by the first affected child, and pink bars those inherited from
the mother by the first affected child. Consequently, at the disease
locus all the affected children (and none of their unaffected siblings)
should display a blue and pink bar. As can be seen in Figure 1, the
CFTR gene (marked by the horizontal red line) lies within such a
region. It should be noted that the extent of the region of shared
alleles tends to be greater when determined using exome data (Fig.
1A) than microarray SNP genotype data (Fig. 1B). This is a function
of both the uneven distribution and lower number of variants in the
exome dataset, when compared to the microarray data.

Finally, an analysis of Pedigree 4 data (a modified Pedi-
gree 3 dataset, containing the common achondroplasia variant
rs28931614:G>A) was performed using the “show heterozygous
variants only” option. This identified 38 possible de novo muta-
tions, of which only one was not linked to an rs identifier. (Due to
the high incidence of activating de novo mutations in FGFR3, several
disease-causing variants have been assigned rs identifiers, so that in
this instance filtering variants by the absence of an rs identifier is
not appropriate.)

Discussion
Exome sequencing is a powerful method for the detection of

deleterious variants. However, due to the volume of data generated
by each experiment, identifying a disease variant can be very difficult
without secondary information. This might consist of a list of known
or functional candidate disease genes, a disease locus, or a particular
pattern of inheritance.

While a list of known disease genes must be collated before the
analysis, it is possible to both extract autozygosity mapping infor-
mation and screen the disease variants simultaneously with Ag-
ileVCFMapper. In contrast, analysis of out-bred individuals may re-
quire a more complex multistep pipeline, involving the creation of a
unified variant dataset, mapping analysis of the dataset, and finally
filtering the variants based on the mapping information. While these
variant-filtering approaches appear to differ significantly from one
another, they nonetheless include steps common to each pipeline,
for example, the creation of a unified variant dataset and distinguish-
ing between those positions with homozygous reference genotypes
and those with too few reads to genotype. For this reason, we de-
veloped AgileVCFMapper, a program that can combine variant data

from different individuals to create a unified variant dataset. This
dataset can then be either interrogated using AgileVCFMapper (to
identify de novo mutations, perform autozygosity mapping, and
view variants in genes of interest), or exported in a format suitable
for analysis by other mapping programs.

Identifying deleterious mutations within an exome variant dataset
can be very difficult without inspecting the context in which a vari-
ant occurs. Consequently, AgileVCFMapper allows the interactive
viewing of variant data with reference to a mutation’s position in a
putative disease locus and/or location within and effect on a candi-
date disease gene. This feature is particularly useful when searching
for variants in known disease genes in order to reach a molecu-
lar diagnosis, or when prescreening subjects for variants in known
genes before attempting to identify novel disease genes in genetically
heterogeneous conditions.

While AgileVCFMapper can export its unified variant dataset for
analysis by external mapping applications, it can also perform au-
tozygosity mapping analysis on the exome data itself. Irrespective of
the method used to identify a disease locus, exome-derived variant
datasets are smaller and not as evenly distributed across the genome
as those from a typical SNP microarray. Consequently, exome data
do not allow such fine disease locus mapping as microarray geno-
type data (Supp. Figs. S1 and S2), though it may still be very useful.
To bridge the gap between using exome and microarray data, Ag-
ileVCFMapper can identify and display autozygous regions derived
from both data types, although it is not possible to identify common
haplotypes within such mixed datasets. This ability to simultane-
ously visualize autozygous regions from exome and microarray data
can allow very productive compromises. For example, a disease lo-
cus may be mapped using microarray data from most subjects while
exome variant information is gathered from a minority of them.
This can be seen in the analysis of Pedigrees 1 and 2, in which the
initial variant datasets were rapidly reduced to a very low number of
candidate variants, which could easily be examined on an individual
basis.

In summary, as with all disease gene mapping methodologies, the
ease with which deleterious variants are found using AgileVCFMap-
per is very dependent on the pedigree under analysis. While exome
data are far from ideal for gene mapping, it can still be very produc-
tively used for this purpose, especially in conjunction with supple-
mentary information of the types mentioned above. The detection
of de novo mutations requires a different approach, but again, the
ability of AgileVCFMapper to identify and display these variants con-
textually in the genes within which they occur allows each variant
to be rapidly screened for a possible deleterious effect. We expect
AgileVCFMapper to be useful both in the detection of novel dis-
ease genes and for the rapid screening of pedigrees for deleterious
variants in known disease genes.

Disclosure statement: The authors declare no conflict of interest.
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