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Abstract

The ability to characterise functional capillary supply (FCS) plays a key role in developing effective
therapeutic interventions for numerous pathological conditions, such as chronic ischaemia in skeletal or
cardiac muscle. Detailed tissue geometry, such as muscle fibre size, has been incorporated into indices
of FCS by considering the distribution of Voronoi tessellations (‘capillary domains’) generated from
vessel locations in a plane perpendicular to muscle fibre orientation, implicitly assuming that each
Voronoi polygon represents the area of supply of its enclosed capillary. However, to assess the capacity
of FCS in muscle we are naturally led to use a modelling framework that can account for the local
anatomic and metabolic heterogeneities of muscle fibres. Such a framework can be used to explore the
validity of the Voronoi polygon representation of FCS regions while also providing a general platform
for robust predictions of FCS.

key words: Mathematical modelling, oxygen transport, capillary supply, capillary domains,

Voronoi polygons, trapping regions

1. INTRODUCTION

The availability of energy within striated muscle cells (fibres) is essential for sustaining a
healthy function. The cellular preference for high energy aerobic metabolism necessitates a
continuous supply of oxygen (O2) for matching the local cellular demand. Such a match
is ensured by allowing adequate O2 delivery from the microcirculation and through a local
capillary bed. In particular, capillaries provide the terminal sites for O2 delivery to and
metabolite waste removal from cells, where O2 diffuses passively across capillary walls and into
tissue to meet the local cellular demand (Figs. 1A-1B). Hence a healthy capillary supply is
essential for healthy tissue function, thus highlighting the importance of capillary distributions
for adequate tissue oxygenation.

Capillary delivery of oxygen is a major limiting factor in the oxygen transport pathway
to muscle tissue, especially in the presence of vascular and tissue pathologies. For example,
ischaemia, a vascular disease involving a restriction in arterial blood supply to tissues (e.g.
coronary artery disease), leads to a vascular shortage in oxygen (hypoxemia), which, if left
untreated, can further lead to insufficient tissue O2 supply (hypoxia), complete deprivation of
O2 supply (anoxia), and ultimately necrosis (tissue death). In particular, according to recent
estimates from the World Health Organisation, ischaemic heart disease is the leading cause
of global human death [14]. While treatment from chronic ischaemia in skeletal and cardiac
muscles would certainly benefit from a local enhancement of functional capillary supply (FCS)
of oxygen by inducing capillary growth (angiogenesis) to match the local tissue demand,
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(A) Krogh’s cylinder (B) PO2 profile (C) Cylinder stacking

Figure 1: A Traditional view of tissue oxygenation. Estimation of PO2 within a cylinder of
tissue surrounding a capillary of radius Rc; r is the distance from the capillary centre; Rt

denotes the cylinder radius where oxygen flux becomes zero [10]. B PO2 at capillary declines
monotonically both around and within the fibre; the minimum PO2 is at the centre of a fibre
[5]. C Krogh’s view of tissue cylinder stacking, where tissue supply voids are inevitable.

we still lack a complete understanding of such interventions. However, even quantifying
FCS is fraught with difficulties. While measures of gross capillary supply may highlight a
global tissue ischaemia [4], their spatial resolution cannot capture the local tissue pathologies
associated with the underlying capillary distribution. At such local resolutions, analyses based
on conventional FCS measures can give conflicting results [6], thus potentially leading to poor
interpretations of experimental findings.

There has been a growing interest in improving the classification of FCS to tissue and using
measures that take into account the local anatomical and metabolic details in experimental
studies seeking to assess the extent and location of angiogenesis in striated muscle tissues
[3, 5, 15]. Recognising the importance of such attempts, we present a brief account that
highlights the modelling developments seeking to quantify the regions of muscle tissue
exclusively supplied by individual capillaries as a basis for analyzing FCS.

2. THEORY

2.1. Krogh Cylinder

The idea of quantifying capillary supply by assigning a region of tissue to each capillary
was initially conceived by August Krogh in 1919 [10], and subsequently led to his Nobel
Prize in physiology. Essentially a capillary supply region was defined as the extent of tissue
volume diffusively supplied by a capillary. Based on anatomical observations, each capillary was
assumed to concentrically supply a hexagonal cylinder. This was further conveniently reduced
to an annular cylinder (Krogh Cylinder) with a predefined radius (Fig. 1A), thus leading to
a 3D arrangement where capillaries parallel to skeletal muscle fibre axes are symmetrically
distributed with their Krogh cylinders stacked evenly (Fig. 1C), inevitably giving rise to tissue
supply voids. Along with other simplifications [11], these led to a simple 1D steady-state
diffusion problem for oxygen tension, p, with the solution (Krogh-Erland Equation)

p(r) = p(Rc)−
M0R

2
t

4D

[

log
r2

R2
c

− (r2 −R2
c)

]

,

where Rt and Rc are the tissue and capillary radii with Rc ≤ r ≤ Rt, D is the O2 diffusion
coefficient in tissue, and M0 is a constant tissue demand for O2. Combining experimental
measurements and geometrical observations of the microvasculature with this formula has led
to estimates of the minimum tissue oxygen tension and capillary density [7, 10].

2.2. Capillary Domains

Krogh’s attempt to close pack tissue cylinders has led to tissue voids where diffusive supply
was geometrically excluded. Gonzalez-Fernandez and Atta [7] addressed this by reformulating
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Figure 2:A Digitised rat EDL muscle section showing capillary locations (black dots), capillary
domains (DOM; polygons), and Krogh cylinders (circles). B Fibres partition capillary supply
unambiguously by overlapping DOM. C-D Uniform muscles have only one type of muscle fibre
(e.g. Type I) with spatially homogeneous tissue oxygen demand (MO2). E If capillaries (red
disks) have identical transport capacity, the predicted O2 flux lines (dotted lines) coalesce at
the no-flux points that match DOM boundaries (solid lines). F Mixed muscles have at least 3
distinct fibre types (types I, IIa, and IIb) with distinct MO2. G O2 diffusion depends on the
local extraction pressures established by differences in MO2. H Given any capillary may be
surrounded by distinct fibres, the heterogeneity in fibre composition and MO2 reduces the fit
between no-flux and DOM boundaries for mixed muscles. Our model geometry is obtained
by considering a muscle tissue cross section (Figs. C & F). The tissue region excluding
capillaries is denoted by Ω with an external boundary ∂Ω. Capillaries, Ωi, are treated as
circular inclusions within the tissue with a boundary ∂Ωi and a uniform radius. Data from
[2, 5, 9], with permission.

Krogh’s original problem to allow for oxygen supply to the entire domain via hexagonal,
square, and triangular tissue cylinders. This essentially marked the first formal attempt for
modelling a capillary supply region as a capillary domain (DOM). While the use of such
domains had clearly solved the tissue voids problem, it still maintained the assumption that
capillary arrangements within tissue is highly symmetrical. In contrast, capillaries in skeletal
muscles are often asymmetrically distributed, thus breaking the symmetry of Krogh’s cylinders.

Hoofd and colleagues [8] tackled this question by generalising the symmetry in Krogh’s
geometrical formalism by allowing each capillary to have a distinct edge of symmetry with
each of its neighbours (the bisector of the line connecting neighbouring capillaries). Such a
construction identified DOM with the Voronoi tessellation [4, 8] of capillary locations in the
plane perpendicular to muscle fibre orientation (see polygons in Fig. 2A). Consequently, the
tissue cylinders formed by DOM may have distinct geometries (loss of symmetry), indicating
that the Krogh-Erlang equation will assume different solutions for geometrically distinct tissue
cylinders. In addition, an ‘equivalent’ Krogh cylinder, whose cross-sectional area is identically
set to the average capillary domain, was alternatively used for all capillaries (compare cylinders
to polygons in Fig. 2A). However, the large voids and overlaps associated with these cylinders
highlight the inadequacy of using Krogh cylinders to represent regions of capillary supply.

As noted previously, within the framework of DOM, capillaries supply the tissue regions
nearest to them, thereby generating a complete tessellation of the tissue plane. This, in
turn, allows the detailed anatomical geometry to be incorporated into measures of FCS by
considering the overlap of DOM with muscle fibres [5], implicitly assuming that DOM represent
the diffusive area of supply of the enclosed capillary (Fig. 2B). However, such geometrical
constructs are still simplifications to the diffusive supply regions, which may well be affected
by spatial heterogeneities of capillaries and oxygen uptake (Figs. 2F-2H).

2.3. Flux Trapping Regions

Hoofd and colleagues [9] assessed the accuracy of DOM by taking capillaries to be O2 point
sources, which in turn led to an analytical expression for O2 flux. For a capillary distribution
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embedded in a striated muscle with spatially uniform oxygen uptake (Figs. 2C-2D), e.g. cardiac
muscle, they found that DOM accurately capture the predicted flux lines (Fig. 2E; [5, 9]).
However, it was not clear whether this representation will generalise to all striated muscle
tissues, especially in the presence of a feedback between capillaries and tissue. For example,
asymmetries in the spatial distribution of capillaries and blood oxygen content as well as
heterogeneities in intracellular metabolic and diffusive characteristics are expected to affect
the flux of oxygen at the prescribed boundaries of DOM (Figs. 2F-H). In addition, a recent
mathematical exploration of this problem has led to the conclusion that DOM are inaccurate for
capillary supply representation [13], though based on predictions that were heavily influenced
by boundary conditions [1]. Hence, this leaves the question of whether DOM are appropriate
in physiological settings.

3. MATHEMATICAL MODEL

Here we present a brief description of our recent mathematical modelling framework which was
aimed at assessing the capillary domain approximation and generalising it to capture tissue
heterogeneities.

Under maximal aerobic capacity, O2 transport is effectively 2D and governed by Michaelis-
Menten O2 consumption within muscle fibres, free O2 diffusion, and O2 facilitated diffusion by
myoglobin (a protein carrier). Averaged intravascular dynamics is fed into the model through
a Robin boundary condition at the capillary wall.

Striated muscle tissues are composed of two distinct regions: (1) interstitial spaces and (2)
muscle fibres. In addition, muscle fibres can have different intracellular composition which
leads to further local specialisations giving rise to distinct fibre types (I, IIa, and IIb). Letting
Ω denote the tissue domain exclusive of capillaries (Ωi), with external boundary ∂Ω, we seek
to explore the 2D profile of oxygen tension (PO2) in Ω (Figs. 2C, 2F)

−∇ ·
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SMb(p) =
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, M(x, p) =
M0(x)p

p+ pc
, (4)

where D and α are the molecular diffusivity and solubility of free oxygen, CMb and DMb are
the bulk myoglobin (Mb) concentration and diffusivity, SMb is the equilibrium O2-saturation
of Mb, p50,Mb is the tissue oxygen partial pressure at half Mb-saturation, M is the rate of O2

consumption in muscle tissue, M0 is the maximal consumption rate (VO2max) of a muscle fibre,
and pc is the tissue PO2 value which reflects the partial pressure scale where fibre mitochondria
are no longer able to extract oxygen at maximal rate. Parameter values are detailed in [1, 2].

4. COMPUTATIONAL SOLUTION

4.1. PO2, Oxygen Flux, and Trapping Regions

A direct numerical exploration of the oxygen transport problem within tissue cross sections can
be pursued via image capture, overlaying a mesh which is faithful to the geometry captured
from biopsies and refined within regions of complex geometry (see Figs. 3A-C). This allows a
numerical solution of our oxygen transport equations, which capture the biophysics of oxygen
delivery while accounting for histological detail. However, the complexity at the microvascular
level limits the length scales which may be readily explored in this manner, especially for 3-D
simulations, or for simulations within a large parameter space.
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Figure 3: Computational framework. A Post-segmentation digitised image of tissue cross
section. B Finite element mesh generation. C Numerical solution to Eqns. 1-4 with fibre-
specific parmaters using Matlab’s PDE Toolbox [12]. D PO2 flux lines (red) generated for each
capillary (disk) by numerically solving dx

ds
= −∇p with Trapping Regions delimited (black),

where s parameterises he flux lines.

(A) Symmetric (B) Asymmetric (C) EDL (D) Rarefied

(E) Symmetric (F) Asymmetric (G) EDL (H) Rarefied

(I) Homogeneous MO2 (J) Heterogeneous MO2

Figure 4: Investigation of the effect of structural and metabolic heterogeneities on the
correlation between Capillary Domains (DOM; red) and Trapping Regions (TR; black).
Capillary arrangement is symmetric, asymmetric, from extensor digitorum longus muscle, or
rarefied. Oxygen demand is homogeneous in A-D and heterogeneous in E-H. Plots of the
difference between DOM and TR are given for variation in: (I) the spread of DOM areas, and
(J) the proportion of mixed fibres. Data from [1, 2] with permission.
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To determine the supply regions of our model (trapping regions, TR; Fig. 3D), oxygen
flux can be first computed by solving the gradient dynamical system, dx

ds
= ∇p where x(s) is a

parameterisation of the trapping region boundary, via Heun’s method. The Hartman-Grobman
theorem can then be employed to estimate TR as detailed in [1].

4.2. Capillary Domains vs. Trapping Regions

Using the above framework we can qualitatively and quantitatively assess the area of capillary
supply in the presence of heterogeneities (Fig. 4). For example, DOMmake a generally accurate
approximation of TR (Figs. 4A-4C), with lower accuracy correlating with increased spatial
heterogeneities of capillary locations (Fig. 4I). Nonetheless, DOM breakdown in the presence
of significant capillary rarefaction (Fig 4D). In addition, increasing the metabolic heterogeneity
further accentuates DOM’s inaccuracy (Figs. 4E-4H & 4J). In particular, the heterogeneity in
capillary arrangements is observed to have a much more pronounced effect on the accuracy of
DOM than that of metabolic heterogeneities.

5. DISCUSSION

Voronoi tessellations (capillary domains) may be a useful method for assessing oxygen capillary
supply in homogeneous tissue, but their use may be problematic in the presence of extensive
capillary rarefaction (functional & structural). Calculation of diffusive oxygen fluxes provides a
computationally more intensive alternative. In cases of heterogeneous perfusion, such trapping
regions provide a more general representation of capillary supply regions. In addition, this
approach will allow incorporation of additional influences of heterogeneity that are absent in
the consideration of capillary domains, such as differences in local metabolism or muscle fibre
size. Therefore, trapping regions may be used to better inform experimental studies assessing
microvascular and tissue dysregulations and pathologies.
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