Magnetocaloric effect and magnetostructural coupling in Mn0.92Fe0.08CoGe compound

Citation: Journal of Applied Physics 117, 17D103 (2015); doi: 10.1063/1.4906437
View online: http://dx.doi.org/10.1063/1.4906437
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/117/17?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Phase diagram and magnetocaloric effects in Ni1-xCrMnGe1.05

The magnetic phase transition in Mn1.1Fe0.9P1−xGex magnetocaloric alloys

On the crystal structure and magnetic properties of the Mn0.94Ti0.06CoGe alloy

Giant magnetocaloric effects near room temperature in Mn1−xCuxCoGe

Tunable thermal hysteresis in MnFe(P,Ge) compounds
Magnetocaloric effect and magnetostructural coupling in Mn$_{0.92}$Fe$_{0.08}$CoGe compound

J. L. Wang,1,2,a) P. Shamba,1 W. D. Hutchison,3 Q. F. Gu,4 M. F. Md Din,1 Q. Y. Ren,3
Z. X. Cheng,1 S. J. Kennedy,2 S. J. Campbell,3 and S. X. Dou1

1Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
2Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
3School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra, ACT 2600, Australia
4Australian Synchrotron, 800 Blackburn Rd, Clayton 3168, Australia

(Submitted 5 November 2014; received 22 September 2014; accepted 7 October 2014; published online 23 January 2015)

The structural properties of Mn$_{0.92}$Fe$_{0.08}$CoGe have been investigated in detail using synchrotron x-ray diffraction in zero and applied pressure ($p = 0$–10 GPa). A ferromagnetic transition occurs around $T_C = 300$ K and a large magnetic-entropy change $-\Delta S_M = 17.3$ J/kg K detected at T_C for a field change of $AB = 5$ T. The field dependence of $-\Delta S_M$ can be expressed as $-\Delta S_M^{\max} \propto B$. At ambient temperature and pressure, Mn$_{0.92}$Fe$_{0.08}$CoGe exhibits a co-existence of the orthorhombic TiNiSi-type structure (space group Pnma) and hexagonal Ni$_2$In-type structure (space group P63/mmc). Application of external pressure drives a structure change from the orthorhombic TiNiSi-type structure to the hexagonal Ni$_2$In-type structure. A large anomaly in heat capacity around T_C is detected and the Debye temperature Θ_D ($=319(\pm10)$ K) has been derived from analyses of the low temperature heat capacity, $T \leq 10$ K. © 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4906437]

Magnetocaloric materials have attracted significant interests over the past two decades due to their possible applications as high efficiency, environmentally friendly heat pumps and refrigerators. This follows the discoveries reported by Pecharsky and Gschneidner in 1997 related to magnetic entropy changes at ferromagnetic transitions in the Gd$_5$Si$_4$Ge$_2$ series. More recently, compounds containing manganese such as MnFeP$_{0.45}$As$_{0.55}$, MnAs$_{1-x}$Sbx, Ni-Mn-Sn-based alloys, Ni-Mn-Ga, RMn$_2$X$_2$-based, and MnCoGe/MnNiGe-based compounds have attracted significant attention due to their interesting magnetic properties and large entropy changes. These large entropy changes and related magnetocaloric effects result from the high sensitivity of Mn magnetic states to variations in the chemical environment.

Stoichiometric MnCoGe has an orthorhombic TiNiSi-type structure (space group Pnma) at low temperatures (below ~650 K) and exhibits a martensitic structural transformation from the low-temperature orthorhombic TiNiSi-type structure to a high-temperature hexagonal Ni$_2$In-type structure (space group P63/mmc) around $T_{\text{str}} = 650$ K. The MnCoGe compounds in both structural states are ferromagnets but their magnetizations and Curie temperatures (T_C) differ considerably ($T_C = 345$ K for the orthorhombic structure, $T_C = 275$ K for the hexagonal structure). Importantly, the value of T_{str} depends strongly on several factors including: external pressure, the vacancies in the Co and Mn sites, as well as variation in chemical environment due to element substitution on Mn, Co, or Ge sites. Recently, MnCoGe-based compounds have attracted significant attention; this is due mainly to the strong coupling between magnetism and structure in these materials. This coupling in turn can lead to MnCoGe-based materials, which exhibit large entropy changes and associated magnetocaloric effects, thereby offering scope for magnetic refrigeration around room temperature. In order to achieve coincidence of magnetic and structural transitions which differ by around 300 K in the parent MnCoGe compound, several approaches to modify the Mn environments have been adopted. Several studies concerning substitution of other elements for Mn, Co, or Ge have been reported in order to shift and thereby control the transition temperatures T_{str} and T_C. The general aim of such studies is to cause the magnetic and structural transitions to coincide or overlap closely and thereby capitalise on both the magnetic and structural entropies at the resultant magnetostructural transition.

In this work, we report the structural and magnetic properties of Mn$_{0.92}$Fe$_{0.08}$CoGe compound as determined by high resolution, high intensity synchrotron x-ray diffraction studies and detailed magnetic measurements. We also report the influence of external pressure (0–10 GPa) on the structural properties of Mn$_{0.92}$Fe$_{0.08}$CoGe as determined by high resolution synchrotron studies.

Mn$_{0.92}$Fe$_{0.08}$CoGe was prepared by argon arc melting appropriate amounts of high purity elements on a water-cooled Cu hearth. Around 3% excess Mn was added to compensate for loss during melting. The sample was re-melted five times to ensure good homogeneity and annealed at 850 °C for 1
week in an evacuated quartz tube then quenched into water. X-ray diffraction (Cu Kα) at room temperature confirmed that both the orthorhombic TiNiSi-type structure (space group Pnma) and hexagonal Ni2In-type structure (space group P63/mmc) are present in the sample with no discernible impurity phases. The magnetic measurements were carried out using a Physical Property Measurement System over the temperature range of 5–340 K and at magnetic fields in the range of 0–8 T. The high pressure diffraction studies at room temperature were undertaken using the Powder Diffraction (PD) beamline at the Australian Synchrotron facility in the pressure range from ambient to 10 GPa using a diamond anvil cell.

Figure 1(a) shows a series of diffraction patterns for the Mn0.92Fe0.08CoGe compound collected at different pressures. At ambient pressure, it can be seen that there are mixtures of the orthorhombic TiNiSi-type structure (~61.4%) and the hexagonal Ni2In-type structure (~38.6%). The lattice parameters for the orthorhombic structure have been derived to be $a = 5.910(6) \text{ Å}$, $b = 3.832(5) \text{ Å}$, $c = 7.083(6) \text{ Å}$, and $V = 160.4(3) \text{ Å}^3$, while $a = 4.089(4) \text{ Å}$, $c = 5.322(3) \text{ Å}$, and $V = 77.0(1) \text{ Å}^3$ for the hexagonal phase. On applying hydrostatic pressure above $p = 1.38 \text{ GPa}$, the compound was found to exhibit only the hexagonal Ni2In-type structure. This finding indicates that application of external pressure results in a phase transition from the orthorhombic TiNiSi-type structure of Mn0.92Fe0.08CoGe into the hexagonal Ni2In-type structure. In other words, the external pressure is found to shift the structural transition temperature from above room temperature down to below room temperature. Rietveld refinements results of Mn0.92Fe0.08CoGe (FULLPROF software) at selected pressures are shown in Figure 1(b). Before applying pressure, there is around ~61% of the orthorhombic phase and ~39% of the hexagonal at room temperature. When the applied pressure is greater than $p \sim 1.38 \text{ GPa}$, the structure of the entire sample changes to the hexagonal structure. However, it should be noted that on release of the pressure, the overall sample structures revert to a mixture of both orthorhombic and hexagonal of phase fractions ~78.6% orthorhombic and 21.4% hexagonal. This behaviour demonstrates that the structural modification by external pressure is partially reversible. The outcomes of our experiment indicate that external pressure drives the structure transition temperatures of Mn0.92Fe0.08CoGe down to below room temperature. This agrees well with the conclusion obtained for the parent MnCoGe compound by Niziol et al., who reported that external pressure can lead to a significant decrease in the transition temperature under hydrostatic pressure up to 1.3 GPa.

The pressure dependences of the lattice parameters derived from the refinements are shown in Figure 2. It can be seen from the variation of the c/a ratio with pressure (inset to Figure 2(b)) that the contraction of the unit cell with pressure is anisotropic. It is well accepted that the lattice response to pressure can be described by the Murnaghan equation as follows:

$$P(V) = \frac{B_0}{B_0'} \left(\frac{V_0}{V} \right)^{\frac{B_0'}{B_0}} - 1$$

or equivalently

$$V(P) = V_0 \left(1 + \frac{P}{B_0} \right)^{-1/B_0'},$$

where V_0, B_0, and B_0' are the volume, bulk modulus, and its first derivative at ambient pressure, respectively.

The experimental data have been fitted with 3rd order of Murnaghan equation leading to the fitted results shown by the full line in Figure 2(b). The values of B_0 and B_0' for Mn0.92Fe0.08CoGe have been derived to be 112.2 GPa and 7.2, respectively. By comparison, the values of B_0 for TbNi2Mn and TbNi2 (Ref. 18) are found to be 128 GPa and 103 GPa, respectively, while B_0 is only 68 GPa and 20 GPa for Pr0.5Y0.5Mn2Ge2 (Ref. 6) and TbMn2, respectively.

FIG. 1. (a) Synchrotron x-ray diffraction patterns of Mn0.92Fe0.08CoGe at room temperature and at various external pressures from 0 GPa to 9.94 GPa; (b) Rietveld refinements of x-ray patterns at $p = 0 \text{ GPa}$ (before applying pressure), $p = 1.38 \text{ GPa}$, and $p = 0 \text{ GPa}$ (after release of pressure).
The temperature dependence of the DC magnetization (see Figure 3) reveals only one magnetic phase transition in Mn$_{0.92}$Fe$_{0.08}$CoGe with $T_C = 300(\pm 5)$ K; this behaviour agrees well with the differential scanning calorimetry (DSC) measurements shown as the inset of Figure 3. This behaviour of a unique transition temperature in the magnetisation and DSC results indicates that the structure and magnetic transitions coincide in this compound. The magnetization of Mn$_{0.92}$Fe$_{0.08}$CoGe as measured as a function of field over the temperature region 120 K to 350 K with 5 K steps is shown in Figure 4(a). The related Arrott plots of M^2 versus B/M at selected temperatures are drawn in Figure 4(b) with the positive slopes of the Arrott plots around T_C indicating that the magnetic transition around T_C is second order. The isothermal entropy change $-\Delta S_M$ corresponding to magnetic field change ΔB (starting from zero field) can be conveniently derived from the magnetization data using the Maxwell relation [e.g., Refs. 2–6]

$$-\Delta S_M(T, B) = \int_0^B \left(\frac{\partial M(T, B)}{\partial T} \right)_B dB.$$

The magnetocaloric entropy change determined in this way is shown in Figure 4(c) with the curves for decreasing field and increasing field found to be essentially identical. The maximum entropy changes for $\Delta B = 1$ T and $\Delta B = 5$ T are
3.2/kg K and 17.2 J/kg K, respectively. The latter entropy value for Mn$_{0.92}$Fe$_{0.08}$CoGe around $T_c \sim 300$ K is close to the values obtained in Mn$_{0.88}$Fe$_{0.12}$CoGe (16.5 J/kg K around 242 K (Ref. 16)) and in Gd$_5$Si$_2$Ge$_2$ (18 J/kg K around 276 K (Ref. 16)) and in Gd$_5$Si$_2$Ge$_2$ (18 J/kg K around 276 K (Ref. 16)).

The enhanced value for the entropy change in the present Mn$_{0.92}$Fe$_{0.08}$CoGe sample is likely to be due to coincidence of the structural and magnetic phase transitions where both structural entropy and magnetic entropy are found to contribute significantly to the total entropy change around T_c. Moreover, it was found that the maximum values of the entropy change $-\Delta S_M^{max}$ vary almost linearly with magnetic field (inset to Figure 4(d)), indicating that the proportional relationship $-\Delta S_M^{max} \propto B$ applies at this transition. As described in the literature, the relationship of the lattice parameters between orthorhombic and hexagonal structures can be represented as: $a_{ortho} = c_{hex}$, $b_{ortho} = a_{hex}$, $c_{ortho} = 3a_{hex}$, and $V_{ortho} = 2V_{hex}$.

Using the room temperature lattice parameters, we can see that the unit cell of the orthorhombic structure contracts around 4% on changing to the hexagonal structure, thereby introducing additional structural entropy. Figure 4(d) shows a graph of the normalized entropy change ΔS_M^{max} for Mn$_{0.92}$Fe$_{0.08}$CoGe versus temperature. It can be seen that when normalised in this way, the field dependent entropy curves effectively collapse into a single curve.

![Figure 5](http://scitation.aip.org/termsconditions)
FIG. 5. Heat capacity C_p for the Mn$_{0.92}$Fe$_{0.08}$CoGe compound: (a) in the lower temperature regime from 2 K to 120 K and (b) the higher temperature regime from 250 K to 340 K. The inset of Figure 5(a) shows the C_p/T versus T^2 plot from 2 K to 10 K with the linearly fitted curve shown as a dashed line. The temperature dependence of the heat capacity measurements $C_p(T)$ for Mn$_{0.92}$Fe$_{0.08}$CoGe at lower (2 K–120 K) and higher temperature (250 K–340 K) regions is shown in Figures 5(a) and 5(b), respectively. The pronounced anomaly observed around T_c originates from coincidence of the structural and magnetic phase transitions. It is well accepted that the total heat capacity $C_p(T)$ includes three contributions from phonon $C_{ph}(T)$, electrons $C_{el}(T)$, and magnons $C_{m}(T)$, respectively. At low temperatures, the heat capacity can be described as $C(T) = \gamma T + \beta T^3$, where γ/T represents the electronic contribution and βT^3 comes from the photon contribution. By fitting the graph of C_p/T versus T^2 (see inset of Figure 5(a)), the values of $\gamma = 2.93$ mJ/mol K2 and $\beta = 0.174$ mJ/mol K4 have been derived. The Debye temperature θ_D can be obtained from the β value to be $\theta_D = 319(\pm 10)$ K, which is very close to the values reported for Mn$_{0.8}$Fe$_{0.2}$CoGe ($\theta_D = 306$ K) and CoMnGe$_{0.95}$Ga$_{0.05}$ ($\theta_D = 337$ K).

The structural and magnetic properties of Mn$_{0.92}$Fe$_{0.08}$CoGe have been investigated over the temperature range of 5–650 K. At ambient temperature and pressure, Mn$_{0.92}$Fe$_{0.08}$CoGe exhibits co-existence of the orthorhombic TiNiSi-type structure (space group Pnma) and hexagonal Ni$_2$In-type structure (space group P63/mmc). Application of external pressure (p = 1.38 GPa) drives a structure change from the orthorhombic TiNiSi-type structure to the hexagonal Ni$_2$In-type structure. The Mn$_{0.92}$Fe$_{0.08}$CoGe compound exhibits a pronounced magnetostuctural transition around $T_c \sim 300$ K. A large magnetic-entropy change of $-\Delta S_M = 17.3$ J/kg K at T_c for a field change of $\Delta B = 5$ T has been determined for the Mn$_{0.92}$Fe$_{0.08}$CoGe compound. The field dependence of $-\Delta S_M^{max}$ around T_c can be expressed as $-\Delta S_M^{max} \propto B$.

This work was supported in part by Discovery Grant DP110102386 from the Australian Research Council. Part of the experiment was conducted at the Powder Diffraction beamline of the Australian Synchrotron.