This is a repository copy of The effects of melt depletion and metasomatism on highly siderophile and strongly chalcophile elements: S–Se–Te–Re–PGE systematics of peridotite xenoliths from Kilbourne Hole, New Mexico.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/88338/

Version: Accepted Version

Article:

https://doi.org/10.1016/j.gca.2015.06.028

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/
The effects of melt depletion and metasomatism on highly siderophile and strongly chalcophile elements: S-Se-Te-Re-PGE systematics of peridotite xenoliths from Kilbourne Hole, New Mexico.

Jason Harvey¹*, Stephan König², Ambre Luguet³.

¹ School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.
² Department of Earth Sciences, Universität Tübingen, Tübingen Germany.
³ Steinmann Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany.

* corresponding author: email - feejh@leeds.ac.uk. Tel - +44 (0)113 343 6769

For submission to Geochimica et Cosmochimica Acta
The composition of the Earth's upper mantle is a function of melt depletion and subsequent metasomatism; the latter obscuring many of the key characteristics of the former, and potentially making predictions of Primitive Upper Mantle (PUM) composition problematic. To date, estimates of PUM abundances of highly siderophile element (HSE = platinum group elements (PGE) and Re) and the strongly chalcophile elements Se and Te, have been the subject of less scrutiny than the lithophile elements. Critically, estimates of HSE and strongly chalcophile element abundances in PUM may have been derived by including a large number of metasomatized and refertilized samples whose HSE and chalcophile element abundances may not be representative of melt depletion alone.

Unravelling the effects of metasomatism on the S-Se-Te-HSE abundances in peridotite xenoliths from Kilbourne Hole, New Mexico, USA, potentially provides valuable insights into the abundances of HSE and strongly chalcophile element abundances in PUM. Superimposed upon the effects of melt depletion is the addition of metasomatic sulfide in approximately half of the xenoliths from this study, while the remaining half have lost sulfide to a late S-undersaturated melt. Despite these observations, the Kilbourne Hole peridotite xenoliths have HSE systematics that are, in general, indistinguishable from orogenic peridotites and peridotite xenoliths used for determination of PUM HSE abundances.

This study represents the first instance where Se-Te-HSE systematics in peridotite xenoliths are scrutinized in detail in order to test their usefulness for PUM estimates. Despite earlier studies attesting to the relative immobility of Se during supergene weathering, low S, Se, Os and Se/Te in peridotite xenoliths suggests that Se may be more mobile than originally thought, and for this reason, peridotite xenoliths may not be suitable for making predictions of the abundance of these elements in PUM. Removal of Se, in turn, lowers the Se/Te in
basalt-borne xenolithic peridotites to subchondritic values. This is in contrast to what has been recently reported in kimberlite-borne peridotite xenoliths. Moreover, Te added to melt depleted peridotite in metasomatic sulfide is more difficult to remove in a S-undersaturated melt than the HSE and Se due to the generation of micron-scale tellurides. The effects of these processes in orogenic peridotites and xenoliths, from which PUM abundances have been calculated, require further scrutiny before unequivocal Se-Te-Re-PGE values for PUM can be derived.
1. Introduction

Two main processes affect the composition of the Earth's upper mantle; varying degrees of melt depletion (e.g. Frey and Green, 1974; Jagoutz et al., 1979; Galer and O'Nions, 1989) and the range of secondary processes grouped together under the broad umbrella of "metasomatism" (Harte, 1983). These include refertilization, i.e., the precipitation of metasomatic clinopyroxene (e.g. Le Roux et al, 2007, 2008, 2009; Soustelle et al., 2009; van Acken et al., 2010a), the infiltration of silicate melts and related fluids (Roden et al., 1984; Menzies et al., 1987; Schiano and Clocchiatti, 1994; Schiano and Bourdon, 1999), interaction with carbonatitic melts (O'Reilly and Griffin, 1988; Yaxley et al., 1991; Dautria et al., 1992; Ionov et al., 1993; Rudnick et al., 1993; Griffin et al., 1996) and CO₂-rich fluids (Andersen et al., 1984; O'Reilly and Griffin, 1988), the percolation of kimberlite-like melts (e.g. Menzies and Wass, 1983), and the cryptic effects of mechanical mixing of depleted peridotite with evolved cumulates (e.g. Riches and Rogers, 2011). The effects of metasomatism on lithophile trace elements (e.g. rare earth elements (REE), high field strength elements (HFSE) and large ion lithophile elements (LILE)) in melt-depleted peridotites have been understood for decades (e.g. Blundy and Wood, 1994; Wood and Blundy, 2001). Residual mantle is particularly vulnerable to re-enrichment in the most incompatible trace elements because depleted peridotite has very low concentrations of REE, HFSE and LILE compared to any of the melts and fluids with which it may interact (Navon and Stolper, 1987; Bodinier et al., 1990). Similar investigations into the effects of metasomatism on highly siderophile and strongly chalcophile elements, such as the platinum group elements (PGE: Os, Ir, Rh, Ru, Pt, Pd), Re, S, Se and Te, are less numerous (e.g. Morgan, 1986; Morgan et al., 2001; Ackerman et al., 2009; Alard et al., 2011; Wang et al.,...
As a result, our understanding of the behavior of these elements during mantle processes is less complete.

Unlike lithophile trace elements, which are controlled by major silicate and minor oxide phases comprising > 99.9 modal percent of the mantle, the highly siderophile element (HSE = platinum group elements, (i.e., PGE and Re) inventory of the mantle is controlled by accessory Cu-Fe-Ni sulfides, also referred to as base metal sulfides (BMS). Experimentally determined sulfide / silicate partition coefficients for HSE and chalcogens ($D_{\text{sulfide/silicate}}$) of up to 5×10^4 (Peach et al., 1994; Fleet et al., 1991, 1996, 1999; Mungall and Brenan, 2014) were complemented by early studies on separated minerals (Morgan and Baedecker, 1983; Hart and Ravizza, 1996; Pattou et al. 1996; Burton et al., 1999; Handler and Bennett, 1999; Alard et al., 2000), and confirmed by in-situ measurements of BMS grains in peridotites (Alard et al., 2000; Lorand and Alard, 2001; Luguet et al., 2001, 2004; Lorand et al., 2008). Sulfide melts have been implicated in the metasomatism of peridotite (e.g. Bockrath et al., 2004; Ballhaus et al., 2006; Holzheid, 2010). The high solubility of S in silicate melts and C-O-H-S-rich fluids (e.g. Schiano and Clocchiatti, 1994) provides a mechanism for both the dissolution and precipitation of BMS along grain boundaries and in intergranular interstices, dissolution and remobilization of BMS during fluid / melt-induced recrystallization of peridotite, or inclusion in secondary minerals, for example metasomatic clinopyroxene. An additional complication is the tendency for Te, along with its affinity for BMS, to form minute Pt-Bi-tellurides (Luguet et al., 2004; Lorand et al., 2008; Lorand and Alard, 2010). As a result, metasomatic BMS is easily transported and deposited in the mantle, thus obscuring the effects of prior melt depletion. Therefore lithophile trace elements, HSE and strongly chalcophile element fingerprints of partial melting can be easily smudged by seemingly ubiquitous secondary processes, i.e., post melt depletion, albeit it to differing extents for different groups of elements.
This presents problems for the calculation of the HSE and chalcogen composition of the Primitive Upper Mantle (PUM; Meisel et al., 2001; Becker et al; 2006; Walker, 2009), which requires an understanding of the composition of the Earth's mantle before it experienced melt extraction. Unfortunately, the ubiquity of metasomatic overprints make this difficult to constrain unequivocally. Several studies over the last 25 years have concluded that the major and trace element composition of many peridotites can be affected by silicate melt migration (e.g., Bodinier and Godard, 2003; Zhang et al., 2004; Le Roux et al., 2007; Piccardo et al., 2007; Dick et al., 2010; Batanova et al., 2011) and that many fertile lherzolites are in fact depleted harzburgites that have been subsequently refertilized through reaction with silicate melt (e.g. Elthon, 1992; Müntener et al., 2004; Le Roux et al., 2007, 2008, 2009; Soustelle et al., 2009). Similar processes may also affect the distribution of the HSE and chalcophile elements in mantle peridotites. For example, Cu-Ni-rich BMS precipitated on grain boundaries in peridotites are often enriched in Pd, Re, chalcogens and may possess radiogenic $^{187}\text{Os}/^{188}\text{Os}$ (e.g., Alard et al., 2000, 2002, 2005; Luguet et al., 2001; Pearson et al., 2004; Harvey et al., 2010, 2011). Co-precipitation of these interstitial sulfides occurs with the crystallization of clinopyroxene and spinel from silicate melts, i.e., lithophile, siderophile and chalcophile elements may all be affected by the interaction of melt-depleted peridotite with a silicate melt, but the degree to which melt depletion signatures are affected in each group of elements may vary considerably. In particular, the degree to which HSE and strongly chalcophile elements will be affected depends upon the sulfur saturation status of the silicate melt, which is, in turn, a function of pressure, temperature and FeO abundances in the silicate melt (e.g. Wendlandt, 1982; Mavrogenes and O’Neill, 1999; O’Neill and Mavrogenes, 2002). The metasomatism-induced alterations of HSE and chalcophile element systematics may not be ubiquitously associated with lithophile element metasomatic
signatures, where bulk-rock geochemistry and textural features may disguise a refertilized harzburgite as a fertile or modestly melt-depleted lherzolite.

Compared to studies of HSE, high precision analyses of Se and Te in peridotites are scant and are dominated by Se abundance measurements (Morgan, 1986; Lorand et al., 2003a, 2004; Lorand and Alard, 2010; Alard et al., 2011; Delpech et al., 2012; König et al., 2012, 2014; Wang et al., 2013; Wang and Becker, 2013; Marchesi et al., 2013). The majority of these studies have focussed on peridotite that include samples displaying unequivocal evidence of metasomatism and/or refertilization by silicate melts. This potentially makes it difficult to reconcile PUM concentrations of Se and Te with those drawn from cosmochemical observations of chondritic meteorites (Lodders et al., 2009), when the influence of metasomatism in terrestrial peridotites is considered.

This study focuses on a suite of well characterized peridotite xenoliths from Kilbourne Hole, New Mexico, USA – the first comprehensive study of HSE, S, Se and Te in basalt-hosted peridotite xenoliths. Prior investigations into their Re-Os isotope signatures (Harvey et al., 2011) and lithophile element and Sr-Nd isotopic characteristics (Harvey et al., 2012) have revealed that the composition of approximately half of the suite of xenoliths retain geochemical characteristics consistent with melt depletion, but have subsequently experienced small amounts of cryptic silicate metasomatism. The remainder have experienced varying but, in general, greater degrees of cryptic silicate metasomatism, i.e., sufficient interaction with a melt to raise the abundances of the most incompatible lithophile trace elements, but not intense enough to trigger the replacement of existing phases, or the precipitation of new ones. These two sub-sets of Kilbourne Hole peridotites are evaluated for their utility in estimating the HSE and chalcophile element characteristics of PUM, and the degree to which metasomatic processes that affect the lithophile elements also disturb HSE and chalcophile element signatures in melt depleted peridotites.
2. Geological setting and sample description

2.1 Geological setting

One of several late Pleistocene volcanic maars, Kilbourne Hole is situated in the Potrillo volcanic field on the axis of the Rio Grande Rift, which extends for more than 1000 km through south-western USA and onwards into northern Mexico. The lava flows at Kilbourne Hole (dated at 80 ± 10 kyr to 141 ± 75 kyr; Hoffer, 1976; Dromgoole and Pasteris, 1987; Bussod and Williams, 1991; Thompson et al., 2005) contain abundant peridotite and pyroxenite xenoliths. The lithosphere in this region is particularly thin, with estimates ranging from 40 km (Cordell et al., 1991) to 50-70 km (Keller et al., 1990). On the basis of gravity and teleseismic investigations (Keller et al., 1990; Olsen and Morgan, 1995), the crust at Kilbourne Hole is ca. 26 km thick, constraining the thickness of the underlying sub-continental lithospheric mantle (SCLM) to between 14 and 44 km. Geothermometry calculations based upon Ca exchange between orthopyroxene and clinopyroxene (Wells, 1977; Brey and Kohler, 1990) suggest that Kilbourne Hole xenoliths last equilibrated at temperatures ranging from 880 to 1180°C (Bussod, 1981; Kil and Wendlandt, 2004; Anthony et al., 2002; Harvey et al. 2012). When projected onto a calculated present-day geotherm (Decker and Smithson, 1975; Reiter et al., 1986) these temperatures suggest that equilibration last occurred at depths in excess of 48 km (Kil and Wendlandt, 2004). This is consistent with minimum entrapment pressures of 1.3 GPa obtained from olivine-hosted fluid and melt inclusions (Schiano and Clocchiatti, 1994). The asthenosphere-like Re-Os isotope signature of Kilbourne Hole xenoliths (cf. Harvey et al., 2006 and Harvey et al., 2011) also suggests that they were derived from close to the local lithosphere-asthenosphere boundary.
2.2. Bulk rock sample description

The samples examined in this study (n = 17) are a subset of Cr-diopside spinel-lherzolites and spinel-harzburgites with predominantly protogranular textures from Harvey et al. (2011, 2012), where detailed descriptions can be found (for lithology, texture, mineralogy, modal abundances and equilibration temperatures see Table S1). The samples were selected to represent as wide a range of clinopyroxene modal abundance (a field proxy for melt depletion) as possible. No discrete metasomatic phases (e.g. phlogopite, amphibole, apatite) were detected during this, or any prior study of this locality. Most samples have silicate modal abundances consistent with varying degrees of melt depletion. However, two samples (KH03-3 and KH96-8) plot significantly away from this trend (Figure 1), while a further four peridotites (KH03-11, KH03-16, KH96-18 and KH96-24) are not consistent with derivation from one melting event, but more likely multiple episodes of low degree (≤ 4%) partial melting (Harvey et al., 2012).

Highly silicic, CO$_2$-S-saturated, alkali-enriched melts, found as inclusions, interstitial glass or small veins have been observed in previous studies of some Kilbourne Hole peridotite xenoliths (Schiano and Clocchiatti, 1994) e.g. KH03-15 (see Figure 4 in Harvey et al., 2012). Olivine grains in contact with the veins appear to have been partially resorbed in places, suggesting a degree of compositional disequilibrium between the primary mineral assemblage and the secondary glass. KH03-10, KH03-15, KH03-21, KH03-24 and KH03-27 have all been observed to possess spongy clinopyroxene grain boundaries in close proximity to the basaltic rind on the outside of the xenoliths, whereas in KH03-15, KH03-16 and KH03-21 discrete stringers, veinlets and pockets of interstitial glass have been observed (Harvey et al., 2012). Ten of the samples in this study have bulk-rock (La/Yb)$_N$, i.e., La/Yb normalized
to values of Primitive Mantle (McDonough and Sun, 1995) of <1 (Table S2; Figure 2a). This subset of samples will be referred to as group 1 peridotites throughout the manuscript. The remainder (n=7) have (La/Yb)$_N$ ranging from 1 to 4.7 (Table S2). This subset will subsequently be referred to as group 2 peridotites. Interestingly, the La/Yb ratios are negatively correlated with the whole-rock Al$_2$O$_3$ contents in both groups, implying that harzburgites are systematically characterised by higher (La/Yb)$_N$ than the lherzolites in both group 1 and group 2 Kilbourne Hole peridotites. The osmium isotope ratios of both of the subsets of peridotites co-vary strongly with indices of melt depletion (Harvey et al., 2011; Table S2; Figure 2b), although group 2 samples project to 187Os/188Os in excess of that of PUM (Becker et al., 2006). In addition, group 2 peridotites have much more scattered Re/Os ratios for a given degree of melt depletion (Table S2; Figure 2c). This contrasts with group 1 peridotites whose Re/Os co-variation with melt depletion is almost as strong as that between the Os isotope ratios and bulk-rock Al$_2$O$_3$.

2.3 Sulfide petrology

The petrology of Kilbourne Hole BMS is described in detail in Dromgoole and Pasteris (1987). Major element compositions (Table S3) and Re-Os isotope and elemental systematics (Table S4) of BMS recovered from the Kilbourne Hole peridotite xenoliths used in this study are described in detail in Harvey et al. (2011). Their petrological and geochemical characteristics are summarized briefly here. Based upon major element chemistry, BMS mineralogical assemblages can be divided into the following groups (see Figure 4 of Harvey et al., 2011); Ni-rich and Ni-poor monosulfide solid solution (MSS) with low (0.08–4.68 wt. %) Cu abundances, broadly equivalent to similar BMS elsewhere (Luguet et al., 2003, 2004), and Cu-rich sulfides, analogous to chalcopyrite / cubanite from previous
studies of both mantle xenoliths and tectonically-emplaced peridotites (Dromgoole and Pasteris, 1987; Luguet et al., 2003, 2004). This second subset have very high Fe:Ni ratios and plot significantly below the array of the MSS grains. A single BMS grain with a composition similar to that of the basalt hosted sulfide of Burton et al. (1999) is also illustrated in Figure 4 of Harvey et al. (2011). However, this BMS was observed 1 cm inside a xenolith (KH03-23) and not in the host basalt. This demonstrates that in several xenoliths there has been limited ingress of the host basalt, but in all cases this is a minor effect. In addition to peripheral physical ingress of basaltic melt, a volatile-rich Te-bearing reaction may penetrate further into the xenoliths, capable of precipitating Te-bearing platinum group minerals (PGM; König et al., 2014).

Most of the BMS observed in the course of this study and Harvey et al. (2011) have, to some extent, experienced supergene weathering (Figure 3) where the sulfide minerals have been replaced by amorphous Fe-oxyhydroxide, i.e., [FeO(OH)]$_6$H$_2$O, analogous to that reported by Luguet and Lorand (1998), Lorand et al., (2003a) and Alard et al. (2011). The BMS featured in Figure 3 is in fact one of the least weathered interstitial BMS grain observed during the course of this study. The exception to this is occasional small (< 50 µm) rounded to ovoid-shaped sulfides which appear to be wholly enclosed within a silicate grain, typically high Mg# (0.92) olivine, and thus protected from the effects of supergene weathering. These grains can be considered as representing < 5% of sulfides (cf. Alard et al., 2002; Alard et al. 2011), the remaining 95% being interstitial pentlandite and Cu-Ni-rich BMS.

Sulfides from 4 of the group 2 xenoliths (KH03-15, KH03-16, KH03-21 and KH03-24) were analysed for Re-Os isotope and elemental systematics in Harvey et al. (2011). Their Os concentration (i.e., [Os]) varies from 0.001 to 36.85 µg g$^{-1}$ (Table S4). Rhenium concentrations range from 0.002 to 138.9 µg g$^{-1}$ (Table S4). Osmium isotope ratios of the BMS grains range from 0.1185 to 0.3729, with wide ranges of values within individual
xenoliths (Table S4). Rounded, subrounded or euhedral sulfides, i.e., those most likely to have been enclosed within a silicate grain, have unradiogenic $^{187}\text{Os}/^{188}\text{Os}$ values, slightly below or indistinguishable from the bulk-rock Os isotope ratio, and usually have the highest [Os] and low [Re]. The remaining BMS have at least one straight edge, consistent with an interstitial nature, and are characterised by radiogenic Os isotope ratios, i.e., in excess of the corresponding bulk-rock value. They have up to two orders of magnitude lower [Os] and higher [Re] than the rounded sulfides (Harvey et al., 2011).

3. Analytical methods

3.1. Highly Siderophile Element abundance determination.

Bulk-rock HSE analyses were carried out at the Steinmann Institute für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms Universität Bonn on a 1 g powder split from the same material prepared for the previous studies of Harvey et al. (2011, 2012), where selected Ru and Os abundances, and $^{187}\text{Os}/^{188}\text{Os}$ had already been obtained, using methods described therein. A mixed ^{190}Os–^{185}Re–^{191}Ir–^{99}Ru–^{194}Pt–^{106}Pd-enriched spike was added prior to digestion. Digestions were performed in reverse aqua regia (5 mL 16 N HNO$_3$ and 2.5 mL 12 N HCl) for 14 h at 270 °C using an Anton Paar high pressure asher. After HP-asher digestion, the aqua regia fraction was further digested overnight using HF/HNO$_3$ in order to improve the digestion of the silicate minerals and maximise the recovery of Re. The HSE in this aqua regia fraction were subsequently separated and recovered by anion-exchange column chemistry (AG1X-8 100–200 mesh) using the methods described in detail in Dale et al. (2008, 2012, and references therein). This chemical separation is based on the procedure described by Pearson and Woodland (2000) and was
further modified by adding HF/HCl elution steps to improve the HFSE/HSE separation (König et al., 2012; Lissner et al., 2014). Platinum, Ir, Re, Ru and Pd were analysed at the Steinmann Institute on a Thermo Scientific Element XR SF-ICP-MS. Accuracy and precision were tested by replicate analyses of UB-N peridotite (Meisel et al., 2003; Meisel and Moser, 2004). Precision is ±1% for Ir, ca. ±5 % for Pt and Pd and ca. ±15% for Re for the UB-N triplicate analyses. Similar “low” Re reproducibilities were observed by Fischer-Gödde et al. (2010) and attributed to powder heterogeneity inherent in the UB-N reference material. Total analytical blanks (n=3; Table 1) were measured by isotope dilution for each set of chemistry. The average blank values are 0.002 ± 0.001 ng for Ir, 0.022 ± 0.004 ng for Pd, 0.01 ± 0.005 and 0.006 ± 0.001 ng for Re. For the HSE, blank measurements represent less than 1% of the analysed unknowns and therefore a blank correction has not been applied. For peridotites with the lowest Re abundances the blank can constitute up to 30% of the measured value (KH03-25 and KH03-15), and in the exceptional case of KH03-16, with a measured Re abundance of 0.007 ng g$^{-1}$ the sample is barely distinguishable from the blank. As such, Re abundances have been blank corrected (Table 2).

3.2. S-Se-Te abundance determination.

Sulfur abundance was determined using a LECO SC230 analyzer at University of Leicester. Approximately 2 g of powder was made into a pellet and analysed in a He atmosphere. Internal reproducibility was typically ± 0.5 to 0.8 µg g$^{-1}$. For the highest S abundances (130 µg g$^{-1}$) this represents a maximum of ± 0.3%. For KH03-16, the peridotite with the lowest sulfur abundance ([S] = 3 µg g$^{-1}$) this internal reproducibility constitutes a maximum of ± 26%. For Se and Te abundance measurements, made at Rheinische Friedrich-Wilhelms Universität Bonn, the peridotites were spiked with 77Se and 125Te isotope tracers.
and digested according to the methods described in detail in König et al. (2012, 2014). Briefly, 1 g of sample powder was desilicified, using HF and concentrated HNO$_3$ in a bench top digestion procedure after complete digestion in inverse aqua regia using an Anton Paar high pressure asher at 100 bar and 220 °C for 12 h. Selenium and tellurium were separated using thiol cotton fibre (Yu et al., 1983) according to the method described in detail by König et al. (2012, 2014), using separation procedures modified from Marin et al. (2001), Elwaer and Hintelmann (2008), and Savard et al. (2009). Generally, the recovery of Se varied between 60% and 90%, while Te recovery varied between 10% and 90%. 77Se, 78Se, 125Te and 126Te were measured using a Thermo Scientific SF-ICP-MS Element XR equipped with a modified hydride generator (see Wombacher et al., 2009 and König et al., 2012 for details). Instrument parameters are documented in detail in König et al. (2012, 2014). The reproducibility of UB-N, [Se] of 132 ± 11 ng g$^{-1}$ is indistinguishable from previous literature values (Terashima and Imai, 2000; Marin et al., 2001; Savard et al., 2009; Lorand and Alard, 2010; König et al., 2012, 2015a; Wang et al., 2013; Lissner et al., 2014). The Te concentration of UB-N is 10.20 ± 3.79 ng g$^{-1}$, again well within the previous reported range of values (Terashima, 2001; Lorand and Alard 2010; König et al., 2012). The Se/Te ratio therefore ranges between 8.6 and 22.3, again in complete agreement with previously published values (König et al., 2012; Wang et al., 2013). Total analytical blanks were indistinguishable from background intensities during analysis. This is broadly equivalent to ca. 0.1 ng g$^{-1}$ for Se and 0.01 ng g$^{-1}$ for Te, as based on background-corrected signal intensities for standard solutions of these concentrations (König et al., 2015a) and, as such, no blank corrections were made to the abundance measurements of Se and Te. Instrumental mass bias was corrected using natural 77Se/78Se of 0.3211762 and natural 125Te/126Te of 0.376728 (De Bièvre and Taylor, 1993).
4. Results

Sulfur, selenium and tellurium abundance for the 17 peridotite xenoliths are presented in Table 2. In summary, S concentrations range from 3 µg g\(^{-1}\) in KH03-16 to 130 µg g\(^{-1}\) in KH03-18, i.e., all samples in this study have S abundances significantly below estimates for the Primitive Mantle (PM = 250 ± 50 µg g\(^{-1}\); Lorand, 1990; O’Neill, 1991; Palme and O’Neill 2003). There is no obvious relationship between S and Al\(_2\)O\(_3\) (Figure 4). While most of the peridotites define a broad positive co-variation between S and Al\(_2\)O\(_3\), there are samples in both subsets which extend to higher S abundances for a given Al\(_2\)O\(_3\). Selenium abundances vary from 1.1 ng g\(^{-1}\) in KH03-16 to 56.9 ng g\(^{-1}\) in KH03-10. Duplicate measurements of Se abundances in group 1 peridotites do not reproduce as well as those of group 2 peridotites (Table 2) or the long term reproducibility of the UB-N reference material (cf. Table 1 and König et al., 2012, 2014, 2015a). A strong positive correlation is evident between the Se and S abundances in both the subsets of peridotites, i.e., R\(^2\) = 0.88 and 0.92 for group 1 peridotites and group 2 peridotites, respectively (Figure 5). While stronger than the co-variation between S and Al\(_2\)O\(_3\), the correlation coefficients between Se and Al\(_2\)O\(_3\) are only marginally greater for both subsets of samples, with two samples from each subset (KH03-10, KH03-18, KH96-8, KH96-24) having particularly high Se concentrations for a given Al\(_2\)O\(_3\) abundance (Figure 4b). Tellurium abundances range from 0.2 ng g\(^{-1}\) in KH03-16 to 19.2 ng g\(^{-1}\) in KH03-7. With the exception of KH03-7, there is a much more precise reproducibility of Te abundances in group 1 peridotites than there is Se. Group 2 peridotites, on the other hand, have comparable and excellent Se and Te reproducibility (Table 2). Consequently, Se/Te ratios are much more scattered in group 1 peridotites than group 2 (Figure 5). There is a strong positive co-variation between Te and S abundances in group 2 peridotites (R\(^2\) = 0.78) but no such relationship is apparent in group 1 peridotites (R\(^2\) = 0.08;
Figure 5b). There is remarkably little covariation between Se and Te abundances in group 1 peridotites ($R^2 = 0.11$; Figure 5c) but there is a relationship in the group 2 peridotites, where the R^2 is 0.60 (Figure 5c). Like S and Se, there is no strong co-variation between Te and Al$_2$O$_3$ abundance (Figure 4c). Overall, the Kilbourne Hole peridotites from both group 1 and group 2 define a similar Se/Te vs. Te trend as the one defined by König et al., (2012; 2014), which include lherzolitic and harzburgitic peridotites from both xenolith localities (cratonic and non-cratonic), and tectonically-emplaced massifs.

Highly siderophile element abundances can be found in Table 2 and are illustrated in Figure 6. In general, HSE abundances are somewhat lower than current estimates for the Primitive Upper Mantle (Becker et al., 2006). Interestingly, these HSE concentration intervals and the PUM-normalized HSE patterns differ between group 1 and group 2 peridotites. The group 1 peridotites show sub-parallel HSE patterns with a surprisingly large range of Ir contents (ca. one order of magnitude) along with more typical but still large variations in Pt, Pd and Re concentration. All the group 1 peridotites show sub-PUM Pt/Pd ratios (Becker et al., 2006), becoming more fractionated with decreasing Pt and Pd concentrations. In comparison, the group 2 peridotites are characterised by Ir concentrations varying by up to 40% and are variably depleted in Pt, Pd and Re. Independently of their (La/Yb)$_N$ ratios, all the Kilbourne Hole peridotites are characterised by sub-PUM (Os/Ir)$_N$ (i.e., 0.42-0.84). Excluding KH03-24, these (Os/Ir)$_N$ correlate inversely with Pd depletion and the (Pd/Ir)$_N$ ratios for the group 2 peridotites. (Ru/Ir)$_N$ ratios are also significantly lower than PUM ranging from 0.93 in KH03-21 to 0.78 in KH03-16. Furthermore, strong correlations are evident for group 1 peridotites between Os and Ir (Figure 7a), Pt and Pd; (Figure 8b), Re and Pt or Pd (Pt; Figure 7c) and between Ir and Pt (Figure 7d). The peridotites from group 2 also display a positive correlation between Pd and Re; and Pd and Ir (excluding KH03-24). However, unlike group 1 peridotites, group 2 peridotites exhibit negative correlations
between Ir and Os vs. Pd. Most of the group 2 peridotites are indistinguishable from the
group 1 peridotites with respect to Os vs. Ir abundances; only the most depleted group 1
peridotites are shifted toward higher Os concentrations for a given Ir contents. Only 3
samples, all group 2 peridotites, have \((\text{PPGE/IPGE})_N > 1\); KH03-3 and KH96-8 both have
\((\text{Pt/Ir})_N > 1\), whereas KH03-3, KH96-8 and KH03-24 have \((\text{Pd/Ir})_N > 1\) (where PPGE = Pd and
Pt, and IPGE = Os and Ir; Barnes et al., 1985).

A strong positive correlation between S and Pd abundances is evident (Figure 8a) in
both subsets of peridotites \((R^2 = 0.78\) for group 1 peridotites; \(R^2 = 0.80\) for group 2
peridotites). A similar, although less strong relationship in group 2 peridotites, is also
observed between Pd and Se (Figure 8b). However, the converse is seen in the relationship
between Pd and Te - there is a much stronger correlation between these two elements in
group 2 peridotites \((R^2 = 0.92)\) than in group 1 peridotites \((R^2 = 0.28);\) Figure 8c). The
relationships between Re and S, and Se and Te are also striking (Figure 8d, e and f,
respectively), although there is no correlation between Re and Se in group 2 peridotites;
Figure 8e). Neither of the subsets of peridotites show any strong correlations between
\((\text{La/Yb})_N\) and S, Se, Te or PPGE, although group 2 peridotites are more strongly (negatively)
correlated with \((\text{La/Yb})_N\) than group 1 peridotites (Figure 9). The only elements that deviate
from this pattern are the IPGE, which have slight \((R^2 = 0.13)\) to moderate \((R^2 = 0.53)\) positive
co-variations with \((\text{La/Yb})_N\). However, no such co-variation between IPGE abundance and S,
Se or Te concentration is apparent

5. Discussion

5.1 The effects of hydration, volatilization, and supergene weathering
Peridotite xenoliths are randomly sampled by basaltic melts that ascend through the lithosphere. They are often extremely fresh, especially so in the case of Kilbourne Hole peridotites. No serpentinization or discernable alteration of the silicates or spinel was observed. In fact all of the samples exhibited modest gains on ignition (see online supplementary information in Harvey et al., 2012). While the possibility exists for interaction with, or infiltration of the host basalt (for which some evidence is preserved in the rims of KH03-10 and KH03-27; Table S5), and it has been suggested that high temperatures associated with entrainment in the host basalt may trigger devolatilisation, or partial loss of S and perhaps Se (e.g. Lorand et al., 2003a, Alard et al., 2011), sampling from the centre of these >1 kg xenoliths (Harvey et al., 2011, 2012) avoids these potential complications, which tend to be restricted to the outermost centimetre or so of the xenoliths.

Sulfur abundances are, in general, lower than the array of mostly orogenic peridotites from the literature (Le Roux et al., 2007; Lorand et al., 2010; Alard et al., 2011; König et al., 2012, 2014; Wang et al., 2013) but overlap with the previous Kilbourne Hole study of Morgan (1986), despite the latter study having higher S concentrations for a given level of Al₂O₃. Unlike orogenic peridotites, none of the Kilbourne Hole peridotites have S abundances in excess of the estimated Primitive Mantle value of \((250 \pm 50 \mu g \, g^{-1})\). This shift to lower S abundances than orogenic peridotites is likely due to supergene weathering (Figure 3). This phenomenon was also observed in xenoliths from the French Massif Central by Lorand et al (2003a), who used Se abundances as a proxy for mantle S abundance in similar xenoliths. The poor correlation with silicate dominated indices of melt depletion, such as Al₂O₃, is not helped by the clear perturbations to sulfide modal abundances in these peridotites which have been modified since melt depletion by the addition of metasomatic sulfide, and the subsequent removal of sulfide in a S-undersaturated melt (see section 5.2, below).
At the bulk-rock scale, Os and Ir are not fractionated by magmatic processes as both are hosted by BMS (i.e MSS, pentlandite). However, the IPGE may behave differently at the microscale when alloys have been stabilised in response to the disappearance of BMS during a high degree of partial melting. In the Kilbourne Hole xenoliths melt depletion does not extend to the high degrees (> 25%) often required for the formation of refractory alloys. However, while the degassing of highly volatile OsO$_4$ during the eruption of the host basalt could be implicated in the loss of Os from these xenoliths (e.g. Lorand et al., 2003b), this process requires highly oxidizing conditions (fO$_2$ > hematite-magnetite buffer) only found in arc volcanics (e.g. Frost and McCammon, 2008).

Supergene weathering of BMS is, therefore, the most likely cause of the low Os abundances and sub-chondritic Os/Ir ratios observed at Kilbourne Hole (cf. Handler and Bennett, 1999; Pearson et al., 2004). Moreover, as has been inferred in several prior studies of siderophile and chalcophile elements in peridotite xenoliths (e.g. Lorand, 1990; Lorand et al., 2003a, 2003b; Reisberg et al., 2005; Alard et al., 2011), sub-chondritic S/Se ratios are a function of the increased affinity of S for O over that of Se for O (Dreibus et al., 1995; Lorand et al., 2003a). This in turn means that groundwater or meteoric water percolating through peridotite xenoliths has the potential to remove sulfide as sulfate whilst leaving Se abundances less affected. For BMS apparently enclosed within olivine or orthopyroxene, the silicate "armor" should provide a degree of protection against supergene weathering but, just like silicate melt and fluid inclusions (e.g. Bodnar, 2003), BMS inclusions hosted within peridotite xenoliths may experience decrepitation induced by the rapid drop in pressure associated with the entrainment of a xenolith and its transport to the surface (e.g. Andersen et al., 1987). Griffin et al. (2002) noted that many BMS grains in peridotite xenoliths from the Siberian craton, especially the larger sulfides, show radiating expansion cracks lined with films of sulfide, which may provide a pathway for meteoric water to interact with seemingly
enclosed BMS grains. This permits the partial oxidation sulfur to sulfate and Os to OsO₄ and the removal of both species. This low temperature alteration process does not seem to have any measurable effect on the lithophile trace element systematics, the majority of the HSE, or the silicate (± spinel) mineralogy. In other words, only Os and S are clearly disturbed, to any measurable degree, by supergene weathering.

However, Se may not be completely immobile under these conditions, but still less mobile than S (Alard et al., 2011). For example, Figure 3 shows that BMS oxidation has taken place, but Figure 5a demonstrates that many of the Kilbourne Hole samples retain a chondritic, or near-chondritic S/Se ratio, but with low bulk-rock S abundances. For example, in a recent study of peridotite xenoliths from Montferrier, Southern France (Alard et al., 2011), several xenoliths yielded very low Se contents for a given sulfur abundance. This suggests that peridotite xenoliths may also lose Se during the transport of xenoliths in their host basalt or as a result of supergene weathering (cf. Lorand et al., 2003a). König et al. (2014) discussed the possibility that near chondritic Se/Te ratios in fertile peridotites are not a primitive signature of the Earth’s mantle, but rather reflect strong enrichment in metasomatic phases which accommodate high abundances of chalcogens, which erased previous pristine melt depletion signatures. This is supported by near-chondritic Se/Te signatures in metasomatic Cu-Ni-rich sulfides compared to much high Se/Te in residual sulfides (Se/Te ≤ 200). Moreover, interstitial PGM-bearing fine fractions of a depleted peridotite also show exclusively low Se/Te compared to residual Se-Te host phases in olivine (König et al., 2015a). There is some support for this hypothesis in the Se/Te systematics observed in the group 1 peridotites at Kilbourne Hole. However, in the group 1 peridotites, where an additional process lowered the Se/Te, a low Se/Te ratio could be generated in at least two different ways, i.e., by loss of Se (Alard et al., 2011) where the Se/Te was lowered from a
supra-chondritic ratio to near chondritic (ca. 9) or, conversely, with the addition of Te, which
is discussed in the sections that follow.

5.2 High temperature processes affecting peridotite compositions

5.2.1 Rare Earth Element signatures of melt depletion and subsequent metasomatism

The peridotites in this study have been divided into two sub-groups, based upon their

\((\text{La/Yb})_N\), i.e., the La/Yb ratio normalized to Primitive Mantle (McDonough and Sun, 1995).

Group 1 peridotites are identified by a \((\text{La/Yb})_N\) of <1, whereas group 2 peridotites have

\((\text{La/Yb})_N\) of >1. The simplest interpretation of a peridotite with a \((\text{La/Yb})_N\) of <1 would be
that it retains the signature of melt depletion without overwhelming subsequent metasomatic
disturbance. A small amount of cryptic metasomatism is possible, but there are limits to its
extent; high degrees of silicate metasomatism could raise \((\text{La/Yb})_N\) to values in excess of 1,
but this is dependent upon the nature of the metasomatic agent. Alternatively, the influx of a
LREE-depleted basalt, such as a MORB or similar, at high-melt-rock ratios may also mimic
the effects of varying degrees of melt depletion in peridotites (e.g. Seyler et al. 2001, 2007;
Bodinier and Godard, 2003). Such high melt/rock ratios can be obscured by subsequent
recrystallization (e.g. Soustelle et al., 2009). However, despite the rift-like setting of
Kilbourne Hole, there is no clear evidence (e.g. low bulk-rock or mineral Mg#), to suggest
this is the cause of the observed REE element systematics in the group 1 peridotites.
However, alone, \((\text{La/Yb})_N\) can be insensitive to the effects of small amounts of
metasomatism. Despite a lack of supporting petrographic evidence for metasomatism in the
group 1 peridotites (see Harvey et al., 2012 and Table S5, this study), the absolute
abundances of La, Yb and Al_2O_3 in group 1 peridotites, without exception, possess higher
(La/Yb)$_N$ for a given Al$_2$O$_3$ abundance to have been produced by melt depletion (Figure 2a).

Hence, a melt-depletion signature, albeit slightly modified by cryptic metasomatism, is the most likely cause of the observed REE signature.

This feature is even more pronounced in the group 2 peridotites but, in some cases, is also accompanied by several lines of petrographic evidence for metasomatic processes subsequent to melt depletion (Table S5; Harvey et al., 2012). It should be noted though that using the La/Yb ratios as proxy of “metasomatism” probably exaggerates the degree of metasomatic overprinting in the group 2 harzburgites; their HREE are much lower than any other peridotites from the Kilbourne Hole suite (Harvey et al., 2012). It is possible that the group 2 harzburgites are the only peridotites to have preserved some “intact” HREE abundances. Their low HREE abundances point to ≤25% partial melting at low pressure (1-3 GPa), and the slight “spoon” shape argues for addition of only the most incompatible REE (see Figure 9 in Harvey et al., 2012). In terms of the REE, the group 2 harzburgites may form a continuum starting with metasomatism by small fractions of incompatible element-rich melt fractions in the group 2 harzburgites, leading to larger melt fractions being added to the group 2 lherzolites.

5.2.2 Chromatographic fractionation of REE during melt/rock interaction

The interpretation of elevated (La/Yb)$_N$ resulting from simple mixing of residual peridotite with a silicate melt is likely to be overly simplistic in some cases. A consequence of the low incompatible trace element abundances in residual peridotite is that the xenoliths that record the greatest degree of melt extraction (those with the lowest Al$_2$O$_3$ and / or Yb) are the most susceptible to having their melt depletion signature overprinted by subsequent incompatible element metasomatism (Wood and Blundy, 2003) as a result of their inability to
buffer against an influx of highly incompatible elements present in, for example, a C-O-S-H-enriched silicate melt (Alard et al., 2011). Figure 2a demonstrates that the most depleted peridotites have the highest \((\text{La/Yb})_N\) in both sample subsets, i.e., despite a major element signature reminiscent of melt depletion, they have acquired an enrichment of LREE over HREE. Navon and Stolper (1987) and Bodinier et al. (2004) have both quantified a chromatographic effect observed in melt-depleted peridotites where LREE/HREE are predicted to increase away from the site of intense melt-peridotite interaction, such as during the generation of pyroxenite found at Kilbourne Hole, both as discrete and composite xenoliths (Dromgoole and Pasteris, 1987; Wilshire et al., 1988; Kil and Wendlandt, 2004). Since fronts of the more incompatible elements travel faster through the adjacent peridotite, their concentrations rise earlier. A clear distinction between addition of small amounts of a silicate melt back into a depleted peridotite pre-cursor versus cryptic modification of incompatible trace element abundances is difficult to resolve. However, in the peridotites with the lowest \(\text{Al}_2\text{O}_3\) abundance and highest \((\text{La/Yb})_N\), a chromatographic effect from a proximal melt-peridotite interaction seems more feasible.

The two trends illustrated by groups 1 and 2 in Figure 2a project back to a common composition at ca. 5 wt. % \(\text{Al}_2\text{O}_3\) and a very low \((\text{La/Yb})_N\) that is inconsistent with a Primitive Mantle composition. Using the lithophile elements alone, it is probably not possible to unequivocally unravel the petrogenetic history of these peridotites, other than group 1 peridotites have experienced a smaller degree and less generations of silicate metasomatism than group 2 peridotites. That the group 2 peridotites have experienced a more complex petrogenetic history is supported by the extended REE and lithophile incompatible trace element plots abundances (Harvey et al., 2012).

5.3 Processes affecting the highly siderophile element compositions of peridotites
While a general consensus exists regarding the nature of melt depletion and subsequent metasomatism with respect to the behavior of major (e.g. Baker and Stolper, 1994; Baker et al., 1995; Hirschmann et al., 1998; Robinson et al., 1998) and trace elements with a lithophile affinity (e.g. Blundy and Wood, 1994, 2003; Wood and Blundy, 2001), the role played by BMS during these processes is less well constrained, despite extensive experimental investigations into its behavior (e.g. Fleet et al., 1991, 1996; Peach and Mathez, 1993; Peach et al., 1994; Brenan, 2002, 2008; Brenan et al., 2003, 2005; Bockrath et al., 2004; Righter et al., 2004; Ballhaus et al., 2006; Holzheid, 2010; Mungall and Brenan, 2014). Mantle BMS in melt depleted peridotite constitute less than 0.1 modal % (corresponding to 250 ± 50 µg g$^{-1}$ S) of the upper mantle (O'Neill, 1988; Lorand, 1990; Palme and O'Neill, 2003), yet their high $D_{sulfide/silicate}$ ensures that these accessory phases dominate the mass balance of bulk-rock peridotite for the HSE (e.g. Fleet et al., 1991, 1996; Peach and Mathez, 1993; Peach et al., 1994; Guo et al., 1999), and may also exert a strong control on the distribution of Pb in the mantle (Burton et al., 2012; Warren and Shirey, 2012).

The behavior of sulfur during partial melting of peridotite is assumed to be related to the steady depletion of BMS following a batch/equilibrium melting process (e.g. Morgan, 1986; Handler and Bennett, 1999; Lorand et al., 1999; Luguet et al., 2003; Pearson et al., 2004; Fischer-Gödde et al., 2011), resulting in a residual peridotite that is mostly devoid of BMS and sulfur at around 25 % partial melting (e.g. Burnham et al., 1998). During partial melting, BMS melts incongruently to produce a refractory monosulfide solid solution (MSS) that retains Os, Ir and Ru in the mantle residue, and Cu–Ni-rich sulfide melt (Barnes et al., 1997; Alard et al., 2000; Luguet et al., 2003; Bockrath et al., 2004; Peregoedova et al., 2004; Wang and Becker, 2015a) which hosts Pt, Pd and Re and is extracted within the partial silicate melts, although the exact importance of this fractionation during partial melting is not
universally agreed upon (Wang et al., 2013; Mungall and Brenan, 2014; Wang and Becker, 2015b). Therefore, partial melting residues are generally characterised by PUM-like or even slightly elevated Os and Ir contents, but substantial and progressive depletions in Pt, Pd and Re (see Lorand et al., 1999; Pearson et al., 2004; Luguet et al., 2007).

Three samples from the group 2 xenoliths (KH96-24, KH03-15 and KH03-16) show such HSE patterns, which are consistent with moderate to high degrees (15-20%) of partial melting of a fertile peridotite (Figure 6b; cf. Figure 3 from Harvey et al., 2011). Interestingly they are the most depleted peridotites of group 2 with Al₂O₃ contents < 2.7 wt.%. Although Os was likely lost during the late supergene weathering, thus lowering the original Os/Ir ratios, these three samples still retain the highest Os concentrations and tend to have the highest (Os/Ir)ₙ ratios, suggesting that some magmatic systematics may still be preserved. High Os concentrations combined with high Os/Ir ratios (generally greater than PUM) may be symptomatic of the stabilisation of laurite (Ru-Os sulfide) and subsequent Os-Ru rich alloys forming in response to the complete exhaustion of BMS in the mantle residue during extensive partial melting (ca. c. 20-25%; Luguet et al., 2007). The exhaustion of sulfides in these three samples is supported by the low to extremely low bulk-rock sulfur abundances of these three peridotites ([S] in KH96-24, KH03-15 and KH03-16 = 3 to 36 µg g⁻¹, Table 2).

The remaining 4 peridotites of group 2 have HSE patterns, with either flat to elevated Pd/Pt and/or Re/Pd, which are inconsistent with both their refractory nature (i.e., bulk rock Al₂O₃ contents) and their sulfur abundances. These features, combined with the overall S vs. HSE (especially Pd) and PPGE/Ir (i.e., Pd/Ir) correlations among these four samples may be best explained by addition of metasomatic PPGE-rich BMS (similar to the interstitial Type-2 sulfides of Alard et al., 2002, 2011) to a predominantly melt-depleted residual peridotite. Evidence for the addition of HSE to melt depleted peridotites (e.g., Becker et al., 2001; Luguet et al., 2003, 2004; Pearson et al., 2004; Ionov et al., 2006; van Acken et al., 2008,
2010b), or their selective removal (Lorand et al., 2000; 2003a; 2004; Becker et al., 2001; Büchl et al., 2002; Ackerman et al., 2009) is becoming increasingly abundant in the literature, and this provides a framework within which the HSE abundances in Kilbourne Hole xenoliths can be interpreted.

Assuming the addition of ca. 80 µg g\(^{-1}\) S (the whole-rock S contents of both KH03-3 and KH96-8) as metasomatic BMS in a S-free partial melting residue with a HSE composition similar to the most depleted group 2 peridotite (KH03-16), the HSE systematics of KH03-3 and KH96-8 can be reproduced if the metasomatic BMS hosts, on average, 20 µg g\(^{-1}\) Pt and 25 µg g\(^{-1}\) Pd. These BMS contents are typical of Pt and Pd concentrations obtained in BMS from peridotite xenoliths (Alard et al., 2000; 2002; Lorand and Alard, 2001; Alard et al., 2011) or tectonically emplaced peridotite massifs (Luguet et al., 2001; 2004; Alard et al., 2005). To account for the HSE systematics of KH03-24, the average metasomatic BMS must be characterised by an even stronger Pd enrichment (45 µg g\(^{-1}\) Pd and 8 µg g\(^{-1}\) Pt). Such compositions can also be found in xenolithic BMS (e.g. grains s15 and s13 from xenolith Mtf 37, from Montferrier, southern France; Alard et al., 2011).

Precipitation of BMS has been attributed to either percolation of S-saturated silicate melts or to sulfidation reaction between a C-O-S-H fluids with magnesian silicates (e.g. Ackerman et al., 2009; Alard et al., 2011; Delpech et al., 2012; Lorand et al., 2013). The preservation of \(\leq\) PUM S/Se and Pd/Pt ratios in the group 2 peridotites likely to have experienced BMS precipitation strongly argue for percolation of a silicate melt and precipitation of Cu-Ni-rich BMS rather than the volatile transport of S and HSE and crystallisation of pyrrhotite-chalcopyrite assemblages (Delpech et al., 2012). Small-degree melt fractions, preserved as melt inclusions, have previously been reported in Kilbourne Hole xenoliths (Schiano and Clocchiatti, 1994). These are CO\(_2\) saturated silicate melts (e.g. Menzies and Dupuy, 1991; Moine et al., 2004), in addition to being S-saturated. In addition,
the group 2 peridotites have a slightly higher $^{187}\text{Os}/^{188}\text{Os}$ for a given Al_2O_3 abundance than the group 1 peridotites (Figure 2b) which suggests that a Re-bearing phase, such as metasomatic sulfide, may have been added sufficiently long ago to allow a small amount of ^{187}Os ingrowth prior to removal of sulfide by a sulfur-undersaturated melt. Indeed, KH03-24 and KH96-8 both retain elevated Re-Os ratios (Figure 2c) compared to the rest of the two groups of peridotite.

By contrast, the group 1 peridotites all preserve sub-parallel HSE patterns (Figure 6a) and strong positive correlations between all of the HSE. This contrasts with the fractionated HSE patterns (Figure 6b) and correlations between only IPGE or PPGE and Re in the group 2 peridotites (Figure 7). Although any individual group 1 peridotite may preserve a HSE pattern that resembles a melt depletion signature, the parallel offset of the HSE patterns within the group cannot be attributed to this process. Depending upon the degree of sulfur saturation, a predominantly silicate metasomatic melt may dissolve sulfides located in interstices between silicate minerals. The S-saturation concentration of lavas increases with decreasing pressure, i.e., shallower depths (Mavrogenes and O’Neill, 1999), allowing S-undersaturated silicate melt to pass through the SCLM. These S-undersaturated melts thus have the potential to remove sulfide not enclosed inside silicates (e.g. Lorand and Alard, 2001; Lorand et al., 2003a, 2003b, 2004; Reisberg et al., 2004, 2005). This effect may be enhanced by ongoing open-system melting associated with reactive porous flow at increasing melt/rock ratios, which has the effect of diluting S in the percolating melt. The effect of sulfide removal is likely to be a dilution of a pre-existing HSE signature, depending upon the absolute amount of sulfide removal that has occurred. The parallel HSE patterns of the group 1 peridotites are consistent with this hypothesis. Following a period of melt depletion that imparted a relatively uniform melt depletion signature upon the group 1 peridotites, a sulfur-undersaturated melt passed through that portion of the SCLM, removing different proportions
of sulfide from the group 1 peridotites. This is not only consistent with the observation that
the peridotites with the lowest S abundances of the group (KH03-25, KH03-27, KH96-2,
KH96-18) have the lowest overall HSE content, but also that the group 1 peridotites have
well correlated IPGE versus PPGE abundances (Figure 7) and possess the lowest (La/Yb)_N,
implying that the precipitation of metasomatic phases or fingerprints was negligible in group
1 peridotites. This in turn is supported by the observation that there is little or no petrographic
evidence for the precipitation or crystallization of a metasomatic melt or fluid preserved in
the group 1 peridotites (Table S5); the removal of sulfide, and the HSE that it hosts, by a
transiting sulfur-undersaturated melt has simply diluted a pre-existing melt depletion
signature. It is not clear whether or not the group 1 peridotites experienced any addition of
PPGE-rich sulfide (cf. group 2 peridotites) prior to the passage of a sulfur-undersaturated
melt, but the parallel HSE patterns observed within this group of peridotites (Figure 6a)
suggests that this is unlikely.

5.4 The effects of melt depletion and subsequent processes on S-Se-Te systematics

Despite the potential to use S as a proxy for melt depletion (e.g. Burnham et al.,
1998), in instances where sulfide has been either added or removed, this usefulness quickly
becomes undermined. The only remaining evidence that S concentrations have not been
completely decoupled from silicate-dominated processes is found in those group 2 peridotites
which have experienced the greatest amount of melt depletion (KH03-15 and KH03-16). In
these examples, Al₂O₃, S and PPGE are all extremely low, despite a clear silicate-
metasomatic overprint (Figure 4a, Figure 9a, Figure 6, respectively). Similarly, there is very
little correlation between Se and Al₂O₃ (Figure 4b). The measured, broadly chondritic S/Se
ratios of this study are also consistent with previous measurements of Kilbourne Hole
peridotite xenoliths by Morgan (1986) (black circles, Figure 5a) and are within the range of published values of S/Se in the literature, which are dominated by orogenic peridotites, but which show a considerable degree of scatter at higher S and Se abundances, particularly where the concentrations of these elements exceed the estimates for a Primitive Mantle composition. Like sulfur, the Se systematics of both groups of peridotites have been decoupled from silicate indices of melt depletion, but the most highly melt depleted group 2 peridotites (KH03-15 and KH03-16) contain the lowest abundances of Se (Figure 4b). As Se is partitioned into interstitial pentlandite and chalcopyrite, the behavior of Se during melt depletion, sulfide addition and the removal of sulfide in a sulfur-undersaturated melt would be expected to mimic the behavior of the PPGE (e.g., van Acken et al., 2010a). This is demonstrated in Figure 8b where the strong co-variation of Se with Pd is illustrated for both groups of peridotites. The contrasting geochemical behavior of strongly compatible Ir ($D_{\text{sulfide/silicate melt}}$ ca. 5 x 104; Peach et al., 1994) and mildly compatible Se ($D_{\text{sulfide/silicate melt}}$ c. 103; Peach et al., 1990; Mungall and Brenan, 2014), cannot explain the distinct co-variation between these two elements in group 1 peridotites compared to invariant Ir abundance over a large range of Se abundance in group 2 peridotites. In the group 2 peridotites, enriched Se for a given Ir content may be the result of exsolution of a metasomatic Se-bearing Cu-Ni sulfide phase from a silicate melt containing virtually no IPGE, i.e., the addition of metasomatic sulfide after melt depletion. Precipitation of a metasomatic Cu-Ni-rich sulfide could also increase the Te abundances more dramatically than the Se in these samples, yet this is not observed; the Te abundances of group 1 and group 2 peridotites are indistinguishable, which in turn, suggests that Se and Te may be controlled by different phases in different groups of peridotites. This effect is compounded by the apparent vulnerability of Se to supergene weathering, compared to Te. These effects are best illustrated in Figure 5c, where large differences in the correlation coefficients between Se and Te for the two groups of peridotites...
are observed. This, in turn, is consistent with the poorer reproducibility of Se and Te in KH03-2 and KH03-7 (group 1 peridotites) where tellurides may control at least some of the Te budget, compared with much more reproducible replicate analyses of group 2 peridotites where Se and Te abundances are more strongly correlated (Figure 5c), the external reproducibility of replicate analyses is stronger, and sulfide is the dominant host phase for Se and Te (Figure 5a and b).

Although early studies suggested that the compatibility of chalcogenic elements varies systematically, i.e., Te > Se > S (e.g., Hertogen et al., 1980; Morgan, 1986; Hattori et al., 2002) subsequent investigations suggest the contrary, especially in harzburgites (König et al., 2012, 2014). Tellurium does not appear to behave as coherently as S and Se with regard to melt depletion and subsequent mantle processes, especially in the group 1 peridotites, most likely because the distribution of Te is more strongly controlled by the heterogeneous distribution of micron-sized tellurides than in group 2. Figure 4c shows that there is no discernible co-variation of Te with Al₂O₃ over a wide range of melt depletion. In this respect, the samples of this study overlap completely with those of Morgan (1986). Moreover, where Al₂O₃ is greater than 1 wt. % the range of Te contents measured in Kilbourne Hole peridotites overlap completely with the existing literature data derived from mostly orogenic peridotites, and is otherwise unremarkable. Strong correlations between S and Te (Figure 5b), and Se and Te (Figure 5c) are only observed in the group 2 peridotites. Both S/Te and Se/Te plot on sub-chondritic trajectories, with the Se/Te of group 1 peridotites being particularly low. This provides further evidence for the likely mobility of sulfide-hosted Se during supergene weathering and interaction with a S-undersaturated melt, but is also testament to the effects of telluride precipitation that are relatively unaffected by these processes. The strong control exerted by metasomatic BMS on Te abundance (Helmy et al., 2010) is illustrated by the positive correlations between Pd, Re and Te in group 2 peridotites (Figure
The sympathetic variation of S and PPGE in the group 1 peridotites clearly argue for the removal of all these elements during BMS dissolution in percolating S-undersaturated melts. The persistence of high Te concentrations in group 1 peridotites, and its decoupling from S and the PPGE, along with the poor reproducibility of the Te concentrations, demonstrates that Te is not significantly mobilized during the BMS dissolution because it is hosted in tellurides. Alternatively, Te may have been added after interaction with a sulfur-undersaturated melt. Late exhalative precipitation of tellurides from a volatile rich melt (cf. König et al., 2014) could also account for the observed Te systematics in the group 1 peridotites.

In residual sulfide-free harzburgites Se is entirely controlled by micro-inclusions of PGM in olivine (König et al., 2015a), but this host phase could equally be base metal sulfide trapped within silicate grains in less severely depleted xenoliths. Some Se from interstitial sulfides could be volatilized and lost, but the Se hosted in silicate-armored sulfide would be retained. Hence, bulk-rock Se abundance could still be low, yielding subchondritic Se/Te ratios. The only previously reported non-basalt-borne peridotites that also show subchondritic Se/Te (three harzburgitic samples from Lherz; König et al., 2012) have been strongly affected by the introduction of metasomatic Bi-Pt-telluride without Cu-Ni-rich sulfide precipitation, which may increase Te abundances but not necessarily Se to the same degree. In the group 1 peridotites, Se/Te remain relatively constant, but it is difficult to account for the very low Se/Te ratios in the group 1 peridotite that possess the highest Te abundance without the presence of tellurides (Figure 5).

Several authors have discussed the formation of PGM and their effect upon bulk-rock HSE (± Se-Te-As-Bi) abundances. A diagnostic feature of metasomatic processes is the increasing modal abundance of Pt–Pd–Te–Bi or Pt–As–S micro-phases, whereas refractory PGM, residual after intense melt depletion, may be represented by Ru–Os ± Ir sulfides and Pt–Ir ± Os alloys (Luguet et al., 2007; Kogiso et al., 2008; Wang et al., 2009; Ackerman et
al., 2009, 2013; Lorand et al., 2010, 2013; O'Driscoll et al., 2012). These phases are notoriously difficult to find using optical methods and even detailed studies of sulfide grains, or the spinel with which they are intimately associated, often fail to reveal their presence (e.g. Ferraris and Lorand, 2008). However, Wang et al. (2009) identified discrete Pt–rich micro-nuggets from in-situ analyses of enclosed Mss in xenoliths from the Penghu Islands (Taiwan). Ackerman et al. (2009) described the effects of Pt-rich discrete microphases in sulfide-poor melt-percolated Bohemian xenoliths, while Luguet et al. (2007) identified Cu-Rh-Pt sulfides in barely metasomatized orogenic harzburgites, and Lorand et al. (2010) described Ru–Os ± Ir sulfides and Pt–Ir ± Os alloys recovered from melt-percolated orogenic lherzolites and harzburgites from Lherz. Although no PGM consistent with BMS exhaustion have been detected in Kilbourne Hole xenoliths, the occasional presence in some xenoliths of low temperature PGM, such as Pd ± Pt-tellurides, is inferred from the anomalous PPGE-Te signatures observed in KH96-24 and KH03-24. KH96-24 has an unusually high Te abundance (14 ng g-1; Table 2) but is otherwise unremarkable. Conversely, KH03-24 has a remarkably high Pd concentration (18 ng g-1), which may be attributable to an alloy phase-derived nugget effect, but no corresponding elevated concentration of either Pt or Te is observed. Whether the occasional anomalous HSE signatures seen in the Kilbourne Hole xenoliths of this study can be attributed to PGM micro-nuggets or not or should only treated as speculation without firm identification of the PGM themselves. Lorand et al. (2010) suggest that every metsomatized peridotite also likely contains Pt-Ni-tellurides; while the Se-Te signatures of the group 1 peridotites support this hypothesis, further detailed work is necessary on this peridotites to unequivocally confirm this.

Figure 10 summarizes the likely sequence of events to have affected the HSE, Se and Te abundances in the Kilbourne Hole peridotites. Both groups of peridotite experienced ≤ 25 % melt depletion. In the case of group 1 peridotites, this was followed by interaction with a
S-undersaturated melt which removed BMS, thus leading to depletion in the observed PPGE and Se abundances. Tellurium was likely retained in micron-scale tellurides. Following melt depletion, group 2 peridotites interacted with an ascending C-O-S-H-rich melt or fluid, which added varying amounts of metasomatic PPGE (± Re ± Se ± Te)-bearing Cu-Ni-Fe sulfide; this results from the upward decrease in porosity and temperature in the SCLM with reduced depth, as described by Bedini et al. (1997). After exposure at the surface, both groups of xenoliths experienced loss of S and Os (± Se) as a result of supergene weathering. These features link the melt depletion signature preserved in the major element and HSE chemistry with the chromatographic effect of infiltration of a C-O-S-H rich melt which selectively elevated \((\text{La}/\text{Yb})_N\) and PPGE ± Re abundances, as described above.

5.5 Comparisons of Kilbourne Hole peridotites with estimates of primitive mantle composition

The observation that large datasets derived from orogenic and xenolithic peridotites acknowledged to have experienced extensive metasomatism (e.g. Meisel et al., 2001; Becker et al., 2006; Wang et al., 2013), tend to project back to values for PUM suggests that the effects of metasomatism are not only widespread (König et al., 2014), but also may be included in estimates for HSE and chalcophile element abundances of PUM. Sample selection that takes into account metasomatism, which is apparent in lithophile, chalcophile and siderophile element systematics, should be critical in this respect. Estimates of PUM HSE and chalcophile element abundances have, to date, relied upon compilations of orogenic peridotite and xenolithic peridotite projected back to a major element composition consistent with zero melt extraction (Meisel et al., 2001; Becker et al., 2006) and interpreted with respect to chondritic abundances (Horan et al., 2003; Lodders et al., 2009). For this method to
successfully predict PUM abundances requires careful selection of samples so as to exclude peridotites that do not best reflect the influence of melt depletion.

Suprachondritic Pd/Ir (or Pd/Pt) and Ru/Ir in fertile mantle peridotites have been widely reported from different tectonic settings (e.g., Pattou et al., 1996; Rehkämper et al., 1999; Schmidt et al., 2000; Becker et al., 2006; Liu et al., 2009). One possible explanation for this observation is that existing estimates for HSE and strongly siderophile element abundances in PUM, based upon estimates from a wide range of orogenic and xenolithic peridotites, are not accurate and/or the projection back to a PUM composition has been made with inappropriate samples or methods. Although some of the potential problems in using Al$_2$O$_3$ as a suitable melt depletion indicator could be overcome by using S, the perturbations to sulfur abundances by supergene weathering, and evidence for the addition and removal of sulfide in groups 1 and 2 respectively of this study do not make S a reliable proxy for Al$_2$O$_3$. In fact, although plots of S versus Ir, Pd and Pt superficially resemble melt depletion curves (Figure 11a, b and c, respectively), the knowledge that S and HSE systematics have likely been disturbed in many of these xenoliths, and the lack of any strong co-variation between Al$_2$O$_3$ and S (Figure 4a) suggests that these can only be regarded as apparent melt depletion curves.

Historical estimates of the PUM composition (Meisel et al., 2001; Becker et al., 2006; Wang et al., 2013) have employed peridotites that have been experienced BMS and Se-Te-HSE metasomatism (Lorand et al., 2010; 2013; Alard et al., 2011). While xenolithic peridotite is prone to the loss of Os and S (± Se) as a result of supergene weathering, the remaining HSE in peridotite xenoliths are probably as reliable an indicator of mantle processes as those abundances found in orogenic peridotites. For example, the co-variations observed in the Kilbourne Hole xenoliths of this study between S and Ir, Pd and Pt (Figure 11a, b and c, respectively) fall within the range of values used in the literature to project back
to a PUM composition. In this study, the addition of metasomatic sulfides in the group 2 peridotites and removal of sulfide by a S-undersaturated melt have both been identified, yet their compositions are indistinguishable from the orogenic and xenolithic peridotites reported in the literature (Figure 11a, b and c). The inference from this observation is that, with the exception of [Os] ($^{187}\text{Os}/^{188}\text{Os}$ is unlikely to be fractionated by supergene weathering), peridotite xenoliths in general, and from Kilbourne Hole specifically, are as suitable a proxy for calculating PUM HSE abundances as orogenic peridotites which have probably experienced the same processes identified in this study, whether they were reported in prior investigations of different localities or not. The observation that group 1 peridotites from this study have experienced a loss of sulfide, yet still plot within the range of literature values used to calculate PUM, suggest that the literature database of peridotite HSE abundances also contains a considerable proportion of samples where HSE abundances have been diluted, irrespective of whether they are xenoliths or from orogenic massifs.

With respect to the strongly chalcophile elements Se and Te, these elements also need to be subjected to the same scrutiny as the lithophile and highly siderophile elements in appraising the suitability of orogenic peridotites and peridotite xenoliths for making estimates of PUM composition. König et al. (2014) recently discussed the merits of using both orogenic peridotites and kimberlite-derived peridotite xenoliths to investigate the primitive Se-Te systematics of pristine, undepleted mantle and concluded that neither Se–Te concentrations, nor their relatively low and near-chondritic Se/Te ratios can be considered as primitive features of the Earth’s mantle. Although this standpoint was subsequently challenged (Wang and Becker, 2015a), the mineral-scale Se/Te study of König et al. (2015a) that followed, in addition to the clarification of their earlier hypothesis (König et al., 2015b), suggest that chondritic Se/Te and Se-Te concentrations seem unlikely to represent primitive mantle. Selenium concentrations in Kilbourne Hole peridotites are low and project to around
50% of the concentration of PUM (McDonough and Sun, 1995), and consequently possess lower Se/Te ratios than many of the literature values reported by Lorand et al. (2010, 2012), Alard et al. (2011), König et al. (2012, 2014) and Wang et al. (2013) (Figure 5c). Despite careful study of the multiphase petrogenetic history of Kilbourne Hole lherzolites, the nature of the Se systematics of PUM remains equivocal. What is obvious is that the literature compilation of Se-Te data that trend towards the Primitive Mantle and chondritic estimates of McDonough and Sun (1995) and Palme and Jones (2003) respectively, contain many samples that possess Se abundances in excess of that predicted for PUM. Although the large degree of scatter of Se abundances amongst the Kilbourne Hole peridotites and the likelihood of Se loss during transport of the xenoliths to the surface makes it difficult to quantify what the effects of melt depletion on Se abundances were in these peridotites, any projection to a PUM-like Se abundance using these peridotites alone would only underestimate the true PUM value. The inclusion of peridotites with elevated Se abundances relative to PUM to estimate PUM itself suggests that the current estimate of Se abundance in PUM is too high. Perhaps a more realistic value for Se in PUM lies somewhere inbetween these estimates. Alternatively, high Te abundances could skew the observed Se/Te systematics of the Kilbourne Hole peridotites. In KH03-7 from this study (cf. UM9 of Morgan, 1986) an unusually high Te concentration was detected that was not replicated in a second measurement. This hints at a particularly intense nugget effect possibly caused by Te-rich micro-phases (Lorand et al., 2013; König et al., 2014). This phenomenon may also explain the particularly high Pt concentration observed in KH96-24, albeit without an anomalous Te abundance. In this respect the Kilbourne Hole xenoliths have no more an unusual range of Te abundances than the orogenic peridotites used for PUM calculations and it seems more likely that low Se abundances in these xenoliths result in the Se/Te ratios that plot below any plausible melt depletion trend (Figure 12).
Perhaps this is more compelling evidence for the mobility of Se as a result of supergene weathering.

6. Concluding remarks

This study represents the first instance where Se-Te-HSE systematics in peridotite xenoliths are scrutinized in detail in order to test their usefulness for PUM estimates. Melt-impregnated or metasomatized peridotites may not be the best tools for estimating the HSE and chalcophile element composition of PUM; neither orogenic peridotites nor carefully screened peridotite xenoliths appear to offer unequivocal solutions as to the composition of their melt depleted pre-cursor. There are problems in estimating HSE and chalcophile element abundances from worldwide peridotite datasets that have not been adequately screened for subtle effects of metasomatism or melt / rock interaction, and the Kilbourne Hole peridotites of this study demonstrate that unequivocal values for PUM composition with regard to HSE, Se and Te concentrations are unlikely to be derived from peridotite xenoliths. It is only by selecting peridotites that have been scrupulously scrutinized for the effects of processes other than melt depletion that accurate PUM abundances may be determined.

New evidence for Se being affected by secondary processes can be found in Kilbourne Hole peridotite xenoliths which in turn lowers the Se/Te in basalt-borne xenolithic peridotites to subchondritic values. This contrasts with recent reportedly chondritic Se/Te in kimberlite-borne peridotite xenoliths.

Acknowledgements

JH was supported by Natural Environment Research Council Grants NER/A/S/2001/00538 and NE/J017981/1. SK acknowledges funding from the German Research Foundation (DFG
grant KO40501-1/2). AL thanks the European Research Council for financial support (ERC research grant 258558 "Early Earth"). The authors thank Moritz Lissner for his help with the Se-Te-HSE analyses and Nick Marsh (University of Leicester) for assistance with the S abundance measurements. We are grateful for thorough and thoughtful reviews from Lucáš Ackerman, and two anonymous reviewers, and for the considerate and patient editorial handling of Richard Walker which helped us considerably in improving this contribution.

References

Ackerman, L., Pitcher, L., Strnad, L., Puchtl, I. S., Jelínek, E., Walker, R. J., Rohovec, J. 2013. Highly siderophile element geochemistry of peridotites and pyroxenites from

Helmy, H. M., Ballhaus, C., Wohlgemuth-Ueberwasser, C., Fonseca, R. O. C., Laurenz, V. 2010. Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and

Kogiso, T., Suzuki, K., Suzuki, T., Shinotsuka, K., Uesugi, K., Takeuchi, A., Suzuki, Y.
2008. Detecting micrometer-scale platinum-group minerals in mantle peridotite with
microbeam synchrotron radiation X-ray fluorescence analysis. Geochem., Geophys,

Le Roux, V., Tommasi, A., Vauchez A. 2008. Feedback between melt percolation and

decoupling during porous melt flow: a case study in the Lherz peridotite. Earth Planet.

Selenium and Tellurium systematics in MORBs from the southern Mid-Atlantic Ridge

HSE budget in Earth’s upper mantle evidenced by abyssal peridotites from Gakkel ridge

Lodders, K., Palme, H., Gail, H. P. 2009. Abundances of the elements in the solar system. In:

Lorand, J.P. 1990. Are spinel lherzolite xenoliths representative of the sulfur content of the

Menzies, M. A., Arculus, R. J., Best, M. G., Bergman, S. C., Ehrenberg, S. N., Irving, A. J.,
Rodent, M. F., Schulze, D. J. 1987. A record of subduction process and within-plate
volcanism in lithospheric xenoliths of the south-western USA. In: Nixon, P. N. (ed.)
Moine, B. N., Grégoire, M., O'Reilly, S. Y., Delpech, G., Sheppard, S. M. F., Lorand, J. - P.,
Morgan, J. W. 1986. Ultramafic xenoliths: Clues to Earth’s late accretionary history. J.
Geophys. Res. 91 (B12), 12375-12387.
Morgan, J. W., Baedecker, P. A. 1983. Elemental composition of sulfide particles from an
ultramafic xenolith and the siderophile element content of the upper mantle. Lunar and
Morgan, J. W., Walker, R. J., Brandon, A. D., Horan, M. F. 2001. Siderophile elements in the
Earth’s upper mantle and lunar breccias: data synthesis suggests manifestations of the
Mungall, J. E., Brenan, J. M. 2014. Partitioning of platinum-group elements and Au between
sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile
Müntener, O., Pettke, T., Desmurs, L., Meier, M., Schaltegger, U. 2004. Refertilisation of
mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and
implications for crust-mantle relationships. Earth Planet. Sci. Lett. 221, 293–308.
mantle as a chromatographic column. J. Geology 95, 285-308.

metasomatized continental mantle lithosphere: a case study of Sidamo spinel peridotite

and S systematics of spinel peridotite xenoliths from east central China: Evidence for

flow: deep petroleum tests along the Rio Grande rift in central and southern New

Riches, A. J. V., Rogers, N. W. 2011. Mineralogical and geochemical constraints on the
shallow origin, ancient veining and multi-stage modification of the Lherz peridotite.

Righter, K., Campbell, A. J., Humayun, M., Hervig, R. L. 2004. Partitioning of Ru, Rh, Pd,
Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim.

Robinson, J. A. C., Wood, B. J., Blundy, J. D. 1998. The beginning of melting of fertile and
depleted peridotite at 1·5 GPa. Earth Planet. Sci. Lett. 155, 97-111.

Rudnick, R. L., McDonough, W. F., Chappell, B. W. 1993. Carbonatite metasomatism in the
northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet.
Sci. Lett. 114, 463-475.

Figure captions

Figure 1. Mineral modal abundances preserved in Kilbourne Hole xenoliths from this study. The calculated mineral modal abundances of most samples are consistent with varying degrees of melt depletion. For comparison, the effects upon modal mineralogy of experimental 1-20% batch melting (large dashes) of Baker and Stolper (1994) and repeated extraction of small batch melts (small dashes; Robinson et al., 1998) are illustrated. Light gray symbols (group 2) are xenoliths with bulk-rock (La/Yb)_N >1 (where (La/Yb)_N is the
ratio of La/Yb normalised to the composition of primitive mantle; McDonough and Sun, 1995) dark gray symbols (group 1) are xenoliths with (La/Yb)$_N$ <1. Numbers in symbols refer to KH96 xenoliths (italics) or KH03 xenoliths (non-italicized). Crossed field = non-cratonic peridotite xenoliths; striped field = cratonic peridotites (Pearson et al., 2004). Figure modified after Harvey et al. (2012).

Figure 2. Relationship between melt depletion, silicate and sulfide metasomatism in the Kilbourne Hole peridotite xenoliths from this study. (a) Al$_2$O$_3$ wt. % versus (La/Yb)$_N$, (striped rectangle = Primitive mantle (PM); O’Neill, 1991; McDonough and Sun, 1995; Becker et al., 2006). Symbols as in Figure 1. Data from Harvey et al. (2012). Grey field represents field of compositions possible from 1-20 % non-modal fractional melting alone. (b) Osmium isotope ratios as a function of melt depletion. Both sample suites demonstrate strong co-variations with Al$_2$O$_3$. The group 2 samples project to values in excess of PM, whereas the group 1 samples project to approximately the value of PM. Modified after Figure 2a of Harvey et al. (2011). (c) Unlike the 187Os/188Os ratio, there is significantly more scatter in Re/Os for a given degree of melt depletion in group 2 samples. Data from Harvey et al., (2011, 2012). Error bars show 2σ reproducibility. Where no error bars are shown the 2σ uncertainty is smaller than the symbol used.

Figure 3. Back-scattered electron image of sulfide in KH03-20.

Figure 4. S-Se-Te versus Al$_2$O$_3$. (a) No strong relationship is observed between S and Al$_2$O$_3$, despite both of these elements being considered suitable as indices of melt depletion (e.g. Burnham et al., 1998; Reisberg and Lorand, 1995, respectively). While most of the peridotites define a broad positive co-variation, some samples in both subsets extend to
higher S abundances for a given Al$_2$O$_3$. (b) A similar relationship to that observed in (a) can be seen with regard to Se, although correlation coefficients are marginally stronger between Se and Al$_2$O$_3$. (c) Correlation coefficients between Te and Al$_2$O$_3$ are marginal, suggesting little or no relationship between melt depletion alone and Te abundance in these xenoliths. Symbols as in Figure 2 with small black circles from Morgan (1996). Small white circles are literature data from Lorand et al. (2010, 2012), Alard et al. (2011), König et al. (2012, 2014), Wang et al. (2013), with additional Al$_2$O$_3$ data from Le Roux et al. (2007).

Figure 5. S-Se-Te abundances. Symbols as in Figure 1. Grey field = CI chondrite (Palme and Jones, 2003). (a) Both sample subsets demonstrate a strong positive co-variation in S and Se abundances. (b) The co-variation between Te and S is less strong, notably in group 1 samples. (c) This is also reflected in the Te versus Se positive co-variation which is marked in group 2 samples, but absent in group 1 samples. Small white circles are literature data from Lorand et al. (2010, 2012), Alard et al. (2011), König et al. (2012, 2014), Wang et al. (2013). Primitive mantle (PM; striped rectangle) defined by O’Neill, 1991, McDonough and Sun (1995) and Becker et al. (2006). Small black circles are Kilbourne Hole peridotites from Morgan (1986).

Figure 6. Platinum group element abundances, normalized to the composition of Primitive Mantle (Becker et al., 2006). (a) Group 1 samples (b) Group 2 samples. Rhenium abundances vary by up to 15% (see analytical methods sections) but error bars have not been added for clarity.

Figure 7. Co-variation of HSE in group 1 and 2 peridotite xenoliths. Strong co-variations exist in the group 1 peridotites between (a) Ir and Os, (b) Pd and Pt, (c) Re and Pt and (d) Re and Ir, i.e., all of the HSE behave in a similar manner which is not consistent with melt
depletion, but more likely removal of sulfide in a S-undersaturated melt. Strong co-variations are observed within the group 2 peridotites between (a) Ir and Os (IPGE) and (b) Pt and Pd (PPGE), but no strong positive covariation between IPGE, PPGE and / or Re, which is consistent with fractionation resulting from melt depletion.

Figure 8. Pd and Re co-variation with S, Se and Te. Strong positive correlations are apparent between Pd and S (a) and Pd and Se (b) for both subsets of peridotites. The predicted residual composition after 0-20 % non-modal fractional melt depletion is shown inset. The model assumes a primitive mantle (PM) starting composition ([Pd] = 7.7 ng g$^{-1}$, Becker et al (2006); [S] = 250 ± 50 µg g$^{-1}$, (O’Neill, 1991; Lorand 1990, Palme and O’Neill, 2003); [Se] = 79 ng g$^{-1}$, (Palme and O’Neill, 2003; König et al, 2014). Modelled curves for D$_{Pd}^{sulfide/melt}$ = 105 and 103 from Wang et al (2013), Se depletion from Wang et al (2013), which assumes a D$_{sulfide/melt}$ of 1770. Model assumes sulfur concentration at sulfur saturation of 103 µg g$^{-1}$ S throughout.

(c) Pd and Te in group 2 peridotites have much stronger correlations than group 1 samples. (PM [Te] = 12 ng g$^{-1}$ (König et al, 2014)). Dsulf from Handler and Bennett (1999). A similar strong positive correlation between Re and S (d) is also observed (PM [Re] = 0.32 ppb, (Palme and O’Neill, 2003). Modelled depletion of Re assumes a similar bulk partition coefficient to that of Yb during partial melting (Blundy and Wood, 2003). This relationship breaks down for Re and Se (e) in group 2 samples, yet remains strong in group 1 peridotites. Like Pd vs. Te, there is a very strong positive correlation between Re and Te (f) in group 2, with no apparent correlation in group 1 peridotites. Symbols as per Figure 1. Where error bars are not shown 2σ uncertainty is smaller than symbol size.

Figure 9. Relationship between degree of silicate metasomatism, i.e., (La/Yb)$_N$, and (a) sulfur (b) selenium (c) tellurium (d) osmium (e) iridium (f) platinum (g) palladium and (h)
rhenium. Neither of the subsets of peridotites show any particularly strong correlations
between \((\text{La/Yb})_N\) and S, Se, Te or PPGE, although group 2 peridotites are more strongly
(negatively) correlated with the degree of silicate metasomatism than group 1 peridotites. The
only elements that deviate from this pattern are the IPGE, which have slight \((R^2 = 0.13)\) to
moderate \((R^2 = 0.53)\) positive co-variations with degree of silicate metasomatism. Primitive
mantle compositions from Lorand (1990); O’Neill (1991); Palme and O’Neill (2003); Becker
et al. (2006); König et al. (2014). Symbols as in Figure 1. Where error bars are not shown 2\(\sigma\)
uncertainty is smaller than symbol size.

Figure 10. Cartoon depicting the likely sequence of events affecting the HSE abundances of
(a) group 1 and (b) group 2 peridotites. Group 1 peridotites experienced (i) varying degrees
(<20 %) of melt depletion followed by (ii) dilution of all of the HSE concentrations through
the removal of sulfide by a S-undersaturated melt. After exposure at the surface of the Earth
as a peridotite xenolith, supergene weathering partially oxidizes sulfide and Os is removed in
its volatile \(\text{OsO}_4\) form. Group 2 peridotites also experienced up to 20% partial melting (i)
followed by (ii) the addition of metasomatic sulfide which drove HSE patterns back towards
a PUM-like composition (and in the case of KH03-3 and KH03-24, cf. Figure 8) beyond
PUM abundances for the PPGE. Finally, like the group 1 peridotites, supergene weathering
oxidized sulfide and removed Os (iii).

Figure 11. Covariation of HSE abundance and S abundance. (a) Iridium abundances tend to
be invariant with all but the lowest sulfur abundances. Ir, Pd (b) and Pt (c) scatter crudely
around model calculations for bulk-rock HSE abundances with varying degrees of melt
depletion. Model parameters from Handler and Bennett (1999).
Figure 12. Se/Te variability as a function of Te abundance. Despite S abundance being considered a useful index of melt depletion (e.g. Burnham et al., 1998) and recent estimates for partition coefficients for $Se^{\text{mss/sulfide melts}}$, $Te^{\text{mss/sulfide melts}}$ (Helmy et al., 2010) and $Se^{\text{solid/melt}}$ and $Te^{\text{solid/melt}}$ (van Acken et al., 2010a), no systematic behavior with increasing degree of melt depletion is observed, except perhaps an increase in Se/Te at the lowest Te abundances. See also Figure 3 for poor degrees of correlation between S-Se-Te and bulk-rock Al_2O_3 wt. %.

(i) batch melt depletion curve, (ii) incremental melt depletion curve, (iii) "forced" melt depletion curve parameters from König et al. (2014) - see main text for details.
Figure 1
Figure 2
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

(a) Group 1 peridotites

(i) progressive melt depletion (< 20%)

(ii) dilution of PGE & Se abundance through sulfide removal; retention of Te in tellurides

(iii) loss of Os through supergene weathering

(b) Group 2 peridotites

(i) progressive melt depletion (< 20%)

(ii) subsequent addition of PGE, Se & Te in metasomatic sulfide

(iii) loss of Os through supergene weathering
Figure 11
<table>
<thead>
<tr>
<th>S</th>
<th>Se</th>
<th>Te</th>
<th>Se/Te</th>
<th>Ir</th>
<th>Pt</th>
<th>Pd</th>
<th>Re</th>
</tr>
</thead>
</table>

Figure 12
Table 1. Analysis of reference materials and total procedural blank analyses. Sulfur abundances expressed in µg g\(^{-1}\), all others in ng g\(^{-1}\). \(^a\) denotes not analysed. bdl denotes below detection limits. Abundances of Os and Ru, where available, can be found in Harvey et al. (2011).

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>132</th>
<th>10.2</th>
<th>12.9</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>1710</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBN-1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>2.93</td>
<td>7.48</td>
<td>5.80</td>
<td>0.18</td>
</tr>
<tr>
<td>UBN-1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>2.94</td>
<td>7.13</td>
<td>5.53</td>
<td>0.19</td>
</tr>
<tr>
<td>UBN-1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>2.92</td>
<td>7.41</td>
<td>5.63</td>
<td></td>
</tr>
<tr>
<td>UBN-1 mean</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.93</td>
<td>7.34</td>
<td>5.65</td>
<td>0.18</td>
</tr>
<tr>
<td>UBN-1 (2σ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>0.37</td>
<td>0.27</td>
<td>0.03</td>
</tr>
<tr>
<td>PCC-1</td>
<td>17</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>1714</td>
</tr>
<tr>
<td>Blk</td>
<td>3</td>
<td>bdl</td>
<td>bdl</td>
<td>-</td>
<td>0.001</td>
<td>0.008</td>
<td>0.026</td>
<td>0.016</td>
</tr>
<tr>
<td>Blk</td>
<td>a</td>
<td>bdl</td>
<td>bdl</td>
<td>-</td>
<td>0.004</td>
<td>0.017</td>
<td>0.024</td>
<td>0.005</td>
</tr>
<tr>
<td>Blk</td>
<td>a</td>
<td>bdl</td>
<td>bdl</td>
<td>-</td>
<td>0.001</td>
<td>0.011</td>
<td>0.017</td>
<td>0.007</td>
</tr>
<tr>
<td>Blk mean</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.002</td>
<td>0.012</td>
<td>0.022</td>
<td>0.006</td>
</tr>
<tr>
<td>Blk (2σ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.001</td>
<td>0.004</td>
<td>0.005</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Table 2. Abundances of S, Se, Te, platinum group elements and Re. \(^a\)Sulphur abundances expressed in \(\mu g \text{ g}^{-1}\), all other abundances in ng g\(^{-1}\). \(^b\)Osmium concentrations derived from powder splits prepared for Harvey et al. (2011) \(^c\)blank-corrected Re abundance, with % of blank correction. \(^d\)duplicate measurement. \(^e\)not determined. Group 1 peridotites are distinguished by \((\text{La/Yb})_N < 1\) compared to group 2 peridotites which have \((\text{La/Yb})_N > 1\). Al\(_2\)O\(_3\) wt. % from Harvey et al. (2011).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Al(_2)O(_3) wt %</th>
<th>S(^a)</th>
<th>Se</th>
<th>Te</th>
<th>Os(^b)</th>
<th>Ir</th>
<th>Ru</th>
<th>Pt</th>
<th>Pd</th>
<th>Re(^e)</th>
<th>blk %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 peridotites</td>
<td></td>
</tr>
<tr>
<td>KHO3-2</td>
<td>2.76</td>
<td>46</td>
<td>11.8</td>
<td>9.3</td>
<td>1.39</td>
<td>2.69</td>
<td>e</td>
<td>3.52</td>
<td>1.97</td>
<td>0.03</td>
<td>15</td>
</tr>
<tr>
<td>KHO3-2(^d)</td>
<td></td>
</tr>
<tr>
<td>KHO3-6</td>
<td>3.32</td>
<td>61</td>
<td>28.3</td>
<td>7.2</td>
<td>1.54</td>
<td>3.20</td>
<td>e</td>
<td>5.26</td>
<td>3.35</td>
<td>0.05</td>
<td>10</td>
</tr>
<tr>
<td>KHO3-6(^d)</td>
<td></td>
</tr>
<tr>
<td>KHO3-7</td>
<td>2.51</td>
<td>47</td>
<td>18.6</td>
<td>19.2</td>
<td>3.53</td>
<td></td>
<td>e</td>
<td>5.40</td>
<td>3.45</td>
<td>0.06</td>
<td>9</td>
</tr>
<tr>
<td>KHO3-7(^d)</td>
<td></td>
</tr>
<tr>
<td>KHO3-10</td>
<td>3.23</td>
<td>120</td>
<td>56.9</td>
<td>9.3</td>
<td>3.36</td>
<td>4.19</td>
<td>7.47</td>
<td>6.58</td>
<td>5.58</td>
<td>0.18</td>
<td>3</td>
</tr>
<tr>
<td>KHO3-11</td>
<td>3.55</td>
<td>64</td>
<td>20.3</td>
<td>2.1</td>
<td>1.63</td>
<td>2.83</td>
<td>e</td>
<td>4.98</td>
<td>3.18</td>
<td>0.06</td>
<td>9</td>
</tr>
<tr>
<td>KHO3-18</td>
<td>3.41</td>
<td>130</td>
<td>50.1</td>
<td>10.5</td>
<td>2.45</td>
<td>3.44</td>
<td>6.21</td>
<td>6.12</td>
<td>4.55</td>
<td>0.11</td>
<td>5</td>
</tr>
<tr>
<td>KHO3-25</td>
<td>2.22</td>
<td>25</td>
<td>10.9</td>
<td>4.5</td>
<td>1.73</td>
<td>2.83</td>
<td>e</td>
<td>3.32</td>
<td>1.27</td>
<td>0.01</td>
<td>30</td>
</tr>
<tr>
<td>KHO3-27</td>
<td>1.32</td>
<td>42</td>
<td>14.4</td>
<td>1.0</td>
<td>1.54</td>
<td>2.51</td>
<td>e</td>
<td>2.58</td>
<td>0.50</td>
<td>0.02</td>
<td>20</td>
</tr>
<tr>
<td>KH96-2</td>
<td>1.83</td>
<td>30</td>
<td>7.86</td>
<td>2.1</td>
<td>1.16</td>
<td>1.71</td>
<td>e</td>
<td>2.94</td>
<td>1.45</td>
<td>0.02</td>
<td>20</td>
</tr>
<tr>
<td>KH96-18</td>
<td>3.46</td>
<td>26</td>
<td>18.3</td>
<td>6.2</td>
<td>0.80</td>
<td>0.97</td>
<td>e</td>
<td>2.10</td>
<td>0.72</td>
<td>0.04</td>
<td>15</td>
</tr>
<tr>
<td>Group 2 peridotites</td>
<td></td>
</tr>
<tr>
<td>KHO3-3</td>
<td>4.37</td>
<td>88</td>
<td>38.2</td>
<td>6.2</td>
<td>1.22</td>
<td>2.62</td>
<td>e</td>
<td>8.40</td>
<td>6.93</td>
<td>0.06</td>
<td>9</td>
</tr>
<tr>
<td>KHO3-15</td>
<td>1.20</td>
<td>19</td>
<td>6.9</td>
<td>1.9</td>
<td>2.01</td>
<td>3.07</td>
<td>5.43</td>
<td>4.31</td>
<td>1.26</td>
<td>0.01</td>
<td>30</td>
</tr>
<tr>
<td>KHO3-16</td>
<td>1.13</td>
<td><3</td>
<td>1.1</td>
<td>0.4</td>
<td>2.84</td>
<td>3.04</td>
<td>4.77</td>
<td>3.35</td>
<td>0.55</td>
<td>0.001</td>
<td>86</td>
</tr>
<tr>
<td>KHO3-16(^d)</td>
<td></td>
</tr>
<tr>
<td>KHO3-21</td>
<td>4.41</td>
<td>56</td>
<td>30.7</td>
<td>5.5</td>
<td>1.74</td>
<td>2.81</td>
<td>5.25</td>
<td>4.56</td>
<td>2.74</td>
<td>0.12</td>
<td>5</td>
</tr>
<tr>
<td>KHO3-21(^d)</td>
<td></td>
</tr>
<tr>
<td>KHO3-21(^d)</td>
<td></td>
</tr>
<tr>
<td>KHO3-24</td>
<td>2.72</td>
<td>36</td>
<td>15.9</td>
<td>3.4</td>
<td>2.39</td>
<td>3.33</td>
<td>e</td>
<td>6.23</td>
<td>18.30</td>
<td>0.67</td>
<td>1</td>
</tr>
<tr>
<td>KH96-8</td>
<td>3.06</td>
<td>87</td>
<td>51.9</td>
<td>3.6</td>
<td>1.60</td>
<td>2.34</td>
<td>e</td>
<td>5.97</td>
<td>5.18</td>
<td>0.27</td>
<td>2</td>
</tr>
<tr>
<td>KH96-24</td>
<td>2.67</td>
<td>129</td>
<td>52.6</td>
<td>14.2</td>
<td>1.39</td>
<td>2.84</td>
<td>5.14</td>
<td>4.66</td>
<td>2.59</td>
<td>0.05</td>
<td>10</td>
</tr>
</tbody>
</table>
Table S1. Lithology, texture, mineral modal abundance and equilibration temperature for the Kilbourne Hole peridotite xenoliths of this study. Data from Harvey et al. (2012). All samples recovered from within a 200 metre radius of N 031.57.595 W 106.58.148.

Not determined.

Lithology: L = lherzolite, H = harzburgite. Texture based upon criteria of Mercier & Nicolas (1975): i, protogranular; ii, transitional between protogranular aa porphyroclastic. Modal abundance calculated using a total inversion method (Tarantola & Valette, 1982), which utilizes bulk-rock and mineral major element abundances. Ol = olivine; Opx = orthopyroxene; Cpx = clinopyroxene; Spl = spinel. Uncertainties on modal abundance are ± 2.9% for olivine, ± 3.6% for orthopyroxene, ± 1.7% for clinopyroxene, ± 0.9% for spinel. Calculated using the two-pyroxene geothermometer of Wells (1977). Calculated using the two-pyroxene geothermometer of Brey & Kohler (1990).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lithology<sup>b</sup></th>
<th>Texture<sup>c</sup></th>
<th>Ol</th>
<th>Opx</th>
<th>Cpx</th>
<th>Spl</th>
<th>Wells<sup>e</sup></th>
<th>± B and K<sup>f</sup></th>
<th>Equilibration temperature °C</th>
<th>± 1754°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH03-2</td>
<td>L</td>
<td>i</td>
<td>63.5</td>
<td>23.6</td>
<td>10.9</td>
<td>2.1</td>
<td>983</td>
<td>13</td>
<td>1020</td>
<td>± 12°C</td>
</tr>
<tr>
<td>KH03-3</td>
<td>L</td>
<td>i</td>
<td>46.8</td>
<td>26.2</td>
<td>23.9</td>
<td>3</td>
<td>978</td>
<td>13</td>
<td>1014</td>
<td>± 13°C</td>
</tr>
<tr>
<td>KH03-6</td>
<td>L</td>
<td>i</td>
<td>59.1</td>
<td>25</td>
<td>14.2</td>
<td>1.6</td>
<td>971</td>
<td>10</td>
<td>1002</td>
<td>± 10°C</td>
</tr>
<tr>
<td>KH03-7</td>
<td>L</td>
<td>i</td>
<td>62.6</td>
<td>25.9</td>
<td>10.7</td>
<td>0.9</td>
<td>1003</td>
<td>8</td>
<td>1047</td>
<td>± 6°C</td>
</tr>
<tr>
<td>KH03-10</td>
<td>L</td>
<td>i</td>
<td>62.4</td>
<td>23.9</td>
<td>12</td>
<td>1.8</td>
<td>1039</td>
<td>7</td>
<td>1085</td>
<td>± 6°C</td>
</tr>
<tr>
<td>KH03-11</td>
<td>L</td>
<td>i</td>
<td>53.2</td>
<td>29.7</td>
<td>15.7</td>
<td>1.4</td>
<td>970</td>
<td>10</td>
<td>1014</td>
<td>± 10°C</td>
</tr>
<tr>
<td>KH03-15</td>
<td>H</td>
<td>i</td>
<td>76.9</td>
<td>18</td>
<td>3.9</td>
<td>1.2</td>
<td>1126</td>
<td>7</td>
<td>1165</td>
<td>± 5°C</td>
</tr>
<tr>
<td>KH03-16</td>
<td>H</td>
<td>i</td>
<td>64.9</td>
<td>30.7</td>
<td>2.6</td>
<td>1.8</td>
<td>1123</td>
<td>2</td>
<td>1152</td>
<td>± 1°C</td>
</tr>
<tr>
<td>KH03-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>± 1°C</td>
</tr>
<tr>
<td>KH03-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>± 1°C</td>
</tr>
<tr>
<td>KH03-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>± 1°C</td>
</tr>
<tr>
<td>KH03-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>± 1°C</td>
</tr>
<tr>
<td>KH03-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>± 1°C</td>
</tr>
<tr>
<td>KH96-2</td>
<td>L</td>
<td>i</td>
<td>71.6</td>
<td>22.4</td>
<td>5.2</td>
<td>0.8</td>
<td>1006</td>
<td>8</td>
<td>1045</td>
<td>± 15°C</td>
</tr>
<tr>
<td>KH96-8</td>
<td>L</td>
<td>i</td>
<td>45.1</td>
<td>39.9</td>
<td>12.9</td>
<td>2</td>
<td>1143</td>
<td>5</td>
<td>1181</td>
<td>± 4°C</td>
</tr>
<tr>
<td>KH96-18</td>
<td>L</td>
<td>i</td>
<td>54.6</td>
<td>28.9</td>
<td>14.6</td>
<td>1.9</td>
<td>986</td>
<td>5</td>
<td>1025</td>
<td>± 9°C</td>
</tr>
<tr>
<td>KH96-24</td>
<td>L</td>
<td>i</td>
<td>57.6</td>
<td>30.9</td>
<td>10.1</td>
<td>1.5</td>
<td>927</td>
<td>6</td>
<td>940</td>
<td>± 11°C</td>
</tr>
</tbody>
</table>
Table S2. Bulk-rock Al$_2$O$_3$, (La/Yb)$_N$, Re and Os elemental abundance and Re-Os isotope systematics of the 17 peridotite xenoliths from this study. Al$_2$O$_3$ (expressed in wt. %) and (La/Yb)$_N$ from Harvey et al. (2012), where (La/Yb)$_N$ is La/Yb normalised to the composition of primitive mantle (McDonough and Sun, 1995), Re-Os measurements from Harvey et al. (2011). Complete major and trace element abundances can be found in Harvey et al. (2012).

$[\text{Re}]$ and $[\text{Os}]$ expressed in ng g$^{-1}$. Errors shown as 2σ mean. T_{RD} = (minimum) time of rhenium depletion calculated using $(T_{RD} = 1/\lambda \times \ln \left\{ \left(\frac{^{187}\text{Os}^{188}\text{Os}_{\text{chon}}}{^{187}\text{Os}^{188}\text{Os}_{\text{sample}}} \right) + 1 \right\}$ (Shirey and Walker, 1998) which assumes a mean present-day chondritic value $^{187}\text{Os}^{188}\text{Os} = 0.127$ (Luck & Allègre, 1983; Walker & Morgan, 1989) and also assumes that $^{187}\text{Re}^{188}\text{Os}_{\text{sample}} = 0$. a not determined. b T_{RD} produces no useful geochronological information. c Carius tube digestion. d high pressure asher digestion for PGE concentration measurement. e duplicate measurement.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(La/Yb)$_N$</th>
<th>[Os]</th>
<th>$[\text{Re}]$</th>
<th>$^{187}\text{Os}^{188}\text{Os}$</th>
<th>2 s.e.</th>
<th>$^{187}\text{Re}^{188}\text{Os}$</th>
<th>T_{RD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH03-2c</td>
<td>0.51</td>
<td>1.39</td>
<td>0.04</td>
<td>0.1213</td>
<td>0.0001</td>
<td>0.124</td>
<td>0.85</td>
</tr>
<tr>
<td>KH03-3c</td>
<td>1.27</td>
<td>1.22</td>
<td>0.07</td>
<td>0.134</td>
<td>0.0001</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>KH03-6c</td>
<td>0.31</td>
<td>1.54</td>
<td>0.06</td>
<td>0.1267</td>
<td>0.0002</td>
<td>0.183</td>
<td>0.05</td>
</tr>
<tr>
<td>KH03-6ce</td>
<td>a</td>
<td>1.6</td>
<td>0.08</td>
<td>0.1272</td>
<td>0.0003</td>
<td>0.243</td>
<td></td>
</tr>
<tr>
<td>KH03-6ce</td>
<td>a</td>
<td>1.48</td>
<td>0.06</td>
<td>0.1269</td>
<td>0.0001</td>
<td>0.183</td>
<td>0.02</td>
</tr>
<tr>
<td>KH03-6ce</td>
<td>a</td>
<td>1.52</td>
<td>0.06</td>
<td>0.127</td>
<td>0.0002</td>
<td>0.173</td>
<td>0</td>
</tr>
<tr>
<td>KH03-7c</td>
<td>0.32</td>
<td>2.25</td>
<td>0.07</td>
<td>0.1226</td>
<td>0.0001</td>
<td>0.138</td>
<td>0.65</td>
</tr>
<tr>
<td>KH03-10c</td>
<td>0.88</td>
<td>3.36</td>
<td>0.19</td>
<td>0.1252</td>
<td>0.0001</td>
<td>0.261</td>
<td>0.27</td>
</tr>
<tr>
<td>KH03-10de</td>
<td>a</td>
<td>3.36</td>
<td>0.19</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-10de</td>
<td>a</td>
<td>3.23</td>
<td>0.23</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-11c</td>
<td>0.23</td>
<td>1.63</td>
<td>0.07</td>
<td>0.1257</td>
<td>0.0002</td>
<td>0.2</td>
<td>0.19</td>
</tr>
<tr>
<td>KH03-15c</td>
<td>3.51</td>
<td>2.01</td>
<td>0.02</td>
<td>0.1213</td>
<td>0.0002</td>
<td>0.044</td>
<td>0.84</td>
</tr>
<tr>
<td>KH03-15de</td>
<td>a</td>
<td>2.01</td>
<td>0.02</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-15de</td>
<td>a</td>
<td>2.04</td>
<td>0.03</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-16c</td>
<td>4.68</td>
<td>2.84</td>
<td>0.01</td>
<td>0.116</td>
<td>0.0003</td>
<td>0.009</td>
<td>1.62</td>
</tr>
<tr>
<td>KH03-16de</td>
<td>a</td>
<td>2.96</td>
<td>0.002</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-16de</td>
<td>a</td>
<td>3.04</td>
<td>0.01</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-18c</td>
<td>0.13</td>
<td>2.5</td>
<td>0.12</td>
<td>0.1263</td>
<td>0.0004</td>
<td>0.214</td>
<td>0.11</td>
</tr>
<tr>
<td>KH03-18de</td>
<td>a</td>
<td>2.4</td>
<td>0.16</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-18de</td>
<td>a</td>
<td>2.5</td>
<td>0.12</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-21c</td>
<td>1.19</td>
<td>1.72</td>
<td>0.13</td>
<td>0.1325</td>
<td>0.0001</td>
<td>0.306</td>
<td>b</td>
</tr>
<tr>
<td>KH03-21de</td>
<td>a</td>
<td>1.71</td>
<td>0.07</td>
<td>0.1324</td>
<td>0.0001</td>
<td>0.185</td>
<td>b</td>
</tr>
<tr>
<td>KH03-21de</td>
<td>a</td>
<td>1.79</td>
<td>0.06</td>
<td>0.1322</td>
<td>0.0003</td>
<td>0.151</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>KH03-21<sup>de</sup></td>
<td>1.72</td>
<td>0.13</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-21<sup>de</sup></td>
<td>1.71</td>
<td>0.07</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-21<sup>de</sup></td>
<td>1.79</td>
<td>0.06</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-21<sup>de</sup></td>
<td>1.73</td>
<td>0.08</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-24<sup>c</sup></td>
<td>1.71</td>
<td>1.39</td>
<td>0.06</td>
<td>0.1233</td>
<td>0.0001</td>
<td>0.148</td>
<td>0.54</td>
</tr>
<tr>
<td>KH03-24<sup>ce</sup></td>
<td>1.79</td>
<td>0.04</td>
<td>0.1192</td>
<td>0.0002</td>
<td>0.077</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>KH03-24<sup>de</sup></td>
<td>1.39</td>
<td>0.06</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-24<sup>de</sup></td>
<td>1.39</td>
<td>0.05</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KH03-25<sup>c</sup></td>
<td>0.72</td>
<td>1.73</td>
<td>0.02</td>
<td>0.1194</td>
<td>0.0002</td>
<td>0.052</td>
<td>1.13</td>
</tr>
<tr>
<td>KH03-27<sup>c</sup></td>
<td>0.87</td>
<td>1.54</td>
<td>0.03</td>
<td>0.1203</td>
<td>0.0033</td>
<td>0.088</td>
<td>0.99</td>
</tr>
<tr>
<td>KH96-2<sup>c</sup></td>
<td>0.8</td>
<td>1.16</td>
<td>0.03</td>
<td>0.1189</td>
<td>0.0001</td>
<td>0.124</td>
<td>1.21</td>
</tr>
<tr>
<td>KH96-8<sup>c</sup></td>
<td>1.7</td>
<td>1.6</td>
<td>0.28</td>
<td>0.1309</td>
<td>0.0001</td>
<td>0.832</td>
<td>b</td>
</tr>
<tr>
<td>KH96-18<sup>c</sup></td>
<td>0.43</td>
<td>0.8</td>
<td>0.04</td>
<td>0.1294</td>
<td>0.0001</td>
<td>0.196</td>
<td>b</td>
</tr>
<tr>
<td>KH96-24<sup>c</sup></td>
<td>1.53</td>
<td>2.39</td>
<td>0.68</td>
<td>0.1268</td>
<td>0.0001</td>
<td>1.36</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table S3. Major element abundances of sulfide grains in peridotite xenoliths from Kilbourne Hole, New Mexico, USA. Repeat analyses of an in-house pentlandite standard yields errors on major elements (S, Fe, Ni) of 2, 5 and 6% (2σ) respectively, with minor elements (Co, Cu) errors (2σ) of 22% and 70% respectively (Data from Harvey et al., 2011).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ni</th>
<th>Cu</th>
<th>S</th>
<th>Fe</th>
<th>Co</th>
<th>Zn</th>
<th>Si</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH03-11_A1</td>
<td>16.03</td>
<td>0.61</td>
<td>36.69</td>
<td>45.34</td>
<td>0.31</td>
<td>0.00</td>
<td>0.03</td>
<td>99.00</td>
</tr>
<tr>
<td>KH03-11_A1</td>
<td>34.14</td>
<td>1.31</td>
<td>33.20</td>
<td>31.15</td>
<td>0.46</td>
<td>0.00</td>
<td>0.01</td>
<td>100.27</td>
</tr>
<tr>
<td>KH03-14_A10</td>
<td>16.02</td>
<td>0.78</td>
<td>37.48</td>
<td>44.28</td>
<td>0.31</td>
<td>0.00</td>
<td>0.00</td>
<td>98.87</td>
</tr>
<tr>
<td>KH03-14_A10</td>
<td>8.89</td>
<td>4.44</td>
<td>37.16</td>
<td>48.88</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
<td>99.61</td>
</tr>
<tr>
<td>KH03-14_A10</td>
<td>1.74</td>
<td>20.99</td>
<td>34.81</td>
<td>40.17</td>
<td>0.14</td>
<td>0.02</td>
<td>0.00</td>
<td>97.86</td>
</tr>
<tr>
<td>KH03-14_A9</td>
<td>15.03</td>
<td>0.63</td>
<td>37.35</td>
<td>45.50</td>
<td>0.31</td>
<td>0.00</td>
<td>0.00</td>
<td>98.83</td>
</tr>
<tr>
<td>KH03-14_A8</td>
<td>17.71</td>
<td>0.44</td>
<td>36.37</td>
<td>43.70</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
<td>98.50</td>
</tr>
<tr>
<td>KH03-14_A8</td>
<td>11.40</td>
<td>11.69</td>
<td>35.25</td>
<td>39.97</td>
<td>0.19</td>
<td>0.01</td>
<td>0.00</td>
<td>98.51</td>
</tr>
<tr>
<td>KH03-14_A9</td>
<td>1.92</td>
<td>21.44</td>
<td>35.15</td>
<td>39.75</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>98.40</td>
</tr>
<tr>
<td>KH03-14_A7</td>
<td>19.50</td>
<td>4.56</td>
<td>35.08</td>
<td>35.84</td>
<td>0.36</td>
<td>0.02</td>
<td>1.15</td>
<td>96.50</td>
</tr>
<tr>
<td>KH03-14_A7</td>
<td>16.13</td>
<td>0.66</td>
<td>37.49</td>
<td>44.63</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>99.21</td>
</tr>
<tr>
<td>KH03-14_A6</td>
<td>13.30</td>
<td>0.44</td>
<td>37.24</td>
<td>47.52</td>
<td>0.26</td>
<td>0.00</td>
<td>0.00</td>
<td>98.76</td>
</tr>
<tr>
<td>KH03-14_A5</td>
<td>17.05</td>
<td>0.77</td>
<td>37.19</td>
<td>44.18</td>
<td>0.29</td>
<td>0.00</td>
<td>0.00</td>
<td>99.48</td>
</tr>
<tr>
<td>KH03-14_A4</td>
<td>15.76</td>
<td>0.73</td>
<td>37.50</td>
<td>45.33</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>99.63</td>
</tr>
<tr>
<td>KH03-14_A3</td>
<td>14.78</td>
<td>0.37</td>
<td>38.08</td>
<td>45.09</td>
<td>0.30</td>
<td>0.00</td>
<td>0.01</td>
<td>98.63</td>
</tr>
<tr>
<td>KH03-14_A2</td>
<td>14.66</td>
<td>0.55</td>
<td>37.64</td>
<td>45.99</td>
<td>0.31</td>
<td>0.01</td>
<td>0.00</td>
<td>99.16</td>
</tr>
<tr>
<td>KH03-14_A1</td>
<td>15.14</td>
<td>0.77</td>
<td>37.31</td>
<td>45.98</td>
<td>0.31</td>
<td>0.00</td>
<td>0.00</td>
<td>99.52</td>
</tr>
<tr>
<td>KH03-15_1.1</td>
<td>28.76</td>
<td>0.68</td>
<td>34.71</td>
<td>35.01</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>99.47</td>
</tr>
<tr>
<td>KH03-17_A1</td>
<td>23.26</td>
<td>0.23</td>
<td>37.93</td>
<td>38.17</td>
<td>0.29</td>
<td>0.00</td>
<td>0.00</td>
<td>99.87</td>
</tr>
<tr>
<td>KH03-17_A2</td>
<td>25.88</td>
<td>0.31</td>
<td>37.75</td>
<td>35.64</td>
<td>0.29</td>
<td>0.01</td>
<td>0.00</td>
<td>99.87</td>
</tr>
<tr>
<td>KH03-21_1.1</td>
<td>29.39</td>
<td>1.72</td>
<td>32.61</td>
<td>35.26</td>
<td>0.29</td>
<td>0.00</td>
<td>0.00</td>
<td>99.27</td>
</tr>
<tr>
<td>KH03-21_1.1</td>
<td>27.32</td>
<td>4.68</td>
<td>32.79</td>
<td>33.87</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>98.96</td>
</tr>
<tr>
<td>KH03-21_1.2</td>
<td>28.45</td>
<td>1.71</td>
<td>33.15</td>
<td>36.13</td>
<td>0.29</td>
<td>0.00</td>
<td>0.00</td>
<td>99.74</td>
</tr>
<tr>
<td>KH03-21_1.2</td>
<td>26.90</td>
<td>4.61</td>
<td>33.12</td>
<td>35.02</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>99.95</td>
</tr>
<tr>
<td>KH03-21_1.3</td>
<td>31.95</td>
<td>1.84</td>
<td>32.41</td>
<td>31.81</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>98.34</td>
</tr>
<tr>
<td>KH03-21_1.3</td>
<td>8.79</td>
<td>0.12</td>
<td>37.50</td>
<td>51.19</td>
<td>0.17</td>
<td>0.00</td>
<td>0.00</td>
<td>97.78</td>
</tr>
<tr>
<td>KH03-21_2.1</td>
<td>16.27</td>
<td>0.28</td>
<td>37.32</td>
<td>45.54</td>
<td>0.32</td>
<td>0.01</td>
<td>0.00</td>
<td>99.74</td>
</tr>
<tr>
<td>KH03-21_2.2</td>
<td>23.86</td>
<td>0.20</td>
<td>37.12</td>
<td>38.23</td>
<td>0.28</td>
<td>0.02</td>
<td>0.00</td>
<td>99.71</td>
</tr>
<tr>
<td>KH03-21_2.2</td>
<td>2.69</td>
<td>22.59</td>
<td>34.17</td>
<td>38.63</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>98.17</td>
</tr>
<tr>
<td>KH03-21_3.1</td>
<td>16.26</td>
<td>0.51</td>
<td>36.61</td>
<td>44.66</td>
<td>0.32</td>
<td>0.00</td>
<td>0.00</td>
<td>98.36</td>
</tr>
<tr>
<td>KH03-21_3.2</td>
<td>28.27</td>
<td>2.23</td>
<td>32.06</td>
<td>34.91</td>
<td>0.30</td>
<td>0.00</td>
<td>0.08</td>
<td>97.85</td>
</tr>
<tr>
<td>KH03-21_3.2</td>
<td>21.26</td>
<td>9.25</td>
<td>32.34</td>
<td>35.15</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
<td>98.24</td>
</tr>
<tr>
<td>KH03-21_4.1</td>
<td>10.86</td>
<td>0.53</td>
<td>36.61</td>
<td>51.03</td>
<td>0.29</td>
<td>0.00</td>
<td>0.02</td>
<td>99.34</td>
</tr>
<tr>
<td></td>
<td>1800</td>
<td>1801</td>
<td>1802</td>
<td>1803</td>
<td>1804</td>
<td>1805</td>
<td>1806</td>
<td>1807</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>KH03-21_4.1</td>
<td>28.43</td>
<td>0.32</td>
<td>33.99</td>
<td>37.41</td>
<td>0.63</td>
<td>0.00</td>
<td>0.00</td>
<td>100.77</td>
</tr>
<tr>
<td>KH03-22_A1</td>
<td>34.08</td>
<td>1.64</td>
<td>33.00</td>
<td>30.58</td>
<td>0.25</td>
<td>0.00</td>
<td>0.02</td>
<td>99.56</td>
</tr>
<tr>
<td>KH03-22_A3</td>
<td>17.17</td>
<td>0.62</td>
<td>37.28</td>
<td>44.37</td>
<td>0.27</td>
<td>0.00</td>
<td>0.00</td>
<td>99.71</td>
</tr>
<tr>
<td>KH03-22_A3</td>
<td>33.46</td>
<td>1.65</td>
<td>33.16</td>
<td>31.20</td>
<td>0.29</td>
<td>0.00</td>
<td>0.02</td>
<td>99.79</td>
</tr>
<tr>
<td>KH03-22_A3</td>
<td>29.88</td>
<td>4.26</td>
<td>34.10</td>
<td>32.16</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
<td>100.68</td>
</tr>
<tr>
<td>KH03-22_A4</td>
<td>34.77</td>
<td>1.21</td>
<td>32.31</td>
<td>30.09</td>
<td>0.28</td>
<td>0.00</td>
<td>0.20</td>
<td>98.85</td>
</tr>
<tr>
<td>KH03-22_A4</td>
<td>17.75</td>
<td>0.39</td>
<td>37.76</td>
<td>43.64</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
<td>99.81</td>
</tr>
<tr>
<td>KH03-22_A5</td>
<td>19.17</td>
<td>0.45</td>
<td>37.84</td>
<td>41.91</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
<td>99.62</td>
</tr>
<tr>
<td>KH03-22_A5</td>
<td>36.16</td>
<td>0.95</td>
<td>33.10</td>
<td>28.58</td>
<td>0.29</td>
<td>0.00</td>
<td>0.09</td>
<td>99.17</td>
</tr>
<tr>
<td>KH03-22_A6</td>
<td>18.69</td>
<td>0.49</td>
<td>37.39</td>
<td>42.94</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
<td>99.75</td>
</tr>
<tr>
<td>KH03-22_B1.1</td>
<td>14.38</td>
<td>0.32</td>
<td>37.28</td>
<td>45.47</td>
<td>0.20</td>
<td>0.00</td>
<td>0.00</td>
<td>97.65</td>
</tr>
<tr>
<td>KH03-22_B1.2</td>
<td>28.23</td>
<td>0.47</td>
<td>34.70</td>
<td>36.35</td>
<td>0.30</td>
<td>0.00</td>
<td>0.03</td>
<td>100.07</td>
</tr>
<tr>
<td>KH03-22_B1.3</td>
<td>16.13</td>
<td>0.30</td>
<td>38.29</td>
<td>44.18</td>
<td>0.25</td>
<td>0.00</td>
<td>0.06</td>
<td>99.22</td>
</tr>
<tr>
<td>KH03-22_B1.4</td>
<td>31.54</td>
<td>2.12</td>
<td>33.18</td>
<td>30.75</td>
<td>0.32</td>
<td>0.00</td>
<td>0.19</td>
<td>98.09</td>
</tr>
<tr>
<td>KH03-22_B1.4</td>
<td>12.55</td>
<td>0.41</td>
<td>38.17</td>
<td>48.15</td>
<td>0.23</td>
<td>0.02</td>
<td>0.03</td>
<td>99.57</td>
</tr>
<tr>
<td>KH03-22_B2</td>
<td>19.65</td>
<td>0.54</td>
<td>36.18</td>
<td>40.99</td>
<td>0.24</td>
<td>0.01</td>
<td>0.01</td>
<td>97.63</td>
</tr>
<tr>
<td>KH03-22_B3.1</td>
<td>31.93</td>
<td>1.59</td>
<td>33.02</td>
<td>31.86</td>
<td>0.32</td>
<td>0.00</td>
<td>0.02</td>
<td>98.74</td>
</tr>
<tr>
<td>KH03-22_B3.1</td>
<td>13.09</td>
<td>0.55</td>
<td>37.36</td>
<td>47.66</td>
<td>0.22</td>
<td>0.00</td>
<td>0.00</td>
<td>98.89</td>
</tr>
<tr>
<td>KH03-22_B3.2</td>
<td>34.07</td>
<td>1.11</td>
<td>32.71</td>
<td>30.02</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>98.21</td>
</tr>
<tr>
<td>KH03-22_B3.2</td>
<td>17.56</td>
<td>0.23</td>
<td>37.25</td>
<td>43.34</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
<td>98.62</td>
</tr>
<tr>
<td>KH03-22_B4.2</td>
<td>16.95</td>
<td>0.46</td>
<td>36.98</td>
<td>43.82</td>
<td>0.27</td>
<td>0.01</td>
<td>0.07</td>
<td>98.57</td>
</tr>
<tr>
<td>KH03-22_B4.1</td>
<td>32.71</td>
<td>1.00</td>
<td>33.49</td>
<td>30.94</td>
<td>0.29</td>
<td>0.00</td>
<td>0.00</td>
<td>98.42</td>
</tr>
<tr>
<td>KH03-22_B4.1</td>
<td>19.94</td>
<td>0.56</td>
<td>37.44</td>
<td>40.68</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
<td>98.91</td>
</tr>
<tr>
<td>KH03-23_A1</td>
<td>1.10</td>
<td>25.91</td>
<td>34.21</td>
<td>36.11</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>97.39</td>
</tr>
</tbody>
</table>
Table S4. Re–Os elemental abundance and isotope data for sulfides from KH03-15, KH03-16, KH03-21 and KH03-24 (modified after Harvey et al., 2011). Errors shown are 2 σ. Re and Os concentrations expressed as µg g⁻¹. For analytical standards and corrections for \(^{18}O/^{16}O\) and \(^{17}O/^{16}O\) refer to Table 2 of Harvey et al., (2011).

<table>
<thead>
<tr>
<th>Sample</th>
<th>[Os]</th>
<th>[Re]</th>
<th>(^{187}\text{Os}/^{188}\text{Os})</th>
<th>2 s.e.</th>
<th>(^{187}\text{Re}/^{188}\text{Os})</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH03-15_2</td>
<td>0.001</td>
<td>0.848</td>
<td>0.2163</td>
<td>0.0073</td>
<td>3575</td>
</tr>
<tr>
<td>KH03-15_4</td>
<td>24.70</td>
<td>11.3</td>
<td>0.1195</td>
<td>0.0003</td>
<td>2.18</td>
</tr>
<tr>
<td>KH03-15_5</td>
<td>36.9</td>
<td>2.83</td>
<td>0.1208</td>
<td>0.0002</td>
<td>0.37</td>
</tr>
<tr>
<td>KH03-15_6</td>
<td>10.9</td>
<td>0.140</td>
<td>0.1202</td>
<td>0.0002</td>
<td>0.03</td>
</tr>
<tr>
<td>KH03-15_7</td>
<td>6.05</td>
<td>-</td>
<td>0.1304</td>
<td>0.0003</td>
<td>-</td>
</tr>
<tr>
<td>KH03-15_9</td>
<td>5.82</td>
<td>-</td>
<td>0.1185</td>
<td>0.0003</td>
<td>-</td>
</tr>
<tr>
<td>KH03-15_10</td>
<td>21.2</td>
<td>-</td>
<td>0.1312</td>
<td>0.0004</td>
<td>-</td>
</tr>
<tr>
<td>KH03-16_2</td>
<td>0.51</td>
<td>1.35</td>
<td>0.1349</td>
<td>0.0015</td>
<td>12.7</td>
</tr>
<tr>
<td>KH03-16_3</td>
<td>0.010</td>
<td>138.9</td>
<td>0.1424</td>
<td>0.0050</td>
<td>687.22</td>
</tr>
<tr>
<td>KH03-16_4</td>
<td>1.48</td>
<td>34.27</td>
<td>0.1556</td>
<td>0.0051</td>
<td>11.1</td>
</tr>
<tr>
<td>KH03-16_5</td>
<td>12.9</td>
<td>0.294</td>
<td>0.1235</td>
<td>0.0001</td>
<td>0.11</td>
</tr>
<tr>
<td>KH03-16_6</td>
<td>0.024</td>
<td>3.133</td>
<td>0.1819</td>
<td>0.0057</td>
<td>622.1</td>
</tr>
<tr>
<td>KH03-16_9</td>
<td>1.74</td>
<td>-</td>
<td>0.1362</td>
<td>0.0010</td>
<td>-</td>
</tr>
<tr>
<td>KH03-16_10</td>
<td>0.052</td>
<td>-</td>
<td>0.3729</td>
<td>0.0169</td>
<td>-</td>
</tr>
<tr>
<td>KH03-21_1</td>
<td>0.992</td>
<td>1.252</td>
<td>0.1303</td>
<td>0.0006</td>
<td>6.02</td>
</tr>
<tr>
<td>KH03-21_2</td>
<td>1.11</td>
<td>1.181</td>
<td>0.1694</td>
<td>0.0004</td>
<td>5.11</td>
</tr>
<tr>
<td>KH03-21_3</td>
<td>2.72</td>
<td>0.056</td>
<td>0.1283</td>
<td>0.0003</td>
<td>0.098</td>
</tr>
<tr>
<td>KH03-21_4</td>
<td>10.0</td>
<td>23.32</td>
<td>0.1291</td>
<td>0.0001</td>
<td>101.1</td>
</tr>
<tr>
<td>KH03-21_5</td>
<td>9.97</td>
<td>-</td>
<td>0.1259</td>
<td>0.0008</td>
<td>-</td>
</tr>
<tr>
<td>KH03-21_6</td>
<td>1.29</td>
<td>-</td>
<td>0.1302</td>
<td>0.0008</td>
<td>-</td>
</tr>
<tr>
<td>KH03-21_7</td>
<td>0.843</td>
<td>-</td>
<td>0.1368</td>
<td>0.0008</td>
<td>-</td>
</tr>
<tr>
<td>KH03-21_8</td>
<td>4.48</td>
<td>-</td>
<td>0.1282</td>
<td>0.0005</td>
<td>-</td>
</tr>
<tr>
<td>KH03-21_9</td>
<td>0.447</td>
<td>-</td>
<td>0.1764</td>
<td>0.0012</td>
<td>-</td>
</tr>
<tr>
<td>KH03-21_10</td>
<td>0.584</td>
<td>-</td>
<td>0.1385</td>
<td>0.0005</td>
<td>-</td>
</tr>
<tr>
<td>KH03-24_5</td>
<td>1.69</td>
<td>0.01</td>
<td>0.1227</td>
<td>0.0004</td>
<td>0.020</td>
</tr>
<tr>
<td>KH03-24_10</td>
<td>0.195</td>
<td>0.002</td>
<td>0.1237</td>
<td>0.0028</td>
<td>0.050</td>
</tr>
<tr>
<td>KH03-24_11</td>
<td>0.231</td>
<td>-</td>
<td>0.1240</td>
<td>0.0006</td>
<td>-</td>
</tr>
<tr>
<td>KH03-24_14</td>
<td>2.76</td>
<td>0.04</td>
<td>0.1226</td>
<td>0.0013</td>
<td>0.070</td>
</tr>
<tr>
<td>KH03-24_15</td>
<td>2.54</td>
<td>35.87</td>
<td>0.1234</td>
<td>0.0004</td>
<td>67.4</td>
</tr>
<tr>
<td>KH03-24_16</td>
<td>2.50</td>
<td>18.78</td>
<td>0.1238</td>
<td>0.0011</td>
<td>35.8</td>
</tr>
<tr>
<td>KH03-24_17</td>
<td>0.600</td>
<td>27.27</td>
<td>0.1264</td>
<td>0.0005</td>
<td>217.1</td>
</tr>
<tr>
<td>KH03-24_20</td>
<td>0.314</td>
<td>-</td>
<td>0.1449</td>
<td>0.0017</td>
<td>-</td>
</tr>
</tbody>
</table>
Table S5. "Metasomatic" processes observed in the Kilbourne Hole peridotite xenoliths from this study. (i) Melt-rock interaction in antiquity; (ii) recent melt-rock interaction (a) spongey clinopyroxene rims, (b) observed interstitial glass; (iii) refertilization; (iv) cryptic metasomatism. Modified from Harvey et al. (2012).

<table>
<thead>
<tr>
<th>"Metasomatic" process</th>
<th>(i)</th>
<th>(iia)</th>
<th>(iib)</th>
<th>(iii)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 peridotites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH03-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH03-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH03-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH03-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>KH03-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH03-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH03-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH03-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>KH96-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH96-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Group 2 peridotites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH03-3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>KH03-15</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>KH03-16</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>KH03-21</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>KH03-24</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH96-8</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>KH96-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>