
This is a repository copy of An evaluation of standard retrieval algorithms and a binary
neural approach.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/883/

Article:

Hodge, V.J. orcid.org/0000-0002-2469-0224 and Austin, J. orcid.org/0000-0001-5762-8614
(2001) An evaluation of standard retrieval algorithms and a binary neural approach. Neural
Networks. pp. 287-303. ISSN 0893-6080

https://doi.org/10.1016/S0893-6080(00)00097-6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

White Rose Consortium ePrints Repository

http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Neural Networks. This
paper has been peer-reviewed but does not include the final publisher proof-corrections
or journal pagination.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/archive/00000883/

Citation for the published paper

Hodge, V.J. and Austin, J. (2001) An evaluation of standard retrieval algorithms and a
binary neural approach. Neural Networks, 14 (3). pp. 287-303.

Citation for this paper

To refer to the repository paper, the following format may be used:

Hodge, V.J. and Austin, J. (2001) An evaluation of standard retrieval algorithms and a
binary neural approach. Author manuscript available at:
http://eprints.whiterose.ac.uk/archive/00000883/ [Accessed: date].

Published in final edited form as:

Hodge, V.J. and Austin, J. (2001) An evaluation of standard retrieval algorithms and a
binary neural approach. Neural Networks, 14 (3). pp. 287-303.

White Rose Consortium ePrints Repository

eprints@whiterose.ac.uk

An Evaluation of Standard Retrieval Algorithms

and a Binary Neural Approach

Victoria J� Hodge

Dept� of Computer Science�

University of York� UK

Jim Austin

Dept� of Computer Science�

University of York� UK

This research was supported by an EPSRC studentship�

Contact Address�

Victoria J� Hodge

Dept� of Computer Science�

University of York�

Heslington�

York�

UK

YO�� �DD

Tel� ��� ���� �	
�
�

Fax� ��� ���� �	
���

vicky
cs�york�ac�uk

Running Title� A Neural Retrieval Approach

�

A Neural Retrieval Approach

An Evaluation of Standard Retrieval Algorithms and a

Binary Neural Approach

Abstract

In this paper we evaluate a selection of data retrieval algorithms for

storage e�ciency� retrieval speed and partial matching capabilities using a

large information retrieval dataset� We evaluate standard data structures�

for example inverted �le lists and hash tables but also a novel binary neu�

ral network that incorporates� single�epoch training� superimposed coding

and associative matching in a binary matrix data structure� We identify

the strengths and weaknesses of the approaches� From our evaluation� the

novel neural network approach is superior with respect to training speed

and partial match retrieval time� From the results we make recommenda�

tions for the appropriate usage of the novel neural approach�

Keywords� Information Retrieval Algorithm� Binary Neural Network� Cor�

relation Matrix Memory� Word�Document Association� Partial Match� Storage

E�ciency� Speed of Training� Speed of Retrieval

A Neural Retrieval Approach 	

Many computational implementations require algorithms that are storage

e�cient� may be rapidly trained with data and allow fast retrieval of selected

data� Information Retrieval �IR� requires the storage of massive sets of word

to document associations� The underlying principle of most IR systems is to

retrieve stored data on the basis of queries supplied by the user� The data

structure must allow the documents matching query terms to be retrieved using

some form of indexing� This inevitably requires an algorithm that is e�cient

for storage� allows rapid training of the associations� fast retrieval of documents

matching the query terms and additionally� permits partial matching �M of N�

query terms where M � N and N is the total number of query terms and M

is the number of those terms that must match� Many methodologies have been

posited for storing these associations� see for example ����� including inverted

�le lists� hash tables� document vectors� superimposed coding techniques and

Latent Semantic Indexing �LSI� ���� In this paper we compare �Perfect� tech�

niques� i�e� those that preserve all word to document associations as opposed

to �Imperfect� methodologies such as LSI�

A representation strategy used in many systems are document vectors� There

are various adaptations of the underlying strategy but fundamentally the doc�

uments are represented by vectors with elements representing an attribute for

each word in the corpus� The document vectors form a matrix representation

of the corpus with one row per document vector and one column per word at�

tribute� For binary document vectors� used in for example Koller � Sahami ��
��

the weights are Boolean so if a word is present in a document the appropriate

bit in the document vector is set to �� The matrix may also be integer�based

as used in Goldszmidt � Sahami ��� where wjk represents the number of times

wordj is present in documentk� By activating the appropriate columns �words�

the documents containing those words may be retrieved from the matrix� LSI

decomposes a word�document matrix to produce a meta�level representation of

A Neural Retrieval Approach �

the corpus with the aim of correlating terms and extracting document topics�

LSI reduces the storage using Singular Valued Decomposition ��� �SVD� � factor

analysis� Although this serves to reduce storage it also discards information and

compresses out the word�document associations we need for our evaluation�

There are alternative hashing strategies �as compared to the standard hash

structure evaluated in this paper�� They are aimed at partial matching but

tend to retrieve false positives �documents appear to match that should not�

and are thus �Imperfect�� There may be insu�cient dimensions for uniqueness

so many words may hash to the same bits and thus false matches will be re�

trieved� The extra matches then have to be rechecked for correctness and the

false matches eliminated thus slowing retrieval� They are described in ���� and

include� address generation hashing �see also ����� and hashing with descriptors

�see also ��	��� There are also superimposed coding �SIC� techniques �described

in ����� for hash table partial matching applications but again these are �Imper�

fect� and tend to over�retrieve� for example� one�level superimposed coding �see

also ������ and two�level superimposed coding �see also ������

We wish to avoid the information loss inherent in LSI and also the false positives

of SIC with their intrinsic requirement for a post�match recheck to eliminate

false matches� Therefore we concentrate on �Perfect� lexical techniques� We

analyse an inverted �le list �a slightly more sophisticated version of which is

used in the Google search engine ����� against hash tables using various hash

functions� against binary associative memory� AURA ���� We implement a

novel binary matrix version of document vectors using AURA where the word�

document associations are added incrementally and superimposed� Therefore

training requires only a single�pass through the word�document association list�

In all cases we evaluate the algorithms in their standard form without any so�

phisticated improvements to provide a valid comparison of the approaches� We

A Neural Retrieval Approach �

evaluate the algorithms for storage use� training speed�� retrieval speed� and

partial matching capabilities� Knuth ���� posits that hash tables are superior

to inverted �le lists with respect to speed but the inverted �le list uses slightly

less memory� Knuth also details superimposed coding techniques but focuses on

approaches with multiple bits set as described above� that inevitably generate

false positives� We implement orthogonal single�bit set vectors for individual

words and documents that produce no false positives� AURA may be used in

�Imperfect� mode where multiple bits are set to represent words and documents�

this reduces the vector length required to store all associations but generates

false matches as described previously and in Knuth ����� In this paper� we focus

on using AURA in �Perfect� mode�

For our evaluation we use the Reuters
���� Newswire text corpus as the dataset

is a standard Information Retrieval benchmark� It is also large� consisting of

���� documents with on average approximately ��� words per document� This

allows the extraction of a large set of word�to�document associations for a thor�

ough evaluation of the algorithms� We discarded any documents that contained

little text and documents that were repetitions� This left ��
�� documents that

were further tidied to leave lower�case alphabetical and six standard punctua�

tion characters only� All alphabetical characters were changed to lower case to

ensure matching� i�e� �The� becomes �the� to ensure all instances match� We felt

numbers and the other punctuation characters added little value to the dataset

and are unlikely to be stored in an IR system� We left � punctuation characters

as control �veri�cation� values� We extracted all ���� remaining words including

the six punctuation symbols � � � � � � from the ��
�� documents and derived

�
	���	 word�to�document associations� We created a �le with the document

�training time and thus speed is implementation dependent� To minimise variance� we

preserve as much similarity between the data structures as possible particularly during training

� see section � �subsections ���� ���� ��� and ���� for details

A Neural Retrieval Approach �

ID �integers from � to ��
��� and a list of each word that occurs in that docu�

ment� The fraction of documents that contain each individual word are shown

in the graph �see �gure ��� The minimal fraction is �������� �� document� and

the maximal fraction is ����	� ������ documents�� We analyse the three data

structures for multiple single query term retrievals and also for partial match

retrievals where documents matching N of M query terms are retrieved� We

assume that all words searched are present� we do not consider error cases in

this paper� e�g�� words not present or spelling errors�

� Data structures

��� Inverted File List �IFL�

For the inverted �le list compared in this paper� we use an array of words�

sorted alphabetically and linked to an array of lists� This data structure min�

imises storage and provides �exibility� The array of words provides an index into

the array of lists �see �gure
 and appendix A�
 for the C�� implementation��

A word is passed to an indexing function �binary search through the alphabet�

ically sorted array of words� that returns the position of the word in the array�

The document list stored at array position X represents the documents associ�

ated with the word at position X in the alphabetic word array� The lists are

only as long as the number of documents associated with the words to minimise

storage but yet can easily be extended to incorporate new associations� The

document ID is appended to the head of the list for speed� appending at the

tail requires a traversal of the entire list and thus slows training� The approach

requires minimal storage for the word array �the array need only be as long as

the number of words stored as compared to the hash table below� for example�

that requires the word storage array to be only ��� full� but additions of new

words would require the array to be reorganised alphabetically and the pointers

A Neural Retrieval Approach �

to the array of lists updated accordingly� The retrieval of the index into the

array of lists� binary search� is O�log n� so the design of the data structure is a

trade�o� between minimising storage but providing slower access� in comparison

the hash table below is ���� for access�

The inverted �le list achieves partial matching through the addition of a sup�

plementary data structure � an array of documents and counters� In this paper

the documents were identi�ed by integer IDs so we exploit this to provide an

index into an array of counters that count the number of words matched by

each document� The counter stored at position ID is the number of times that

document ID has been retrieved� During retrieval� each time a document is

retrieved from the document list of a query word� the corresponding document

counter is incremented� A single pass through the array� once retrieval is com�

plete� will retrieve the documents that have matched the required number of

words �N of M��

For the inverted �le list the training time was the time to input the words into

the words array and then the word�document associations in to their respective

lists� The memory used � word array � array of lists� For the partial match

an additional data structure� an array of document counters� was incorporated

so the memory usage for partial matching is also given�

��� Hash Table

The hash table employed in this paper is used to maximise the retrieval speed

of the documents associated with a particular word� An array of words is again

linked to an array of pointers to linked lists �see �gure 	 and appendix A�	 for

the C�� implementation� to minimise storage and maintain �exibility while a

hash function generates the indices� A hash function determines the location

A Neural Retrieval Approach �

at which a given item is stored based on some attribute of the item to be

stored� This computed location is called the item�s hash value� To insert a

new item into the hash array� it is necessary to compute the hash value of the

item� If this location is empty� the new item can be inserted� However� if this

location is already occupied �a collision�� an alternative strategy must be used�

The complexity of an ideal hash operation with no collisions is constant time

 ���� The worst�case upper bound for the hash operation complexity is O�n�

as the table �lls� The price for such a speed up is memory usage� The hash

table used in the paper degrades as the table �lls and thus must be kept less

than ��� occupied otherwise there are too many collisions degrading retrieval

and insertion speed through the additional calculations that must be employed�

There are
 ways of handling collisions � collision rules� they areOpen Addressing

or Chaining and Closed Hashing�

� Open addressing� each hash location is a pointer to a linked list� All

items that hash to a particular location are added to the location�s linked

list� The approach is not feasible for the data representation required

in this paper� We must have a unique hash location for each word to

indicate which documents belong to which of the words� We would need

to store both the words and the documents in the list to identify the

associations� This would waste storage space and slow retrieval as the

algorithm searched through the entire list of all documents in the chain

where many may be associated with the other words in the word chain�

� In this paper we use closed hashing where no more than one item is stored

at each hash location� The collision rule generates a succession of locations

until an empty array item is discovered�

It is desirable� for e�ciency reasons� to have as few collisions as possible� To

achieve this� we employ an initial hash function that is not pre�disposed to

favour any particular location or set of locations� We want to spread the hash

A Neural Retrieval Approach �

values across the array as evenly as possible to minimise collisions and prevent

clustering ���� This is most easily achieved if the hash function depends on

all parts of the item� computing a large integer value from the item� dividing

this integer by the table size� and using the remainder as the hash value� We

evaluated three common hash functions for strings� where a�n� is the character

string of length n and a��� denotes the �rst character�s ASCII value� a��� the

second and so on�

a��� � � � a��� �
 � a�
� � 	 � ����� a�n� �� � n� ���

a��� �
� � a��� �
� � a�
� �
� � ����� a�n� �
n �
�

and Horner�s rule given below in C code �adapted from Sedgewick ������

� unsigned hash�� horner�char � word�

� �

� for �sum�	
 �word
 word����

� sum � �sum����� � �word

 �

� return �sum � hashTableSize�

� �

Horner�s Rule produced the least number of collisions during insertion of ����

words into the hash table� We then empirically evaluated Horner�s rule and

found a factor value of �	� �line �� minimised the collisions during insertion�

We selected a hash table size that was a prime number to ensure that the modulo

function ��� is not followed by an integer with small divisors� If the integer has

small factors then the hash algorithm will be pre�disposed to clustering �	�� We

also selected a prime number �
��
	� for the table size� as this was the �rst

prime number greater than double the length of the word list �to ensure the

hash table is less than ��� full�� It also has �hashTableSize�
 �
��
�� as

A Neural Retrieval Approach ��

prime� This ensures the hash increment �described below� does also not have

any small divisors� If hashTableSize and hashTableSize�
 are not relative

primes at the least� they will have a greatest common divisor �gcd� and only

�

gcd
of the table will be probed �see ����� There are various methods that may

be used to generate additional locations if a collision occurs at the hash value

location� Linear probing� Quadratic probing and Double hashing�

� Linear probing� the next available space is allocated to the item whose

hash value caused a collision� The approach tends to cause clustering�

� Quadratic probing� this method iteratively generates locations exponential

distances apart until a free location is discovered� the o�set quadratically

depends on the probe number� Again this method tends to cause sec�

ondary clustering and bouncing� Quadratic probing is not guaranteed to

�nd an empty cell even if one exists �see �����

� Double hashing is used for our investigations� A far better rule is to

compute a displacement directly from the key using another function of

the key and add this displacement to the table position until a vacant

position is found� The C code is given below and sum is the value returned

from the Horner function�

unsigned hash�� hashIncr�void�

�

return � � sum � �hashTableSize���

�

For double hashing� ��n�� displacements are produced rather than ��n�

for linear or quadratic probing improving the algorithm�s performance

�more possible free locations are examined��

Again for partial match we employ the additional document data structure

used for the inverted �le list� The training time was the time to input the words

A Neural Retrieval Approach ��

into the word hash array and then the word�document associations in to their

respective lists� The memory used � word array ���� full� � array of lists ����

full�� For the partial match an additional data structure was incorporated so

the memory usage for partial matching is again given�

��� Two stage hashing � hash table compact

The previous hash table used a word array and list array that were both only

��� full thus wasting storage� For comparison� we use the data structures used

in the previous hash table algorithm� However� we compact the array of lists

so that all array locations are used �see �gure � and appendix A�� for the C��

implementation�� The initial hash array of words stores both the word and an

integer identifying the location of the word�s list in the list array� When the

word string is passed to the hash function� the string is hashed and an integer

retrieved from the hash location giving the location of the document list in the

list array� The documents may then be read from that location� The com�

plexity of the algorithm is identical to the previous ���� degrading to O�n� for

inserting a word into the word array or retrieving the location of the word or its

associated document list� We compare the two data structures for memory use�

the additional overhead of storing an integer to point to the word�s document

list versus storing only the word but requiring gaps in the array of lists �empty

array elements� for the previous hash table�

Again for partial match we employ the additional document data structure used

for the inverted �le list� The training time was the time to input the words into

the word hash array and then the word�document associations in to their re�

spective lists� The memory used � word array ���� full� � array of lists �����

full�� For the partial match an additional data structure was incorporated so

the memory usage for partial matching is again given�

A Neural Retrieval Approach �

��� AURA

AURA ��� is a collection of neural networks that may be implemented in a

modular fashion and utilises Correlation Matrix Memories �CMMs� ��� to map

inputs to outputs �see �g �� through a learning rule� similar to a hash function�

The AURA modular neural network uses binary weights and inputs� AURA

implements the Hebbian learning rule� reinforcing active connections� to train

the neural network� AURA does not su�er from the lengthy training problem of

other neural networks� training is a one�pass �single epoch� process preserving

the network�s high speed� The technique is a supervised learning method as the

outputs are known and guide the learning process� Storage is e�cient in the

CMMs as the matrix size is de�ned when the CMM is instantiated� new inputs

do not require additional memory allocation as they are overlaid with existing

trained patterns� AURA is able to partially match inputs� AURA has been used

previously for symbolic� numeric and image data applications �see for example

���� ���� and �
���

The words form the inputs and the documents the class patterns �outputs� of

the neural network� The words and documents are translated to their respective

binary bit vectors by the data�to�binary lexical token converter �see �gure ���

Each word in the word list is represented by a unique m�dimensional orthogonal

binary vector with a single bit set and m equals the number of words in the

list� The �rst word�s vector has the �rst bit set and the last word in the word

list has the last vector bit set �see equation 	�� The documents are represented

likewise with n�dimensional single bit set binary vectors� the �rst document�s

vector has the �rst bit set through to the last document�s vector has the last

bit set and n equals the number of documents �see equation 	��

bitV ectorp � pthbit set �p for p � positionfwordsg or p � positionfdocumentsg

�	�

A Neural Retrieval Approach �	

We require a �Perfect� recall technique as stated in the �Introduction�� Orthog�

onal vectors ensure that the CMM does not return false positives� If more than

one bit is set in the input vectors or class patterns then we can get bit clashes

and false positives will be returned from the lexical token converter as with the

alternative hashing and superimposed coding approaches listed in the �Intro�

duction� and �����

There are three alternative strategies for representing bit vectors and CMMs

in AURA� They may be represented as binary bit vectors �BBVs�� compact bit

vectors �CBVs� or e�cient bit vectors �EBVs�� BBVs store all p bits in the bit

vector� storing a � or � as appropriate for each position� CBVs store a list of

the locations of the set bits in the bit vector� this is ideal for sparse bit vectors

as only a few positions need to be stored in the list� EBVs enable a switch at a

prede�ned weight �number of bits set�� If the vector has a lower or equal weight

then it is stored as a CBV but for a higher weight then it is stored as a BBV �

this enables the most e�cient storage implementation to be used for each indi�

vidual vector� In this paper we use CBVs as only one bit is set in each word or

document bit vector so this representation is the most storage e�cient as only

one position is stored in the list� We use e�cient CMMs with a switch value of

	��� if more than 	�� bits are set the CMM row is stored as binary otherwise

it will be stored as compact� We empirically derived the optimal switch value�

A comparison of the memory usage of the CMM using binary CMMs� compact

CMMs and e�cient CMMs is provided in the results section �see section 	����

����� Training the network

The binary patterns representing the tokens are input to the network and the

binary patterns for the documents form the outputs for the CMM� The diagram

��gure �� shows a CMM after ��
 and 	 patterns have been trained� The input

patterns �words� are ��������� �������� and �������� and their respective class

A Neural Retrieval Approach ��

patterns �documents� are ��������� �������� and ��������� The correlation

matrix memory �CMM� is set to one where an input row �word bit� and an

output column �document bit� are both set �see �gure ��� The training process

is ��n� as there is one association in the CMM per word�document pair� After

storing all word�document associations� the CMM weights wkj for row j column

k where � and � are logic �or� and �and� respectively is given by

wkj �

all i�
inputij � classik �

� all iX
inputij � classik

�
���

����� Recalling from the network

For recall only the word pattern is applied to the network� The columns are

summed

outputj �

alliX
inputi � wji ���

and the output of the network thresholded to produce a binary output vector

�see �gure ��� The vector represents the document trained into the network as

matching the input word presented to the network for recall� We use the Will�

shaw threshold �see ���� set to the number of bits in the input vector to threshold

the output vector �see �gure ��� Willshaw threshold sets to � all the values in

the output vector greater than or equal to a prede�ned threshold value and sets

the remainder to �� We wish to retrieve all outputs that match all inputs� If

the input has one bit set we retrieve all columns that sum to one�

If we wish to retrieve multiple word matches� rather than serially matching

the bit vectors� AURA replicates parallel matching� The bit vectors for the

required words are superimposed� forming a single input vector �see equation

� and �gure ��� If the input has two bits set� representing two words� then

we retrieve all columns summing to
� i�e�� all documents matching both input

words� Thus multiple word matching is ��� with respect to input presenta�

tions as the inputs are superimposed and input as one vector� For the other

A Neural Retrieval Approach ��

data structures evaluated in this paper to retrieve documents matching N words

requires N separate word input presentations with each word in order�

inputV ector �
alli�

inputV ectori ���

If only a partial match of the input is required� i�e�� only M of the N words

�M � N� in the input must match exactly then this combinatorial problem is

easily resolved due to the superimposition of the inputs� The input is sent to

the network and the Willshaw threshold is set at M � B where B is the number

of bits set in each input vector �� for orthogonal vectors�� This generalised com�

binatorial partial match provides a very e�cient mechanism for selecting those

documents that best match�

Partial matching generates multiple document vector matches superimposed

in a single output vector after thresholding� These outputs must be identi�ed�

A list of valid outputs is held in a content�addressable memory and matched

in the lexical token converter � binary to data� The outputs are passed to the

lexical token converter �that converts the internal token representations back

into the input data used by the external interface � binary to data�� The time

for this process is proportional to the number of bits set in the output vector

 �bits set�� there will be one matching document per bit set for orthogonal

�single bit set� vectors�

The training time was the time to input the words into the lexical token con�

verter� input the list of documents into a second lexical token converter and

to store the word�document associations in the memory matrix� The memory

used � word lexical token converter �data�to�binary� � document lexical token

converter �data�to�binary� � document lexical token converter �binary to data�

� memory matrix�

A Neural Retrieval Approach ��

� Analyses

All analyses were performed on a SGI Origin
��� with the following speci�ca�

tions �taken from the IRIX hinv command��

� 	
 X ��� MHZ IP
� Processors

� CPU� MIPS R����� Processor Chip Revision�
��

� FPU� MIPS R����� Floating Point Chip Revision� ���

� Main memory size� ���
 Mbytes

� Instruction cache size� 	
 Kbytes

� Data cache size� 	
 Kbytes

All data structures were compiled with the CC compiler using �Ofast �fast bi�

naries� and ��� ��� bit� � the AURA library requires �� bit compilation so we

compiled the other data structures likewise for consistency� If the code had been

compiled as 	
�bit for the inverted �le list and hash tables the memory usage

would be less� the actual values are given in section ��� for comparison� The

algorithms were run with the command runon x �algorithm� and one process

from each data structure was run in parallel� This ensured that each data struc�

ture was evaluated simultaneously while the other processors in the Origin were

free to furnish other processes and the timings should therefore be more reliable

with less variance�

The following analyses were performed on the data structures�

�� The memory usage for each algorithm was calculated using the C!C��

sizeof�� utility�

� The training time for each algorithm was calculated using the C!C��

clock�� function� The training time was the time to read in the list of

A Neural Retrieval Approach ��

words� input them to the data structure as appropriate and read in each

of the word�to�document associations adding the appropriate links in the

data structures� For the CMM the list of documents was also read into

an array prior to adding the associations�

	� Serial Match � the words are matched one at a time with the matching

documents retrieved after each word� The alphabetically sorted list of

words was read into an array included in the timing� For all data structures

an identical output �the word to be matched and the list of matching� was

generated� Two serial match investigations were run on all methods�

�a� Retrieve the documents that match each of the �rst ��� words in

turn �iterative� from the alphabetically sorted array of all words� As

each word is read� the matching documents are retrieved and written

to an output �le� then the next word is retrieved and matched etc�

For all data structures the output to the �le is identical� We read all

words in to an array of words then read the �rst ��� using a �for� loop�

Obviously we could have just read the �rst ��� words from the �le

but to maintain consistency with the next evaluation we employed the

array here �we need to retrieve every ��th word from the alphabetical

list of all words and hence need to read in the entire list for the next

evaluation�� This analysis aims to evaluate the access speed of each

of the data structures and should favour the hash table as the �rst

��� words are less likely to have su�ered collisions as the hash table

was virtually empty as these word were being inserted therefore the

retrieval time will be approximately ����� The entire ����wordmatch

was performed ten times consecutively and the overall average time

calculated as averaging should eliminate any timing �uctuations�

�b� Retrieve the documents that match every ��th word in the word list

in turn �iterative�� This matches the documents against ��� words

A Neural Retrieval Approach ��

����� words !���� We select every ��th word as the graph of the

number of words in each document is similar to the graph for the

��rst ���� word retrieval �see �gures � and ���� Again all words are

read from the word �le into an array and every ��th word is retrieved

from the array in a �for� loop� The matching documents for each

word are written to an output �le in turn� This analysis will again

evaluate the retrieval speeds and should not favour any data structure

as the words are evenly spread through the alphabetically sorted list

of words� The match was performed ten times consecutively and the

time averaged for each of the ten retrievals�

�� Partial Match � this compares the retrieval speed of CMMs compared to

alternative methods that were implemented for partial matching� For all

data structures the output generated is identical to maintain consistency�

The following three partial match evaluations were performed on each

method�

�a� Retrieve the documents that match at least �� �� ��� and at least � of

the �rst ��� words� Figure � is a graph of the frequency distribution

of the number of the �rst ��� words occurring in each document�

There is only � document matching at least � words so we cease

partial matching at this value�

�b� Retrieve the documents that match at least �� �� ��� and at least � of

every ��th word� Figure �� is a graph of the frequency distribution of

the number of words occurring in each document taking every ��th

word of the alphabetical list of all words� Again there are only a

few documents matching at least � words so we maintain the same

evaluation values as with the ��rst ���� evaluation�

�c� Retrieve the documents that match at least ��� ��� ��� and at least

	� of the most frequently occurring words � the words that occur in

A Neural Retrieval Approach ��

at least
�� of the documents� There are up to 	� words in the word

set to match and from the graph �see �gure ��� the documents match

between � and 	� words�

� Results

��� Memory Usage

The memory usage for each of the constituent substructures for each method�

ology is given below �in bytes��

�� Inverted File List Length� �����

List memory use for all document lists is ��������

Array �array of lists� memory use is ���
��

WordTable �array of words� memory use is �������

Memory use for array of documents �counter for partial match� �	����

Memory use for array of words �to get every ��th word etc�� �������

Total memory use is ���������

� Hash Table Length�
��
	�

List memory use for all document lists is ��������

Array �array of lists with empty locations� memory use is �������

WordTable �hash table of words length
��
	� memory use is ��������

Memory use for array of documents �counter for partial match� �	����

Memory use for array of words �to get every ��th word etc�� �������

Total Memory use is ������	
�

	� Hash Table Compact Length� ���
�

List memory use is �������� All three data structures have identical mem�

ory usage for the lists�

A Neural Retrieval Approach
�

Array �array of lists with length ���
� memory use is ���	��

WordTable �hash table of words with length
��
	� memory use is ��
�
���

The memory use is higher than the hash table as this structure stores the

integers to indicate the word�s list�

Memory use for array of documents for partial match �	����

Memory use for array of words to get every ��th word etc� �������

Total Memory use is ���������

�� CMM

� Binary � storing the CMM as a binary representation�

CMM saturation is ������

CMM uses ���
���� bytes� The memory usage is very high in

comparison to the other data structures�

� Compact �storing the CMM as a compact representation�

CMM saturation is ������

CMM uses ���	
��
 bytes� The memory usage is high in com�

parison to the other data structures�

� E�cient � storing the CMM as an e�cient representation with a

switch value of 	���

CMM saturation is ������

CMM uses �������� bytes� The memory usage is much lower than

the compact or binary representations�

Document decoder �binary to data� memory use is �����	
�

Document encoder �data to binary� memory use is �	������

Word encoder �data to binary� memory use is �������

Memory use for array of words ������ to retrieve every ��th word

A Neural Retrieval Approach
�

etc� and to maintain simple data types for the encoder�

Total memory use is ���	�	�
�

��� Training Times

Twenty training times were noted for each algorithm and the mean time for

training was calculated� The table below gives the mean training time in seconds

for each algorithm�

IFL Hash Table Hash Compact CMM � e�cient

Training time �����	�� ������� ������� ���	�

��� Serial Match

The words are read from the data �le and for each of the selected words in

turn� the associated documents are retrieved and written to an output �le� Ten

times were recorded for each serial match for each method and the mean time

calculated� The mean retrieval time in seconds is given in the table below�

IFL Hash Table Hash Compact CMM � e�cient

First ��� ����	 ���
� ���	 �����

Every �� ��
�	 ��

	 ��
�
 �����

��� Partial Match

A graph is given for each partial match evaluation� listing the number of words

to be retrieved � at least X on the x�axis and the mean time in seconds for
�

retrievals on the y�axis� A separate plot is shown for each data structure on

each graph�

����� Partial match on the �rst ��� words

The graph of the mean time in seconds for the retrieval of M of N matching

words from the set of the �rst ��� words is given in �gure �
 for each data

A Neural Retrieval Approach

structure�

����� Partial match on every ��th word

The graph of the mean time in seconds for the retrieval of M of N matching words

from the set of every ��th word is given in �gure �	 for each data structure�

����� Partial match on words occurring in at least ��
 of the doc�

uments

The graph of the mean time in seconds for the retrieval of M of N matching

words from the set of the words present in at least
�� of the documents is

given in �gure �� for each data structure�

� Analysis

��� Memory Usage

If we disregard the �nal array of words from the memory totals of the inverted

�le list� hash table and hash table compact �the array was only included for

consistency� then the memory totals in bytes for the four algorithms in ���bit

mode are in ascending order� IFL ��������
�� hash table compact ����
��	
��

hash table ���������� and CMM ��������� excluding the array of documents��

If the �rst three data structures are compiled as 	
�bit then their respective

sizes are� �����	�� ������� and �����
�� As stated previously� the inverted �le

list will use the least memory but� as can be seen from the subsequent analyses�

is slower for retrieval than the hash tables� The hash table compact �storing

an integer� is more memory e�cient than having empty list array elements in

the standard hash table� The CMM has the highest memory usage� The CMM

memory usage is ��� times higher than the IFL when both are compiled in ���

bit form or
��� times higher when the IFL is compiled as 	
�bit and AURA

A Neural Retrieval Approach
	

as ���bit� However� none of the memory usage statistics is signi�cantly larger

than the others� We can see that the e�cient CMM has a far lower memory

usage than a binary or compact CMM due to the ability to switch to the most

memory e�cient representation for each row�

��� Training Times

The IFL is the slowest to train as expected as each search for the word linked

to the document to be trained requires a binary search through the entire array

of words O�log n� before the document may be appended to the word�s list�

The training times for the two hash table approaches are similar� as we would

expect with both using the same document insertion procedure� The method

calculates the hash location for the word and appends the document to the

corresponding list of documents� However� by far the quickest to train is the

CMM� The CMM does not require the lengthy search for the word to append the

document to the word�s list� Although the hash table is ��� for word search

initially� if there are collisions� it will � O�n�� The CMM simply associates

the word with the document so when the word is input� the document will be

recalled� The CMM takes ����	 as long to train as the hash tables� This is a

signi�cant di�erence� The CMM reads in the same data as the others so the �le

access can only constitute a minor part of the IFL and hash table times� The

majority is employed inserting the words and word�to�document associations in

the data structure whereas this time is minimal for the CMM�

��� Serial Match Recall

The two hash tables are the quickest for the serial match as the match for

each word will be approximately ���� The IFL is marginally slower due to

the O�log n� binary search through the word array� The CMM is signi�cantly

slower for serial match� For each word� the word has to be translated to a

A Neural Retrieval Approach
�

binary bit vector� input to the CMM� the output bit vector retrieved and the

output matched against the documents in the document decoder to retrieve the

matching documents� The CMM takes ���� times longer for the �rst ��� and

���� times longer for every ��th word than the standard hash table�

��� Partial Match Recall

The IFL is slower than the hash tables in all instances of partial matching� We

would expect this due to the binary search O�log n� through the IFL to locate

the words prior to �nding the associated documents� The two hash tables are

both faster than the IFL in all instances and produce very similar results� the

di�erences between the graphs are negligible� The hash table compact does

appear slightly faster although the di�erence may be ascribed to the slight vari�

ation in the C!C�� timing utility and processor operation� The CMM is slower

than the hash tables for low frequency partial match but for higher frequency

partial match the CMM excels� The time curve for the CMM starts above the

hash table but falls below at �at least 	� words matched on the ��rst ���� graph

and �at least �� on the �every ��th� word graph� For the words present in at

least
�� of the documents �see �gure ���� the CMM is faster than the hash

table with an increasing di�erence for �at least �	� or more� The di�erence will

level o� and eventually fall as the y�axis forms a lower bound asymptote to the

CMM curve and the retrieval speed of the hash table will continue to fall thus

slowly approaching the CMM curve� However� the hash table will only approach

the CMM slowly and may never reach it so the CMM is preferable for partial

matching�

In all cases the number of words to be matched a�ects the times� as we would

expect� The �every ��� match is slower for all data structures than the ��rst

����� This is because there are ��� words compared to ��� words to be matched

A Neural Retrieval Approach
�

to retrieve the documents containing the required number of words�

The match operation for the hash tables is very similar in all instances so for

each evaluation ��rst ��� words�� �every ��th word� and �words in
�� of the

documents� the timing only reduces slightly as the number of partial matches

reduces� The procedure for the hash table matching varies little� The method

reads in the words to be matched one at a time� For each word� the word is

hashed to �nd the associated document list� the documents are retrieved from

the list� for each document retrieved� the counter is incremented in the array of

document counters to indicate the retrieval� and �nally� the array is traversed

writing to a �le all documents that exceed the number of matches required�

The only variation is in the �nal step where� as the number of matches required

increases� the retrieval quickens as less documents are written to �le� For the

CMM the match operation timing reduces rapidly as the number of partial

matches increases� The initial step is to read in the words to be matched�

retrieve their associated binary bit vectors from the lexical token converter� su�

perimpose and input to the CMM� This is identical in all instances� To vary

the number of matches the threshold is adjusted� When the threshold is low

the binary bit vector retrieved from the thresholded output will have more bits

set� Thus when this bit vector is matched against the document vectors in the

lexical token converter �binary�to�data� there will be more matching documents

and retrieval will be slower than for higher thresholds where the thresholded

output will be relatively sparse with fewer matches required�

� Conclusion

We introduced a novel neural approach for storing word�document associations

in an IR system� The neural approach uses single�epoch training� superimposed

storage and associative partial matching in a binary matrix where new associ�

A Neural Retrieval Approach
�

ations are added incrementally� We compared this novel approach to existing

standard data structures for storing word�document associations�

For repeated serial� single word matching the hash table is the most e�cient

methodology� the storage is slightly higher than the word array but the retrieval

speed is much higher�

For partial matching the CMM performs best� Although the memory usage is

higher �but not signi�cantly so� the retrieval speed is superior� the greater the

number of words to be matched at each retrieval� the more superior the CMM is�

We recommend the CMM for Information Retrieval word�document association

storage as the approach is superior with respect to training time and retrieval

time with only a slightly higher memory usage� The superimposition of the

input vectors allows one�shot multiple word retrieval and partial match� We

also note that more word to document associations could be added to the exist�

ing association CMM without signi�cantly increasing the memory usage due to

the superimposed storage� The CMM could therefore be used in an incremen�

tal system� although we do not evaluate incremental data structures here� For

the other data structures evaluated� additional associations would increase the

memory use of the list array with one additional list node for each additional

association� If additional words were added the word arrays would need to be

incremented by two locations for the hash tables to keep the array less than

��� full� The word array would need to be extended by a single location for

the IFL but the new word would need to be inserted in the correct alphabetical

location and not just appended to the end of the array�

A Neural Retrieval Approach
�

References

��� A� V� Aho and J� D� Ullman� Optimal Partial�Match Retrieval When

Fields are Independently Speci�ed� ACM Transactions on Database Sys�

tems� ��
�����"���� �����

�
� S� Alwis and J� Austin� A Neural Network Architecture for Trademark

Image Retrieval� In International Workshop on Arti�cial Neural Networks�

Spain� �����

�	� L� Ammeraal� Algorithms and Data Structures in C��� John Wiley �

Sons� Chichester� England� �����

��� J� Austin� Distributed associative memories for high speed symbolic rea�

soning� In R� Sun and F� Alexandre� editors� IJCAI ��� Working Notes of

Workshop on Connectionist�Symbolic Integration� From Uni�ed to Hybrid

Approaches� pages ��"�	� Montreal� Quebec� Aug� �����

��� J� Austin� J� Kennedy� and K� Lees� A Neural Architecture for Fast Rule

Matching� In Arti�cial Neural Networks and Expert Systems Conference�

June �����

��� S� Brin and L� Page� The Anatomy of a Large�Scale Hypertextual Web

Search Engine� In �th International World Wide Web Conference� �����

��� T� H� Cormen� C� E� Leiserson� and R� L� Rivest� Introduction to Algo�

rithms� MIT Press� Cambridge� MA� �����

��� S� Deerwester� S� T� Dumais� T� K� Landauer� G� W� Furnas� and R� A�

Harshman� Indexing by Latent Semantic Analysis� Journal of the Society

for Information Science� �����	��"���� �����

��� M� Goldszmidt and M� Sahami� A Probabilistic Approach to Full�Text

Document Clustering� Technical Report ITAD��		�MS�������� SRI Inter�

national� �����

A Neural Retrieval Approach
�

���� J� Kennedy� The Design of a Scalable and Applications Independent Plat�

form for Binary Neural Networks� PhD thesis� Department of Computer

Science� University of York� Heslington� York� UK� YO�� �DD� Dec� �����

���� D� E� Knuth� The Art of Computer Programming� volume 	� Addison�

Wesley� Reading� MA� �����

��
� D� Koller and M� Sahami� Hierarchically Classifying Documents Using

Very Few Words� In ICML���� Proceedings of the Fourteenth International

Conference on Machine Learning� pages ���"���� San Francisco� CA� �����

Morgan Kaufmann�

��	� K� Ramamohanorao� J� W� Lloyd� and J� Thom� Partial Match Retrieval

using Hahsing and Descriptors� ACM Transactions on Database Systems�

��������
"���� ���	�

���� C� S� Roberts� Partial Match Retrieval via the Method of Superimposed

Codes� Proceedings of IEEE� ����
����
�"���
� �����

���� R� Sacks�Davis and R� A� K� A Two Level Superimposed Coding Scheme

for Partial Match Retrieval� Information Systems� �����
�	"
��� ���	�

���� R� Sedgewick� Algorithms in C��� Addison�Wesley� Reading� MA� ���
�

���� P� Zhou and J� Austin� A Binary Correlation Matrix Memory k�NN Clas�

si�er� In International Conference on Arti�cial Neural Networks� Sweden�

�����

A Appendix�

All routines are adapted from the hash tables in �	��

A Neural Retrieval Approach
�

A�� Array of lists�

Used in word array� hash array and hash compact�

struct elem�char � name
 elem �next
�

class list �

public�

list���pStart�NULL
�

�list��

private�

elem �pStart

�

void list��ListInsert�const char �s��

��insert a document ID into the list

elem �p � new elem

elem �q � new elem

if�FindPosition�s���NULL� �

int len � strlen�s�

p��name � new char�len � ��

strcpy�p��name� s�

p��next � pStart

pStart � p

�

�

void list��writeList�const char � wordFile� �

��write to file entire list �all docs that match a particular word�

FILE� F � fopen�wordFile� �w��

elem �p � pStart

A Neural Retrieval Approach 	�

while �p��

fprintf�F� �Doc is� �s �� p��name�

p�p��next

�

fprintf�F� ��n��

fclose�F�

�

A�� Inverted File List � Word Array�

class StringHash �

StringHash�unsigned len��	���� N�len� �

a � new list�len�
��array of lists of document IDs

�

void insert�const char �s� const char � doc� �

��add a doc ID to a word�s list � the location is found by hashing the word

a�hash�s���ListInsert�doc�

�

void writeDocsToFile�const char � wordFile� const char �s� �

��write the documents associated with a particular word

a�hash�s���writeList�wordFile�

�

private�

unsigned N

list �a

�

void StringHash��getWords�const char � wordFile�const�

��read in a file of words to initialise the array of words

A Neural Retrieval Approach 	�

count�	

FILE� F � fopen�wordFile� �r��

while ��feof�F�� �

fscanf�F� ��s�� wordLabel�

strcpy�wordArray�count���� wordLabel�

�

fclose�F�

�

unsigned StringHash��hash�const char �s�const�

��find the location of a word in the array �binary search�

unsigned sum � 	

int middle

int left�	

int right�N��

while �right�left ��� �

middle��right�left���

�strcmp�s�wordArray�middle���� 	 � right � left� � middle

�

if��strcmp�s� wordArray�middle�� �� 	���

sum�middle

�

if��strcmp�s� wordArray�left�� �� 	���

sum�left

�

if��strcmp�s� wordArray�right�� �� 	���

sum�right

�

return sum

A Neural Retrieval Approach 	

�

A�� Hash Table�

A�� Hash Table of words � length �		���

struct elem� �char name�
	�
�

int collisionCounter

class HashTable�

public�

HashTable�unsigned len��	���

elem� �a

�

HashTable��HashTable�unsigned len��

��initialise the hash table

N � �len � � � len � ��

a � new elem��N�

for �unsigned i�	
 i�N
 i��� a�i��name�	� � ��	�

collisionCounter�	

�

unsigned HashTable��hash�const char �s�

��Horner�s hash function

�

for �sum�	
 �s
 s����

sum � �sum���� � �s�

�

return �sum � N�

A Neural Retrieval Approach 		

�

int HashTable��h��const char �t� unsigned i�const�

��secondary hash function

unsigned count�	� incr

if �strcmp�a�i��name� t�� �

incr � HashIncr��

do �

if ���count �� N� return 	
 �� Failure

i � �i � incr� � N

� while �strcmp�a�i��name� t��

�

return �
 �� Success

�

void HashTable��insert�const char �s��

��insert a word in to the hash table

unsigned i � hash�s�

if��strcmp���� a�i��name���	� ��collisionCounter

if ��h����� i���cout �� �Hash table full�n�
 exit���
�

strcpy�a�i��name� s�

�

unsigned HashTable��getPos�const char �s��

��return the position of a particular word

unsigned i � hash�s�

if �h��s� i�� �

return i

�

A Neural Retrieval Approach 	�

else return 	

�

A�
 Array of lists�

Used in both hash table� length
��
	 and hash table compact� length �����

class StringHash �

public�

��Hash table implementation � length �		��

StringHash�unsigned len��	���� N�len��

a � new list�len�

wordTable�new HashTable�len�

�

��Hash table compact implementation len � �		��� hlen � !�!�

StringHash�unsigned len��	��� unsigned hlen �	���� N�len��

a � new list�len�

wordTable�new HashTable�len�

�

�StringHash���delete�� a
�

void writeDocsToFile�const char � wordFile� const char �s��

��write all docs associated with a particular word

a�hash�s���writeList�wordFile�

�

A Neural Retrieval Approach 	�

void insert�const char �s� const char � doc��

��insert a docID in a particular word�s list

a�hash�s���ListInsert�doc�

�

private�

unsigned N

list �a

HashTable �wordTable

�

int StringHash��getAllCollisions�void��

��return the number of collisions

return wordTable��getCollisions��

�

void StringHash��getWords�const char � wordFile�const�

��read in all words and insert them into the hash table

count�	

FILE� F � fopen�wordFile� �r��

while ��feof�F�� �

fscanf�F� ��s�� wordLabel�

wordTable��insert�wordLabel�

�

fclose�F�

�

unsigned StringHash��hash�const char �s�const�

A Neural Retrieval Approach 	�

��return the position of a word in the hash table

return wordTable��getPos�s�

�

A�� Hash Table Compact

All routines are identical to the hash table except those given below�

struct elem� �char name�
	�
int listPos
�

int collisionCounter

class HashTable �

public�

HashTable�unsigned len��	���

elem� �a

�

HashTable��HashTable�unsigned len� �

��initialise the hash table

N � �len � � � len � ��

a � new elem��N�

for �unsigned i�	
 i�N
 i��� a�i��name�	� � ��	�

collisionCounter�	

listNum�	
 ��set list ID counter to 	

�

void HashTable��insert�const char �s� �

��insert a word in the hash table and add an integer to identify the

��word�s list in the compact list array

A Neural Retrieval Approach 	�

unsigned i � hash�s�

if��strcmp���� a�i��name���	� ��collisionCounter

if ��h����� i���cout �� �Hash table full�n�
 exit���
�

strcpy�a�i��name� s�

a�i��listPos�listNum��

��the location for the word�s list in the list array

�

unsigned HashTable��getPos�const char �s��

��return the position of a particular word�s list

��NB this is the list pos and not the word�s position in the hash table

unsigned i � hash�s�

if �h��s� i�� �

return a�i��listPos

�

else return 	

�

A Neural Retrieval Approach 	�

B Figure Legends

Figure �� Diagram showing the fraction of all documents that contain each

word� Each word has an integer ID �������� from its position in the alphabeti�

cally sorted list of all words�

Figure
� Diagram showing the inverted �le list data structure� We imple�

mented two separate� linked data structures to preserve similarity between this

data structure and the hash table structure� The speed of training and retrieval

are dependent on implementation� By maintaining similarity� we attempt to

eliminate as many di�erences as possible to permit comparisons between the

di�erent data structures�

Figure 	� Diagram showing the hash table data structure�

Figure �� Diagram showing the hash table data structure� The integer loca�

tion of the word�s list is stored with the word in the �rst data structure and

may then be used to access the contents of the list�

Figure �� Diagram of the AURA modular system�

Figure �� Diagram showing three stages of network training

Figure �� Diagram showing system recall� The input pattern has � bit set

so the CMM is thresholded at ��

Figure �� Diagram showing super�positioning of input �word� vectors�

Figure �� Diagram showing the number of the �rst ��� words from the list

A Neural Retrieval Approach 	�

of all words occurring in each document� Each document has an integer ID�

Figure ��� Diagram showing the number of words counted in each document

when taking every ��th word from the list of all words� Each document has an

integer ID�

Figure ��� Diagram showing the number of frequent words �those in at least

�� of the documents� occurring in each document� Each document has an

integer ID from ����
��� N�B� Figure �� has three lower frequency troughs be�

tween document ID ���� and ID �	���� This is due to the documents in the

Reuters dataset having fewer words in this section of documents�

Figure �
� Graph of the retrieval time for M of N matching with the �rst

��� words from the list of all words�

Figure �	� Graph of the retrieval times for M of N matching when taking every

��th word from the list of all words�

Figure ��� Graph of the retrieval times for N of M matching with frequent

words �those in at least
�� of the documents��

Figure ��� Graph of the speedup of the CMM versus the other three data

structures when retrieving frequent words �those in at least
�� of the docu�

ments��

A Neural Retrieval Approach ��

C Figures

A
N
eu
ra
l
R
etriev

a
l
A
p
p
ro
a
ch

�
�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
ra

c
ti
o
n
 o

f
d
o
c
s
 c

o
n
ta

in
in

g
 w

o
rd

Words

Graph of the Word Frequency

F
ig
u
re

�
�

A Neural Retrieval Approach �

A
lp

h
ab

et
ic

al
ly

 o
rd

er
ed

 a
rr

ay
 o

f
w

o
rd

s

Array of pointers to lists

Figure
�

A Neural Retrieval Approach �	

indexing into an array of pointers to lists

Hash array of words

Figure 	�

A Neural Retrieval Approach ��

Hash array of words with pointers to list array locations;

indexing into an array of lists

Figure ��

A Neural Retrieval Approach ��

W
o

rd Correlation Matrix

Memory

Superimposition of
S

u
p
er

im
p
o
si

ti
o
n
 o

f

DocumentTraining

Recall

Lexical Token Converter

Superimposition of

L
ex

ic
al

 T
o
k
en

 C
o
n
v
er

te
r

D
at

a
to

 B
in

ar
y

List of

Matched

Documents

V
ec

to
rs

Vectors

Outputs

Lexical Token Converter

Binary to Data

Data to Binary

Figure ��

A
N
eu
ra
l
R
etriev

a
l
A
p
p
ro
a
ch

�
�

1

0

0

0

1

0

0

00 01000

0

0 0

0 0010

0

0

Class PatternClass Pattern Class Pattern

1

00

Inputs to be trained into the network

1000

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

F
ig
u
re

�
�

A Neural Retrieval Approach ��

00 00 0 0

0

0

0

1

0

0

00 0 010

Activation - 1 input bit set: threshold at 1

Output pattern after thresholding

1

0 0

0

0

0

Figure ��

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

0

0 1

0

1

0

0

0

0

0

0

1

0

0

1

1

0

0

0

0

1

Figure ��

A
N
eu
ra
l
R
etriev

a
l
A
p
p
ro
a
ch

�
�

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
o
 o

f
w

o
rd

s
 i
n
 d

o
c

Documents

First 100 words from the alphabetical list of all words

F
ig
u
re

�
�

A
N
eu
ra
l
R
etriev

a
l
A
p
p
ro
a
ch

�
�

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
o
 o

f
w

o
rd

s
 i
n
 d

o
c

Documents

Every 50th word from the alphabetical list of all words

F
ig
u
re

�
�
�

A
N
eu
ra
l
R
etriev

a
l
A
p
p
ro
a
ch

�
�

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
o
 o

f
w

o
rd

s
 i
n
 d

o
c

Documents

Words occurring in at least 20% of the documents

F
ig
u
re

�
�
�

A
N
eu
ra
l
R
etriev

a
l
A
p
p
ro
a
ch

�
�

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
e

c
s
)

More than X matching words

First 100 words from the alphabetical list of all words

Word Array
Hash Array

Hash Compact
CMM

F
ig
u
re

�

�

A
N
eu
ra
l
R
etriev

a
l
A
p
p
ro
a
ch

�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
e

c
s
)

More than X matching words

Every 50th word from the alphabetical list of all words

Word Array
Hash Array

Hash Compact
CMM

F
ig
u
re

�
	
�

A
N
eu
ra
l
R
etriev

a
l
A
p
p
ro
a
ch

�
	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

T
im

e
 (

s
e

c
s
)

More than X matching words

Words occurring in at least 20% of the documents

Word Array
Hash Array

Hash Compact
CMMF

ig
u
re

�
�
�

A
N
eu
ra
l
R
etriev

a
l
A
p
p
ro
a
ch

�
�

0

5

10

15

20

25

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

S
p

e
e

d
u

p
 -

 t
im

e
 f

o
r

d
a

ta
 s

tr
u

c
tu

re
 /

 t
im

e
 f

o
r

C
M

M

More than X matching words

Speedup of CMM vs other algorithms

IFL
Hash Array
Hash Array

F
ig
u
re

�
�
�

