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Abstract: With the rapid development of large industrial corridors in China, the landscape 

ecology of the country is currently being affected. Therefore, in this study, a system dynamic 

model with multi-dimensional nonlinear dynamic prediction function that considers industrial 

growth and landscape ecology is developed and verified to allow for more sustainable 

development. Firstly, relationships between industrial development and landscape ecology in 

China are examined, and five subsystems are then established: industry, population, urban 

economy, environment and landscape ecology. The main influencing factors are then examined for 

each subsystem to establish flow charts connecting those factors. Consequently, by connecting the 

subsystems, an overall industry growth and landscape ecology model is established. Using actual 

data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical 

industrial corridor in China, over the period 2005-2009, the model is validated in terms of 

historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the 

error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of 

the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model 

application has been made to consider the changes in landscape indices under four industrial 

development modes, and the optimal industrial growth plan has been examined for landscape 

ecological protection through the simulation prediction results over 2015-2020. 

Keywords: System dynamics, modelling, landscape ecology, industrial development, 

landscape index, China 

1. Introduction 

China is currently still in the process of industrialisation [1], but the ecological and 

environmental degradation has restricted the rapid development of economy [2]. Recently, a 

pattern of industrial corridors has been developing rapidly in China, where several cities are 
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connected by roads or railways, making up a banded industrial area with shared economic 

development goals [3]. This industrial development model could have serious effects on the 

sustainability of the landscape ecology of the area [4]. Recent research in system science indicates 

that the nature-society-economy system of an area is an open complex system [5-7], and thus, 

decision makers need a quantitative model to control industrial growth and protect the sustainable 

development of landscape ecology in industrial areas. 

Research on the relationships between industrial development and environment began in the 

early 20th century. Weber [8] proposed the theory of industrial location. Based on the theory of 

industry life-cycle stages and the theory of shifts in international trade and international 

investment by Losch [9] and Vernon [10,11], Krugman's spatial economic model [12] is one of a 

series of general equilibrium problems. However, studies on the quantitative relationships between 

large-scale industrial development and landscape ecology have been rather limited. 

System dynamics, based on the establishment of the urban dynamics model and the world 

model by Forrester [13] and �The Limits to Growth� theory by Meadows [14], has been used to 

solve the problem of large-scale systems, which are high-order, multi-variable, multi-feedback, 

counterintuitive and insensitive to changes in internal parameters. Focusing on the optimisation of 

the overall system rather than subsystems [15], this model is better at reflecting the nonlinear and 

dynamic changes of a system than traditional models, such as linear programming, econometrics 

and the input-output model. This model can help to coordinate the relationships among industry, 

population, urban economy, environment and landscape ecology. The nine system dynamics 

models developed by Senge [16], especially �The Limits to Growth� model, are the keys to 

understanding enterprise growth systems. A number of studies have used system dynamics to 

examine various environmental factors, including river change [17], environmental pollution [18, 

19], land use [20] and public awareness and policy [21]. However, the relationships between 

industrial development and landscape ecology have not been quantitatively explored. 

Therefore, this study aims to develop a system dynamics model of the relationships between 

industrial development and landscape ecology, and explore an optimal industrial growth mode for 

landscape ecological protection through model simulation prediction, in particular for the 

industrial corridors in China. This paper first defines the industry-economy system framework, 

considering five subsystems. Consequently, the main factors in the systems are analysed, and a 

flow chart connecting the subsystems is established to model the industry-ecology system. Finally, 

the model is validated in terms of historical behaviour, logical structure and future prediction. 

Moreover, four modes of enterprise development (original growth, �S� growth, uniform increase 

and  uniform decrease) have been considered from 2015 to 2020, by comparing landscape pattern 
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indices, to determine an optimal enterprise development mode.   

2. Scope and purpose of system dynamics model 

Given the complexity of the research objective, this section first examines the destruction 

caused by industrial development to landscape ecology; analyses the tendencies, causes and 

consequences of the industry-economy-landscape ecology system; and summarises the effect of an 

industrial corridor on the system considered and the principles of the feedback loop. Then, the 

framework of the research and system behaviour are defined. Dynamic assumptions are made 

according to the practical problems of each subsystem, providing background and boundaries for 

the overall dynamic model. 

2.1 Defining the problem 

As the �world�s factory�, China�s GDP growth rate was 9.87% over the past decade [22]. 

Figure 1 shows the distribution and development of the large industrial corridors in China, 

together with the results of an ecological vulnerability assessment. Due to the rapid development 

of the industrial corridors, China's environmental pollution has become world famous. It can be 

observed that most of the fast-developing industrial corridors are in eastern China, and the 

ecological conditions of eastern China are generally better than those in the rest areas of China, 

This means the contradiction between economic growth and ecological protection in eastern China 

is the most serious. Since the 1960s, industrial expansion has significantly taken over farmland 

and grassland in China, in addition to negatively affecting urban planning. Such developments, 

which have been dominantly oriented by economic considerations, have damaged the landscape 

ecology and produced serious air pollution and CO2 emissions [23, 24] in eastern China, which 

has already attracted great international attention. Therefore, a quantitative model system that 

combines industrial development, population growth, economy and environment is needed to 

evaluate the landscape ecology and solve the environment problems in industrial areas of China.



Jian Xu, Jian Kang, Long Shao, Tianyu Zhao: Journal of Environmental Management    [DOI:10.1016/j.jenvman.2015.06.026] 

 

Volume 161, 15 September 2015, Pages 92�105                                                Page 4 

�

 

Fig. 1 Spatial distribution variation [adopted from www.tlsh.tp.edu.tw/~t127/industrychina/industry06.htm] 

and corridor distribution [adopted from www.china9.de/landkarten/landkarten-china.php] of China�s industry and 

the ecological vulnerability assessment [assessment www.dljs.net/dltp/29967.html]. Web sites accessed on 18 

February 2014.�

2.2 System structure 

Since the 1990s, the foci of industrial development in China have gone from being scattered 

throughout the country to being concentrated in industrial corridors [25]. Forman [26, 27], Reed 

[28] and Dramstad [29] studied the effect of such corridors on the environment and landscape 

ecology. Based on those studies, as well as the industrial district model [30], the research of 

Wrigley [31] on the relationships between industrial regions and population changes and the work 

by Pargal [32] on industrial pollution in developing countries, a system is proposed in this study to 

capture the effects of industrial corridors on the population, urban economy, environment and 

landscape ecology, as shown in Fig. 2. 
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Fig. 2 Effects of industrial corridors. 

Correspondingly, five subsystems are proposed, including the industrial subsystem, urban 

economic subsystem, population subsystem, environment subsystem and landscape ecology 

subsystem, as shown in Fig. 3, where industry development, along with population growth, 

economic development and environment, are responsible for the negative effects of human 

intervention on ecology [33], and landscape ecology is the quantitative evaluation criterion of 

natural ecology [34, 35]. 

  

Fig. 3 Interactive relationships among different subsystems. 
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2.3 Dynamic assumptions 

To avoid the infinite expansion of the above industry-ecology system, optimise the system 

function, improve system accuracy and make the system manageable using the system dynamics 

software VENSIM, the following assumptions are made: 

1) Industry subsystem. According to the fractal growth theory of the size, shape and 

dimension of urban settlements [36] and the enterprise life-cycle theory [37, 38], complex industry 

types, the products demand of small weighting factors and financial factors of high uncertainty, 

such as the international economy environment, are neglected, whereas the effects of the 

enterprise number, life cycle and scale of enterprises on economy, cities, environment and 

resources, which are of greater weight, are emphasised.  

2) Environment subsystem. Pollution is considered without classifying industry types. The air 

pollution, wastewater pollution and solid waste pollution of the enterprises considered are 

combined to calculate the gross regional pollution. According to the general statistical data, the 

relationship between industry pollution and the gross regional pollution can be derived.  

3) Urban economic subsystem. Population growth is taken as the key reason for urban land 

expansion, and other factors related to urban area change are neglected. According to statistics for 

the period from 1990 to 2000, the correlation between the city area expansion rate in China and 

the rate of population urbanisation is greater than 90% [39]. 

2.4 System data acquisition 

As a case study site, the Ha-Da-Qi industrial corridor in northeast China is chosen to 

establish the industrial growth-landscape ecology model. This corridor, built on an old industrial 

base, has been rapidly developed since 2005 with strong government support [40]. Given the 

limitation in continuous historical remote sensing satellite image resources of industrial corridors 

(essential for landscape index calculation) and the demand of temporal continuity and the stability 

of the system, the running period of the system is 2005-2010 in this study, corresponding to the 

duration of the �five-year plan� [41] of Chinese government, which is important for minimising 

the influence of policy changes on the model. 

3. Factor selection 

In this section, relationships among factors included in each subsystem are analysed, and 

important factors are selected according to their weighting based on statistical analysis. The 
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connections among those important factors are shown in Fig. 4, where factors in solid circles are 

generic factors that are applicable for all industrial corridors and factors in dashed circles are 

regional factors that need to be statistically analysed and selected for each region. When the model 

is applied in other areas, the factor selection will be different according to the regional differences. 

 

Fig. 4 Main factors of the five subsystems. 

3.1 Industrial factors and urban economic factors 

After reviewing previous studies [42-45], 18 indices for evaluating the developmental level 

of innovative cites in China were obtained. These factors can be divided into two categories: 

enterprise economic development factors and urban economic development factors. The former 

includes the total number of enterprises, number of industrial zones, enterprise life cycle, average 

enterprise area, investment ratios, jobs, industrial investment, total imports and exports and the 

average number of enterprises employees. The latter includes the urbanisation rate, regional GDP, 

per capita GDP, urban area, total investment of environmental protection, average wage of 

workers, total imports and exports, total tax and the ratio of the industrial production to the 

regional GDP. Because the industrial subsystem and the urban economic subsystem are motivation 

subsystems and are closely related to each other, they include many key factors in the whole 

system. A combination of principal component analysis (PCA) and factor analysis (FA), using 

SAS software, was used to reduce the number of variables, eliminate variable collinearity and 
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reveal maximum impact factors.  

Based on the data collected from three cities in the Ha-Da-Qi industrial corridor in 2008 for 

the 18 factors [46], the total contribution rate of 6 factors, i.e., the total number of enterprises, 

regional GDP, investment ratios, industrial investment, enterprise life cycle and jobs, is greater 

than 75%, which is sufficient to reflect the level of industrial development. On the other hand, the 

variance contribution rate of 5 factors, i.e., the regional GDP, per capita GDP, urban area, 

urbanisation rate and the labour force-job ratio, is greater than 72%, which is sufficient to reflect 

the level of urban economic development in the Ha-Da-Qi industrial corridor. 

3.2 Population factors 

The population subsystem has the fewest relevance factors and the most intuitive variables. 

The established population statistical method [47] is commonly applied to various system dynamic 

models. The state variable of the population subsystem is the regional total population, where 

relevant factors include the birth rate, death rate, immigration and emigration. Those factors are 

also affected by the total population, the liveability factor, job attractiveness factors and the degree 

of environment pollution. This method is not restricted by regional differences. 

The population data of the Ha-Da-Qi industrial corridor are derived from the government 

yearbook [46]. Of particular consideration is the impact of region-specific Family Planning Policy. 

3.3 Environment factors 

In the environment subsystem, environmental quality is reflected by wastewater pollution, air 

pollution and solid waste disposal [48, 49]. Relevant evaluation methods/factors include chemical 

oxygen demand (COD) for wastewater pollution [18, 21, 50]; the maximum values, including 

background values, for air pollution and the consumption of the main form of energy under 

various conditions; and the production of garbage of the industrial area, in terms of solid waste 

disposal. 

For the Ha-Da-Qi industrial corridor [46], COD is used as an index of wastewater pollution 

and SO2 as an index for air pollution, where the maximum values recorded in one hour plus the 

background values under conditions of wind, light wind and calm wind are 0.47867, 0.50829 and 

0.45874 mg/m
3
, respectively, which are all very high. For solid waste disposal, the evaluation 

factor is coal gangue because in this region, the main form of energy consumed is coal, which 

generates over 85% of total solid waste. 
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3.4 Landscape ecology factors 

The explanation of ecologic landscape modes is one of the main objectives in landscape 

ecology. The use of statistics regarding landscape patterns and ecological processes is the only 

method that can explain ecologic landscape modes. Landscape indices, which provide quantitative 

information for landscape patterns [51], are used in this model. Generally, there are two types of 

landscape indices, namely landscape unit feature indices and landscape heterogeneity indices. The 

former describe the comprehensive features of one patch, and the latter describe the distribution of 

all patches in a landscape pattern and maintain the stability of landscape functions [52]. In 1995, 

Riitters and O�Neill analysed the irrelevance of 55 landscape indices using 85 maps and found that 

5 landscape indices play dominant roles [53, 54]. Therefore, this study uses the average patch 

perimeter-to-area ratio, relative patch area, fractal dimension and patch connectivity as the 

evaluation factors of the landscape pattern. When the model is applied in other areas, it is 

necessary to choose different landscape heterogeneity index according to the sensitivity 

differences of local landscape indices. 

For the Ha-Da-Qi industrial corridor [46], the following eight landscape indices, which have 

the strongest sensitivity and the best performance for reflecting changes in landscape patterns, are 

selected: the number of patches, patch density, edge density, landscape shape index, Euclidean 

nearest neighbour distance distribution, Shannon's diversity index, Simpson evenness index and 

Aggregation index. 

4.  Model development 

Based on the factors selected above, after analysing the complex relationships among 

subsystems, flow diagram of the five subsystems was obtained using the Vensim software program, 

which is a simulation software package for improving the performance of real systems, used for 

developing, analysing, and packaging systems dynamic feedback models. The diagrams and the 

model equations describing both the internal behaviours of each subsystem and the relationships 

among the factors and other subsystems are shown as Supplementary Materials. 

4.1 Industrial subsystem 

The industrial subsystem, as the motivating subsystem of the overall system, is continuously 

growing and generates contradictions and pressure for other subsystems [55]. This subsystem is an 

�enterprise ecosystem�, whose development follows the law of general self-similar fractals [37, 
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38]. The total number of enterprises(NE) is the state variable, which is influenced by the enterprise 

construction ratio(ECR) and the enterprise depreciation ratio (EDR)[56]. The ECR is influenced 

by the investment rate, technology development factor, human factors, as well as the urban 

economic subsystem and landscape ecology subsystem. The EDR is influenced by the enterprise 

life cycle, as well as the environment subsystem and landscape ecology subsystem [57]. The total 

number of enterprises determines jobs, which forms a feedback loop with the population 

subsystem, and also directly affects the enterprise total urban economy subsystem, environment 

subsystem and landscape ecological subsystem. 

4.2 Population subsystem 

In term of population subsystem, total population is the state variable, which is influenced by 

the four rate variables, namely the immigration rate, emigration rate, birth rate and death rate. The 

birth rate and death rate are related to the total population in a specific way [31]. The development 

of industry, through jobs and job attractiveness factors, leads to an increase in immigration and the 

aggregation of the labour force. In addition, the aggregation of the labour force can also provide 

feedback to promote the development of enterprises. The environment subsystem affects the 

liveability factor, which in turn, affects the rate of immigration, whereas the green 

space-to-population ratio (GSPR) between the urban economic subsystem and the total population 

can also provide feedback to influence the liveability factor. The migration rate has the closest 

relationship with the urban economic subsystem, while the total population also directly impacts 

on the environment subsystem and unban economic subsystem. 

 In order to prevent the system expands unlimitedly outwards, reasonable constraint 

boundary has to be set up to omit some secondary contradictions and highlight the main 

contradiction. In term of the population, �household registration system� and �temporary 

residence permits� were used to calculate the population migration, and it was also noted that 

almost all the people who are working in the industrial corridors also live in the industrial corridor 

areas.  

4.3 Environment subsystem 

The environment subsystem is represented by two variables: the environmental capacity and 

the relative level of environmental pollution, which are closely related with the other four 

subsystems. Thus, the core of the environment subsystem is the resource system, which involves 

wastewater treatment, air pollution treatment and solid waste disposal. Through the total 
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environmental protection investment of the urban economic subsystem, the industrial subsystem 

manages three pollution types. This relationship affects the rate of green space development and 

saline land treatment, which in turn, affects land-use types and landscape patterns. 

It is noted that the research scope of this study is industrial corridor, and industrial zones are 

generally established around the edges of highways and railways. As shown in Fig.1, there are 

green buffer zones around the industrial corridors which can weaken the environment pollution 

and thus, the environmental pollution around the industrial corridors is lower than that inside the 

industrial corridors. Therefore, the model of this paper does not consider the environmental impact 

outside of the industrial corridors. If the pollution spreads to other areas outside the industrial 

corridors, more variables should be added to expand the model boundary. 

4.4 Urban economic subsystem 

The urban economic subsystem is an evolutionary system [58]. Because factors in the urban 

subsystem and the economic subsystem are closely related and the number of these factors is 

relatively small, factors associated with the two subsystems were analysed together. In this study, 

the research scope is defined as the economic changes of the towns and cities within the industrial 

corridors, ignoring the influence of remote cities around the industrial corridors. The key problem 

related to this subsystem is urbanisation, which indicates the process through which the population 

in concentrated in urban areas and rural areas are transformed into urban areas [59], China has 

been experiencing rapid urbanisation since the economic reform starting in 1978, and up to nowˈ

urbanisation has been rising and will continue in almost all the cities in the future [60]. 

Urbanisation mainly involves population migration, economic development, spatial expansion and 

the improvement of quality of life, which are also interrelated [42]. Using these four factors, 

urbanisation is linked to the economic, population, landscape ecology and environment 

subsystems, forming a full loop through which regional industrial production and regional GDP 

generate economic flow; moreover, total environmental protection investment affects the 

liveability factor, which in turn, affects urban areas and urban green areas.�

4.5 Landscape ecology subsystem 

The landscape ecology subsystem is the evaluation subsystem. The evaluation of land 

sustainability should be based on the amount of land and the factors related to productivity 

development. Maintaining the productivity of lands is closely related to the structures and 

functions of landscapes. The indices associated with landscape structures, functions and varieties 
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are important factors that determine whether the use of lands is sustainable [61]. The landscape 

pattern indices are categorised into two groups: four landscape indices constitute landscape unit 

index to describe the landscape pattern change of industrial patches, and another eight landscape 

indices constitute landscape heterogeneity indices to describe landscape pattern change of all 

landscape patches. The two groups of indices influence the industrial subsystem and the 

environment subsystem, and the other four subsystems influence the types of land use, which in 

turn, affect the landscape pattern indices.  

4.6 Integrated model  

Based on the analysis of the five subsystems, the factors connecting the subsystems were 

examined; the results are shown in Fig. 5. Consequently, an overall system dynamic model of 

industrial growth and landscape ecology was established by integrating the five subsystems, as 

shown in Fig. 6.  

 

Fig. 5 Relationships among the five subsystems. 
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Fig. 6 System dynamics model of industrial growth and landscape ecology, where the variables with boxes 

are state variables (level variables), the variables under double solid horizontal lines are rate variables, and the 
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variables without boxes are auxiliary variables. A randomly selected route (indicated by thick lines) involving the 

five subsystems for structural validation of the model. 

5. Model validation 

In this study, based on validations of system dynamic modelling reported in various previous 

studies [62-66] and using the Ha-Da-Qi industrial corridor as a test site, three types of validation 

were performed to fully validate and make up the possible defects of relatively shorter calibrated 

time (five years)[18]: historical data validation, which confirms the objectivity of simulation data 

in the modelling process [67]; structural validation, which confirms the logic of model simulation, 

models defect detection and explains the time delay of a system [68]; and simulation validation, 

which checks the errors between the predicted data and actual data of various system factors [69]. 

5.1 Historical data validation  

To verify that the formulas established and system regressions in the implementation of the 

model developed yield values that are sufficiently close to actual historical values, 50 groups of 

effective data in this model were validated; as in the process of system dynamic modelling, the 

generation of errors is inevitable even with rather mature models [67]. As shown in Table 1, over 

the five years from 2005 to 2009, factors whose historical validation error rate is less than 1% 

account for 42.4%, those whose error rate is between 1% and 5% account for 42.4%, those whose 

error rate is between 5% and 10% account for 10.4%, those whose error rate is between 10% and 

20% account for 4.8% and those whose error rate is greater than 20% account for only 0.08%. For 

84.8% of the factors, the error rate in the model operation process is less than 5%, and the mean 

error rate of all factors is 2.96%, which is less than the acceptable maximum of 5% [70]. 

Table 1. Difference (%) between historical and simulated data. 

Abbreviation Unit Difference (%) (by year) 

TP Million  

2005
200

6
200

7
200

8 2009

0.22
0.2

1
0.6

6
0.6

2 0.63

LF Ten Thousand  1.31
2.1

1
0.3

0
0.5

4 0.28

NAP Million 0.83
0.5

1
0.4

6
0.3

2 0.16

IR �� 0.84
0.9

6
1.3

5
0.9

2 1.28

ER �� 1.28
1.2

6
1.4

5
1.5

3 1.32

UR �� 1.04
0.3

0
0.2

0
0.3

1 0.47

GSPR �� 0.89 0.1 3.4 3.1 3.54
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2 9 8 

J Ten Thousand  2.05
2.9

3
0.4

2
2.4

9 2.17

NE �� 2.02
1.2

9
7.7

5
0.0

1 2.86

ECR �� 1.35
1.2

7
1.6

4
1.5

1 1.39

EDR �� 0.87
1.5

8
1.3

3
0.9

5 1.46

GDP Billion CNY 7.76
6.5

0
2.0

0
11.
89 2.31

GDPC CNY 7.74
6.5

7
1.7

0
12.
45 2.88

II billion CNY 7.76
1.6

1
5.8

8
13.
57 4.81

IVR CNY/People 2.99
3.6

4
5.5

6
12.
96 5.07

TEPI Billion CNY 5.87
1.1

5
20.
69

3.1
1 

24.0
9

GLI Billion CNY 1.13
1.2

1
1.5

5
0.9

1 1.48

APVI Billion CNY 1.83
1.1

5
1.0

7
1.8

6 1.65

WI Billion CNY 1.16
1.2

8
1.3

3
1.2

6 1.53

SWI Billion CNY 0.48
0.3

6
0.6

7
0.9

3 0.84

SLI Billion CNY 1.28
2.1

9
2.7

6
3.4

7 2.85

API �� 0.87
2.0

4
2.5

8
0.7

0 

WQI �� 17.07
8.8

5
7.6

6
11.
20 4.82

ASWP �� 15.74
12.
56

3.3
6

4.6
0 

11.5
4

RPE �� 11.55
8.3

8
1.9

4
3.9

1 6.02

EC �� 8.47
12.
96

7.8
8

19.
64 6.96

UGA 
Million 
Square Metres 1.11

0.0
8

2.8
1

2.5
5 4.15

WAEA Square Metres  0.22
2.9

4
9.4

7
1.7

9 3.08

EPD �� 0.94
0.2

4
1.0

9
0.4

1 1.17

EP Square Kilometres 1.31
1.4

7
1.6

8
2.3

2 1.48

ELCR �� 5.89
3.9

9
6.0

7
6.7

1 

ULP Square Kilometres 2.96
2.8

3
1.7

9
2.4

6 2.75

WWP Square Kilometres 1.56
1.3

7
2.4

3
2.1

8 1.85

GLP Square Kilometres 8.35
8.1

7
6.7

2
7.3

9 7.75

ALP Square Kilometres 4.21
3.8

3
3.9

2
3.7

6 2.95

APAR �� 0.95
0.7

6
0.7

8
1.6

4 2.67

FDI �� 0.48
0.0

3
1.8

4
0.1

9 0.41

RPA �� 10.88
0.9

8
0.8

9
4.2

6 4.60

CI �� 1.55 0.4 0.0 0.5 0.16
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1 1 7 

NP �� 0.37
0.1

3
0.5

2
0.6

7 0.22

PD �� 5.91
8.8

2
5.9

9
7.4

0 2.74

ED �� 0.19
0.0

3
0.3

0
0.0

5 0.15

ENN_MN �� 0.59
0.1

7
1.4

4
0.2

5 0.26

LSI �� 0.38
0.2

7
0.5

5
0.6

3 0.23

SHDI �� 0.66
0.8

1
0.5

5
0.3

3 0.94

SIEI �� 1.85
1.6

5
1.8

5
2.2

7 1.80

AI �� 0.01
0.0

2
0.0

2
0.0

2 0.01

LUFI-SP �� 0.94
0.4

5
1.7

8
1.0

7 2.53

LHI-AP �� 0.73
0.6

8
0.5

5
0.9

2 0.58

5.2 Structural validation  

In this study, a structural test of the model was conducted by using a randomly selected route 

involving the five subsystems, as shown in Fig. 6, to detect any possible defect in the model 

structure [64]. 

A comparison between the historical data and simulated data of the 12 variables on the 

selected route is shown in Fig. 7. It can be observed that with the continuous influence of the 

science and technology development factor, the total number of enterprises grew quickly each 

year between 2005 and 2007. Annual growth was relatively between 2007 and 2008, whereas after 

2008, the growth rate became even lower. During this period, the patch area of production land 

continued to rise, and the connectivity of enterprise patches also increased annually. Between 

2005 and 2006, the regional GDP did not display a sharp increase at the onset of enterprise 

construction. With the increase in enterprise number and the expansion of the enterprise scale, 

after 2006, enterprises began to play a powerful role in promoting the regional economy and, in 

general, the law of development of enterprise and regional economy. As the enterprises developed, 

immigration also led to an increase in population. In contrast, per capita GDP continued to rise, 

promoting the science and technology development factors to drive the enterprise construction 

ratio, thus forming a complete feedback circuit with a time delay. Of the three types of pollution 

for enterprise management, even after the system balance, the environmental bearing capacity 

increased before 2006 but decreased annually after 2006. The improvement of regional GDP 

increased the total investment of environmental protection, and at the same time, relative 

environmental pollution also increased annually. The landscape unit characteristic index 
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continuously increased, which indicates that the comprehensive landscape index is increasing and 

the landscape ecology is deteriorating. Overall, based on the results of the structural test, it can be 

concluded that the time variation and the system range of the model form a complete circuit with a 

time delay and multiple feedback effects with zero defects.  

Fig. 7 Comparison between historical data and simulated data of the 12 variables on the selected route. 

5.3 Simulation test 

The simulation test results are the most important indicator for model effectiveness [63]. 

Taking the industrial, urban economy, population and environment subsystems as the input 

subsystems, the landscape ecological subsystem as the output subsystem and using 2010 data, a 

prediction was made for the factors in the landscape ecological subsystem and compared with 
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actual data, as shown in Fig. 8. It can be observed that the prediction accuracy is very good, with 

an average error of 1.29%, much less the commonly acceptable value of 5% [66]. 

 

Fig. 8 Comparison between simulated data and actual data for the factors in the landscape ecological subsystem. 

6. Model application 

With the established model as described above, the following four modes of enterprise 

development have been simulated for the period of 2015-2020: (1) original growth mode, (2) �S� 

growth mode [37]; (3) uniform decrease mode (for comparing with the uniform increase mode, 

and the decrease rate is 6%); (4) uniform increase mode, with an increase rate of 6%, which is the 

average increase rate of Ha-Da-Qi industrial corridor in the last decade, and with this increase rate 

the  value will be the same as that of the  �S� growth mode in 2020. Correspondingly, the 
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changes in unit landscape characteristics and landscape heterogeneity index, which can represent 

the total landscape pattern changes, are shown in Fig. 9 and Fig. 10, respectively. The enterprise 

patch connectivity index and the enterprise relative patch area are shown in Fig.11, and the 

landscape diversity index and the landscape patch aggregation index, which are the most sensitive 

landscape indices in landscape characteristics level, are shown in Fig.12. 

 

Fig. 9 The simulation of unit characteristic index under four enterprise development modes. 
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Fig. 10 The simulation of  landscape heterogeneity index under four enterprise development modes. 

 

Fig. 11 The simulation of enterprise patch connectivity and relative area index under four enterprise development 

modes. 
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Fig. 12 The simulation of landscape patch diversity index and landscape aggregation index under four enterprise 

development modes. 

It can be seen that the landscape indices are considerably affected by the enterprise quantity. 

As shown in Fig. 9, the enterprise unit characteristic index is directly proportional to the enterprise 

quantity. In general, the average change rate of enterprise unit characteristic index is greater than 

the average change rate of enterprise quantity. As shown in Fig.10, the landscape heterogeneity 

index is also affected by the enterprise quantity, and the curve trend corresponds to that of the 

enterprise quantity, but its curve volatility changes significantly by the influence of other system 

factors. As shown in Fig. 11, the changes of patch connectivity and enterprise quantity almost 

show changes in the same direction, which suggests that the enterprise quantity has promotion on 

the formation of the artificial corridor, causing negative effects on the ecological system, but the 

enterprise relative area index is proportional to the enterprise quantity, and the rate of change and 

the curve trend direction have no strong relationships with the enterprise quantity. As shown in Fig. 

12, the changes curve of the landscape patch diversity index and landscape aggregation index 

show changes in the same direction, and they have roughly inverse proportional relationships with 

the enterprise quantity. 

Further analysis shows that in the Ha-Da-Qi industrial corridor: (1) The industrial 

development is inversely proportional to the landscape ecological protection, and the changes of 

enterprise quantity have a 1-2 year delay on the landscape index; (2) By integrating all the 

evaluation factors of the landscape indices, and through the comparison of the three growth stages 

of the �S� mode and the uniform increase mode, it is found that when the enterprise quantity 
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growth rate is below 10% in 2014-2017, and 10%-14% in 2017-2018, the "S" type mode is the 

optimal, whereas when the enterprise growth rate is more than 14% in 2018-2019, the uniform 

increase mode is the optimal; (3) Through a comparison between �uniform increase� and �uniform 

decrease�, it is seen that the landscape ecological destruction is much faster than that to be 

repaired, and in this case, the ecological restoration time is about twice of the destruction time, so 

that the landscape ecological planning is especially important under the fast industrial 

development.   

7. Conclusions 

China is confronted with the problem of ecological planning and management caused by 

bustling industrial corridor development. This study has systematically analysed factors that could 

possibly affect both industrial development and the landscape ecology. Five subsystems, namely 

industry, urban and economic, population, environment and landscape ecology subsystems, were 

established and correlated among one another. A system dynamic model for industry growth and 

landscape ecology was established, and using actual data for the Ha-Da-Qi industrial corridor over 

the period 2005-2009, the model was validated in terms of historical behaviour, logical structure 

and future prediction, where for 84.8% of the factors, the error rate in the implementation of the 

model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation 

test for the landscape ecological subsystem is less than 2%. 

The simulation of what-if scenarios, considering four modes of enterprise development, has 

been made for 2015-2020, through the analysis of the changes in landscape indices, and it has 

been found that: (1) The construction of large-scale enterprises has caused damages in landscape 

ecology; (2) When the enterprise growth rate is less than 10%, �S� style mode is optimal in terms 

of landscape ecological protection; (3) The landscape ecological destruction is much faster than 

the ecological restoration.  
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List of abbreviation 

Industrial Subsystem 

Number Abbreviation Description Type* Unit 

    

1 NE Number of Enterprises L �� 

2 ELC Enterprise Life Cycle A Year 

3 WAEA Weighted Average of Enterprise Area A Square Metres

4 ECR Enterprise Construction Ratio R �� 

5 EDR Enterprise Depreciation Ratio R �� 

6 J Jobs A �� 

7 TDF Technology Development Factor A �� 

8 HF Human Factors C �� 

9 LFJR Labour Force-Job Ratio A �� 

10 JAF Job Attractiveness Factor A �� 

 

Population Subsystem 

 

  

11 TP Total Population L 10000 Persons

12 IR Immigration Rate R 10000 Persons/Year

13 ER Emigration Rate R 10000 Persons/Year

14 BR Birth Rate R 10000 Persons/Year

15 DR Death Rate R 10000 Persons/Year

16 PCR Population Change Rate A 10000 Persons/Year

17 SBR Specific Birth Rate C 10000 Persons/Year

18 SDR Specific Death Rate C 10000 Persons/Year

19 SMR Specific Migration Rate C 10000 Persons/Year

20 LF Labour Force A 10000 person

21 NAP Non-Agricultural Population A 10000 Persons

 

Environment Subsystem  

 

  

22 EC Environmental Capacity A �� 

23 RPE Relative Pollution of the Environment A �� 

24 API Air Pollution Index A �� 

25 WQI Wastewater Quality Index A �� 

26 ASWP Amount of Solid Waste Pollution A �� 
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Urban Economic Subsystem 

 

  

27 APIV Air Pollution Investment A CNY 

28 WI Wastewater Investment A CNY 

29 SWI Solid Waste Investment A CNY 

30 TEPI 
Total Environmental Protection 
Investment 

A 10000 CNY 

31 GLI Green Land Investment A CNY 

32 SLI Saline Land Investment A CNY 

33 UR Urbanisation Rate A �� 

34 GSPR Green Space � Population Ratio A 
100 Square 
Metre/Person 

35 UGA Urban Green Areas A Square Kilometres

36 LIF Liveability Factor A �� 

37 UPII Unit Patches Investment Impact C �� 

38 GDP Gross Domestic Product A 10000 CNY

39 GDPC Gross Domestic Product per Capita A CNY 

40 IVR Investment Rate A CNY/Person

41 II Industrial Investment A 10000 CNY

42 IFWW Impact Factor of Wetland and Water C �� 

 

Landscape Ecology Subsystem 

 

  

43 EP Enterprise Patches L Square Kilometres

44 ULP Urban Land Patches L Square Kilometres

45 WWP Wetland and Water Patches L Square Kilometres

46 GLP Green Land Patches L Square Kilometres

47 ALP Abandoned Land Patches L Square Kilometres

48 ELCR Enterprise Land Change Ratio R 
Square 
Kilometres/Year 

49 RLCR Residential Land Change Ratio R 
Square 
Kilometres/Year 

50 RWQCR 
Relative Wastewater Quality Change 
Ratio 

R 
Square 
Kilometres/Year 

51 GLCR Green Land Change Ratio R 
Square 
Kilometres/Year 

52 SLCR Saline Land Change Ratio R 
Square 
Kilometres/Year 

53 EPD Enterprise Patch Density A �� 
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54 APAR Average Perimeter-Area Ratio A �� 

55 FDI Fractal Dimension Index A �� 

56 RPA Relative Patch Area A �� 

57 CI Connectivity Index A �� 

58 NP Number of Patches A �� 

59 PD Patch Density A �� 

60 ED Edge Density A �� 

61 ENN_MN 
Euclidean Nearest Neighbour Distance 
Distribution 

A �� 

62 LSI Landscape Shape Index A �� 

63 SHDI Shannon's Diversity Index A �� 

64 SIEI Simpson's Evenness Index A �� 

65 AI Aggregation Index A �� 

66 LUFI-SP 
Landscape Unit Features Index -Same 
Patches 

A �� 

67 LHI-AP 
Landscape Heterogeneity Index-All 
Patches 

A �� 

 

* C means constant variable. 

   A means auxiliary variable. 

   L means level variable. 

   R means rate variable.  
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Appendix 1: List of dynamic flow diagram of five subsystems. 

 

Fig. A1. Dynamic flow diagram of the industrial subsystem. 

(Annotation to Fig. 5-9: The variables with boxes are state variables (level variables); the variables under 

double solid horizontal lines are rate variables; and the variables without boxes are auxiliary variables; the solid 

lines denote that the relationship between model variables of subsystems is material flow (relations have 

calculation formula), whereas the dashed lines denote information flow that the causal relationships between 

subsystems).  
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 Fig. A2. Dynamic flow diagram of the population subsystem. 
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Fig. A3. Dynamic flow diagram of the environment subsystem.
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 Fig. A4. Dynamic flow diagram of the urban economic subsystem. 
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Fig. A5. Dynamic flow diagram of the landscape ecology subsystem. 

Appendix 2: List of model equations  

Industrial subsystem: 

NE(K: future) = NE(I: current) +Dt*(ECR - EDR) 

ELC = TDF*HF *Exp(1.369+2.109/( WAEA /EC)) 

WAEA = Enterprise Patch Density * Number of Enterprises / Enterprise Patches 

ECR = Exp(0.052-2.61/(TDF*HF(LHI-AP *Ln(IVR*EC)))) 

EDR = If then else (ELC<4.5, 2.988-1.306*ELC+0.143*Power(ELC, 2), 

37.573-15.334*ELC+1.563*Power(ELC, 2)) 

J = Exp(6.27-118.973/NE) 

TDF = Exp(0.1-(Delay1I(0.0013*Ln(GDPC), 2, 0.8))) 

HF is constant variable, 1.0 

LFJR = J/LF 

JAF = 1- Delay1I(0.8* LFJR, 2, 0.8) 

Population subsystem 

TP˄K: future˅= TP˄I: current˅+DT*(IR-ER) 

IR = Exp(-5.174+0.549/( JAF *LIF)) 

ER = SMR (Time)+0.056-0.359* RPE +0.664*Power(RPE, 2) 

BR = SBR 

DR = SDR 

PCR = IR +BR -ER �DR 

SBR is constant variable, 1.05 

SDR is constant variable, 1.04 

SMR is constant variable, 1.01 

LF = -1537.65+2.047*TP 
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NAP = 0.174*LF+390.748 

Environment subsystem 

EC = LUFI-SP *Exp(5.882-1.297/ RPE) 

RPE = LUFI-SP*(API+WQI+ASWP)/ LHI-AP+0.2557 

API = Exp(-1.258+6877.54/(NE*(APIV/TP))) 

WQI = 9.331*Power(NE*(WI/TP),-0.334) 

ASWP = 0.9-0.056*Ln(NE*(SWI/TP)) 

Urban economic subsystem 

APIV = 0.212*TEPI 

WI = 0.186*TEPI 

SWI = 0.2*TEPI 

TEPI = 109857*Power(2.718,5.532e-008*GDP) 

GLI = 0.32*TEPI 

SLI = 0.082*TEPI 

UR = NAP/TP 

GSPR = UGA/TP 

UGA = 1.48*UP-844.389 

LIF = GSPR *Ln(GDPC)/RPE 

UPII = -0.888+0.087*GLI+0.001* GLI ^2 

GDP= Exp(17.974-973.054/NE) 

GDPC = GDP/TP 

IVR = II /LF 

II = Power(GDP,2.225) * 1.057e-010 

IFWW is constant variable, 0.98 

TEPI = 109857*Power(2.718,5.532e-008*GDP) 
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Landscape ecology subsystem 

EP = ELCR*EP 

ULP = RLCR*ULP 

WWP = - RWQCR *WWP 

GLP = GLCR* GLP 

ALP = SLCR*ALP 

ELCR = If then else( (II/3.01992e+006+NE/1080.2)<2,0.135*Delay1I(Step(1.05, 15), 15, 

0.68)*(II/3.01992e+006+NE/1080.2)* WAEA /EP, 0.046*Power( Smooth3I(Step 

(2.043,2),4,0.4264)* (II/3.01992e+006+NE/1080.2)* WAEA /EP,0.006)) 

RLCR = 0.003*(PCR+ UR) * GDP / (10000 * ULP)+0.005 

RWQCR = If then else(Time<2007, Trend(WI/WWP, 1, 0.0786)-0.44* WQI, 0.01* IFWW 

(WI/WWP *100)) 

GLCR = 0.01* IIUP (0.04* Trend(UGA/GLP, 2, 0.8 ) *GLI+ SLCR) 

SLCR = Delay1I(RWQCR, 2, SIN(SLI /ALP)) 

APAR = -1.252*Ln(EP)+7.395 

FDI = Exp(0.369-0.073/Time)+ 1/Ln(EP) 

RPA = 0.076* Ln(EP)-0.309 

CI = 0.087* Exp(0.438*Ln(EP)) 

NP = 637.905*(Ln(EP)+ Ln(ULP) + Ln(WWP) + Ln(GLP) + Ln(ALP))-17930.1 

PD = 18.843*(Ln(EP)+ Ln(ULP) + Ln(WWP) + Ln(GLP) + Ln(ALP))-578.201 

ED = -1511.46+61.489*(Ln(EP)+ Ln(ULP) + Ln(WWP) + Ln(GLP) + Ln(ALP)) 

ENN_MN = Exp(-9.61+395.694/ (Ln(EP)+ Ln(ULP) + Ln(WWP) + Ln(GLP) + Ln(ALP))) 

LSI = 85.858*4*(Sqrt(EP)+ Sqrt(ULP)+ Sqrt(WWP)+ Sqrt(GLP)+ 

Sqrt(ALP))/(2*Sqrt(3.14*7086)) -136.49 

SHDI = -0.121*(Ln(EP/7086)+ Ln(ULP/7086) + Ln(WWP/7086) + Ln(GLP/7086) + 

Ln(ALP/7086))-1.019 



Jian Xu, Jian Kang, Long Shao, Tianyu Zhao: Journal of Environmental Management    [DOI:10.1016/j.jenvman.2015.06.026] 

 

Volume 161, 15 September 2015, Pages 92�105                                                Page 37 

�

SIEI = 3.354-0.087*(Ln(EP)+ Ln(ULP) + Ln(WWP) + Ln(GLP) + Ln(ALP)) 

AI = -0.308*(Ln(EP/7086)+ Ln(ULP/7086) + Ln(WWP/7086) + Ln(GLP/7086)+ 

Ln(ALP/7086))+93.894 

LUFI-SP = EP/7086* (0.2* APAR /1.5718+0.3* FDI /1.6193+0.3* RPA /0.0434+0.2* CI 

/0.6678) 

LHI-AP = 1 / 8 * (NP/ 1751.8 + PD/ 3.23 +ED / 385.85 +LSI / 29.52 + ENN_MN / 24.77 + 

SHDI / 0.61 + SIEI / 0.68 + AI / 98.05)  
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