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Abstract

This paper is concerned with the generalisation of a numerical technique for solving problems in steady-

state anisotropic media, namely the ’flux-vector-based’ Green element method (‘q-based’ GEM) for anisotropic

media, to triangular elements. The generalisation of the method to triangular elements is based on the same

concepts as for a rectangular grid, namely satisfying a nodal flux condition at each node of the mesh and the

continuity of the tangential pressure gradient across the elements sharing a node.

Key words: Flux-vector-based Green element method, anisotropy, permeability

1 Introduction

Anisotropic media are widely encountered in nature, for example in oil and gas reservoirs. In many reser-

voirs, the production of gas and oil is seriously affected by the highly anisotropic and/or heterogeneous

structure of the media.

Steady-state problems in anisotropic media can be solved using the modified ‘q-based’ GEM for anisotropic

media, introduced by Lorinczi et al. [1]. The approach introduced by Lorinczi et al. [1] has been im-

plemented for non-uniform rectangular grids. Lorinczi et al. [2] used this in geological problems in

faulted/fractured anisotropic media.

A similar approach has been previously introduced by Lorinczi et al. [3] for isotropic media, and it

was applied to highly-heterogeneous isotropic media. The two approaches are using the concept of the
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‘q-based’ GEM (Pecher et al. [4]), which maintains the high-order accuracy of the GEM, diminished by

some approximations used in the GEM, see Taigbenu [5].

This paper introduces the ‘q-based’ GEM for anisotropic media for triangular elements. Lorinczi et al.

[3] showed that the q-based’ GEM for isotropic media can be naturally extended to triangular finite

element grids. The work presented in here is based on satisfying similar conditions at nodes from a

triangular mesh as in Lorinczi et al. [3], but considering the medium anisotropy.

2 Mathematical formulation

In this section we present the extension of the modified ‘flux-vector-based’ GEM for anisotropic media

to triangular finite element grids. This is a technique suitable to solve problems in an anisotropic porous

medium in which the equation governing the flow in a bounded domain Λ ⊂ R
2 is given by

∇ · (K∇p) = −F (x) in Λ (1)

where K is the permeability tensor, p is the fluid pressure and F (x) is an internal/external source forcing

function (term) which incorporates the fluid viscosity. For simplicity, we consider no internal/external

source forcing function (F ≡ 0).

In the GEM the computational domain is discretised by suitable polygonal elements which collectively

represent the shape of the domain. By applying the GEM theory, a more compact system of the following

form is obtained:
Ne
∑

e=1

(

R
(e)
ij pj − L

(e)
ij qj

)

= 0 (2)

where the element matrices Rij and Lij can be found in Lorinczi et al. [1], and pj and qj are the pressure

and the flux at the node j.

2.1 Internal source node

We denote by N the number of elements sharing an internal source node P in a triangular grid. There are

therefore N interfaces intersecting at the node P. Figure 1(a) illustrates an internal node in a triangular

grid shared by N = 5 elements. The permeability tensors corresponding to each of the N elements

are denoted by Ki′j,i, i′, j = 1, d, where i = 1, N labels the element number. Let (i, i + 1) denote the

interface between two neighbouring elements (i) and (i + 1), and t(i,i+1) and n(i,i+1) the tangent and

the normal unit vectors to the interface (i, i + 1), for i = 1, . . . , N (the elements are always counted

in a clockwise direction around the node). Using this notation, elements (N + 1) and (1) will be the

same, and so will be elements (0) and (N). The tangent unit vector t(i,i+1) is oriented toward the source
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node P, and the normal unit vector n(i,i+1) is oriented outward from the element (i) over which the

integration is performed, toward the element (i + 1), as represented in Figure 1(b), so that we have

t(i,i+1) = t(i+1,i) and n(i,i+1) = −n(i+1,i) (we denote by n(i+1,i) the normal unit vector to the (i, i + 1)

interface for element (i + 1)). The flux for an element (i) at node P can be uniquely written in terms of

these unit vectors as follows:

qi = q
(i,i+1),i
t t(i,i+1) + q(i,i+1),i

n n(i,i+1) (3)

or

qi = q
(i−1,i),i
t t(i,i−1) + q(i−1,i),i

n n(i,i−1) (4)

(for the (i − 1, i) interface), where

q(i,i+1),i
n = −

(

∂p

∂n+

)(i,i+1),i

= −

d
∑

i′,j=1

Ki′j,i cos(n, xi′)

(

∂p

∂xj

)(i,i+1),i

(5)

and

q
(i,i+1),i
t = −

(

∂p

∂t+

)(i,i+1),i

= −

d
∑

i′,j=1

Ki′j,i cos(t, xi′)

(

∂p

∂xj

)(i,i+1),i

(6)

denote the tangential and the normal component of qi, respectively, with respect to the interface (i, i+1)

on element (i) at P, as indicated in Figure 1(b), with expression (4) following similarly for the interface

(i − 1, i), and cos(n, xi′) and cos(t, xi′) are the direction cosines of the normal n and the tangent t to

the surface Γ, respectively.

Thus each flux component qi is a linear combination of a tangential and a normal pressure gradient com-

ponent. Consequently, along each interface there are two tangential and two normal pressure gradient

components, arising from the two neighbouring elements.

However, there is an alternative representation of qi in terms of only the tangential fluxes q
(i,i+1),i
t and

q
(i−1,i),i
t which correspond to the elements (i − 1) and (i + 1) that neighbour the element (i), namely:

qi = γtt
(i,i+1) + ̺tt

(i−1,i) (7)

where the expression for γt and ̺t can be found from the system of equations obtained by multiplying

equation (7) by t(i,i+1) and t(i−1,i) respectively and taking into account expressions (3) and (4):















γt + ̺tt
(i−1,i) · t(i,i+1) = q

(i,i+1),i
t

γtt
(i,i+1)

· t(i−1,i) + ̺t = q
(i−1,i),i
t

(8)
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The expressions for γt and ̺t are found to be

γt =
1

1 − (t(i−1,i)
· t(i,i+1))2

q
(i,i+1),i
t −

t(i−1,i)
· t(i,i+1)

1 − (t(i−1,i)
· t(i,i+1))2

q
(i−1,i),i
t (9a)

̺t =
1

1 − (t(i−1,i)
· t(i,i+1))2

q
(i−1,i),i
t −

t(i−1,i)
· t(i,i+1)

1 − (t(i−1,i)
· t(i,i+1))2

q
(i,i+1),i
t (9b)

Similarly, using the alternative representation of qi in terms of only the normal fluxes q(i,i+1),i
n and

q(i−1,i),i
n corresponding to the elements (i − 1) and (i + 1) that neighbour the element (i), we can write

qi = γnn
(i,i+1) + ̺nn(i−1,i) (10)

where γn and ̺n are found in a similar way to γt and ̺t, and their expression is given by

γn =
1

1 − (n(i−1,i)
· n(i,i+1))2

q(i,i+1),i
n −

n(i−1,i)
· n(i,i+1)

1 − (n(i−1,i)
· n(i,i+1))2

q(i−1,i),i
n (11a)

̺n =
1

1 − (n(i−1,i)
· n(i,i+1))2

q(i−1,i),i
n −

n(i−1,i)
· n(i,i+1)

1 − (n(i−1,i)
· n(i,i+1))2

q(i,i+1),i
n (11b)

The denominators in equations (9a), (9b), (11a) and (11b) are always non-zero, as the neighbouring

tangential or normal unit vectors cannot be parallel.

By using the different representations of qi given by equations (3), (4), (7) and (10), the following

equations can be obtained:

q
(i,i+1),i
t t(i,i+1) + q(i,i+1),i

n n(i,i+1) = γtt
(i,i+1) + ̺tt

(i−1,i) (12a)

q
(i−1,i),i
t t(i,i−1) + q(i−1,i),i

n n(i−1,i) = γnn
(i,i+1) + ̺nn

(i−1,i) (12b)

and after all the flux components in these equations are replaced using equations (5) and (6), the two

normal pressure gradient components can be determined in terms of the tangential pressure gradient

components from these two conditions, in a similar way as they are determined in the case of a rectan-

gular internal source node (see Lorinczi et al. [2]). Thus at each node the number of unknowns at each

internal source node reduces to 2N + 1, namely 2N tangential pressure gradient components and the

pressure.

In a triangular grid, as in the case of a rectangular one, at each internal source node and for every

interface occurring at that node there is a condition representing the continuity of the tangential pressure

gradient at that interface. Together, these represent N different conditions, which reduce the number

of unknowns at each internal source node to N + 1.

In order to illustrate the conditions at each node, necessary to solve the system of unknowns, we consider
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a small circle of radius ǫ, centred on the node, and the convex polygon which is formed by the tangents

to the circle at the points where the circle intersects the element interfaces, as shown in Figure 1(a).

Therefore each side of the polygon is perpendicular to the interface at that point. A generalised nodal

flux condition for each node in this case can be expressed by the relation:

N
∑

i=1

(l(i,i+1),iq
(i,i+1),i
t + l(i,i+1),i+1q

(i,i+1),i+1
t )t(i,i+1) = 0 (13)

where l(i,i+1),i represents the length of the polygon side intersecting the interface (i, i + 1) and situated

in element (i).

The nodal flux condition that we use is more restrictive than the mass conservation around a small

square enclosing a node. However, it has been shown in a range of problems in Lorinczi et al. [1] and

Lorinczi et al. [2] that it does not condition the type of solutions.

Equation (13) can be rewritten using the expressions of the tangential components of the flux and the

tangential pressure gradient continuity conditions as follows:

N
∑

i=1

[

− l(i,i+1),i
d
∑

i′,j=1

Ki′j,i cos(t, xi′)

(

∂p

∂xj

)(i,i+1),i

− l(i,i+1),i+1
d
∑

i′,j=1

Ki′j,i+1 cos(t, xi′)

(

∂p

∂xj

)(i,i+1),i]

t(i,i+1) = 0

(14)

Because the polygon edges are tangent to the circle, every two edge segments situated in the same

element have the same length, namely

l(i,i+1),i = l(i−1,i),i, i = 1, . . . , N. (15)

We can determined these lengths as functions of the circle radius ǫ and the angle between the neigbouring

interfaces. If θi denotes the angle between the interfaces (i − 1, i) and (i, i + 1), then we have

l(i,i+1),i = ǫ tan

(

θi

2

)

, i = 1, . . . , N (16)

Using equation (16) in equation (14) gives (as we take the limit as ǫ → 0)

N
∑

i=1

[

− tan

(

θi

2

)

d
∑

i′,j=1

Ki′j,i cos(t, xi′)

(

∂p

∂xj

)(i,i+1),i

− tan

(

θi+1

2

)

d
∑

i′,j=1

Ki′j,i+1 cos(t, xi′)

(

∂p

∂xj

)(i,i+1),i]

t(i,i+1) = 0

(17)

Two conditions are included in relation (17), and they are obtained by resolving in the x and y directions.

We can further generate N −1 equations at each internal source node, by integrating in turn over N −1

of the elements from the set of N elements sharing the node. Consequently, at each internal source
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node, a total of N + 1 conditions can be generated, sufficient to determine the unknowns at that node.

After determining all of these unknowns, the set of tangential and normal components of flux at each

interface can be fully determined.

2.2 Side source node

We consider now boundary nodes and we refer to the side source node P in Figure 2(a). If N denotes

the number of elements sharing the source node P, then there are N − 1 internal interfaces intersecting

at point P. Elements (1) and (N) are assumed to be the two elements on the boundary of the domain

for the node P. For each of these interfaces there will be one independent tangential component of the

pressure gradient, since a condition representing the continuity of the tangential pressure gradient at

that interface can be used. Consequently, there are N − 1 unknown tangential components of the flux

at the internal boundaries. We can express the normal components of the pressure gradient for all the

internal interfaces in terms of the tangential components in the same manner as for the internal source

nodes in Section 4.1. For the two boundary interfaces, there is one tangential component of the flux for

each, corresponding to the single element to which each boundary interface belongs, and we denote by

q1
t and qN

t the fluxes for elements (1) and (N), respectively. The corresponding unit tangent vectors are

denoted by t(1) and t(N) = −t(1). The outward normal flux to the boundary, denoted by qn, is assumed

to apply at P for both elements (1) and (N) and is either specified (when the pressure is unknown at

P) or is an unknown (when the pressure is known at P). Thus, there are N + 3 unknowns at the side

source node P. The nodal flux condition (similar to condition (14)) incorporates the normal flux qn and

it is expressed in this case as follows:

l(1,2),1q1
t t

(1) +
N−1
∑

i=1

(

l(i,i+1),iq
(i,i+1),i
t + l(i,i+1),i+1q

(i,i+1),i+1
t

)

t(i,i+1) + l(N−1,N),NqN
t t(N) = 2ǫqnn (18)

which can be reformulated as

− tan

(

θ1

2

)

d
∑

i′,j=1

Ki′j,1 cos(t, xi′)

(

∂p

∂xj

)(1)

t(1) +
N−1
∑

i=1

[

− tan

(

θi

2

)

d
∑

i′,j=1

Ki′j,i cos(t, xi′)

(

∂p

∂xj

)(i,i+1),i

−

tan

(

θi+1

2

)

d
∑

i′,j=1

Ki′j,i+1 cos(t, xi′)

(

∂p

∂xj

)(i,i+1),i]

t(i,i+1)
− tan

(

θN

2

)

d
∑

i′,j=1

Ki′j,N cos(t, xi′)

(

∂p

∂xj

)(N)

t(N) = 2qnn

(19)

From equation (19) we can generate two conditions (in the x and y directions). Together with the

conditions obtained by integrating in turn over all of the elements sharing the side source node P and

the boundary condition at P, these represent the necessary N + 3 conditions for the unknowns at P to
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be determined. The approach can be directly applied to corner points also.

3 Conclusions

In this article we have presented the generalisation of a numerical technique for solving steady-state

flow problems, namely the modified ‘q-based’ GEM for anisotropic media, to triangular elements. This

is an extension of the modified ‘q-based’ GEM has been developed for rectangular grids (Lorinczi et

al. [1]), the two techniques being based on the same concepts- satisfying a nodal flux condition at each

node and on the continuity of the tangential pressure gradient across the element boundaries.

The extension of the modified ‘q-based’ GEM for anisotropic media to triangular grids is still to be tested

in practice. However, this represents a useful theoretical advancement among the numerical solution

techniques for reservoir simulation.
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Fig. 1. (a) An internal node in a triangular grid and (b) representation of the flux components and of unit

vectors for an element (i) in a triangular grid.
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Fig. 2. (a) A side source node and (b) a corner source node in a triangular grid.
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