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Fixation in Evolutionary Games under Non-Vanishing Selection

Mauro Mobilia1 and Michael Assaf2
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One of the most striking effect of fluctuations in evolutionary game theory is the possibility for
mutants to fixate (take over) an entire population. Here, we generalize a recent WKB-based theory
to study fixation in evolutionary games under non-vanishing selection, and investigate the relation
between selection intensity w and demographic (random) fluctuations. This allows the accurate
treatment of large fluctuations and yields the probability and mean times of fixation beyond the
weak selection limit. The power of the theory is demonstrated on prototypical models of coopera-
tion dilemmas with multiple absorbing states. Our predictions compare excellently with numerical
simulations and, for finite w, significantly improve over those of the Fokker-Planck approximation.

PACS numbers: 05.40.-a, 02.50.Ey, 87.23.Kg, 89.75.-k

INTRODUCTION

Evolutionary game theory (EGT) provides a natural
theoretical framework to describe the dynamics of sys-
tems where successful types or behaviors, as those aris-
ing in biology, ecology and economics [1, 2], are copied by
imitation and spread. Evolutionary stability is a crucial
concept in EGT and specifies under which circumstances
a population is proof against invasion from mutants [1, 2].
This notion was shown to be altered by finite-size fluctu-
ations and led to the key concept of evolutionary stability

in finite populations [2]. The latter is closely related to
the notion of fixation [2, 3], referring to the possibility
for mutants to take over (fixate) an entire population of
wild species individuals. Furthermore, evolutionary dy-
namics is characterized by the interplay between random
fluctuations [4] and selection, that underlies adaptation
in terms of the different reproduction potential (fitness)
of the individuals. Thus, a parameter was introduced to
measure the selection intensity [2]. In this context, the
fixation probability of a species has been calculated for a
finite two-species population in the weak selection limit
of vanishingly small selection intensity [2, 3, 5]. This
limit is often biologically relevant and greatly simplifies
the analysis (treating selection as a linear perturbation).
However, the behaviors obtained under strong and weak
selection are often qualitatively different (see e.g. [5, 6]).

In this Letter, we study fixation under non-vanishing
selection in EGT and provide a comprehensive analy-
sis of the combined influence of non-vanishing selection
and random fluctuations. As exact results for the fix-
ation probability and mean fixation times (MFTs) are
rarely available and often unwieldy (see e.g. [2, 3, 7]), our
analysis relies on the WKB (Wentzel-Kramers-Brillouin)
approximation method [8] directly applied to the un-
derlying master equation [9]. This technique was re-
cently used to treat generic birth-death systems that un-
dergo metastable switching or extinction [10, 11]. Im-
portantly, here we generalize the WKB formalism to sys-
tems with multiple absorbing states. This theory ac-

curately accounts for the large fluctuations not aptly
captured [12, 13] by the Fokker-Planck approximation
(FPA) [7]. We illustrate our method on two classes of
prototypical models of cooperation dilemmas, the anti-
coordination and coordination games, where a coexis-
tence state separates two absorbing states in which the
population is composed of only the fixated species while
the other goes extinct [1, 2]. We compute the fixation
probabilities, the MFTs, as well as the complete prob-
ability distribution function (PDF) of population sizes,
and show that our theory is superior to the FPA for fi-
nite selection strength.

THE MODELS

In EGT, the fitness, or reproduction potential of an
individual, is determined by the outcome, called payoff,
of its interaction with the others as prescribed by the
underlying game [1]. In fact, when two A−individuals
interact, both receive a payoff a. If an individual of type
A interacts with another of type B, the former receives
b while the latter gets a payoff c. Similarly, when two
B−individuals interact, both get a payoff d. Now, as-
sume that in a population of size N there are n individ-
uals of type A (“mutants”) and N − n of type B (“wild
type”). The respective average payoffs (per individual)
are ΠA(n) = (n/N)a + [(N − n)/N ] b and ΠB(n) =
(n/N)c+ [(N − n)/N ] d [14], while the population mean
payoff is Π̄(n) = [nΠA(n) + (N − n)ΠB(n)] /N . For in-
finite (N → ∞) and well-mixed populations, the density
x ≡ n/N of the A species changes according to its rela-
tive payoff and obeys the replicator dynamics, given by
the rate equation [1, 2]

ẋ = x(ΠA − Π̄). (1)

Here, we are particularly interested in anti-coordination
games (ACG), where c > a and b > d, and in coordina-
tion games (CG), where a > c and d > b. In addition to

http://arxiv.org/abs/0912.0157v3


2

the absorbing states n = 0 and n = N , ACG and CG ad-
mit an interior fixed point associated with the coexistence
of A and B species at a density x∗ = (d−b)/(a−b−c+d)
of A’s. According to the rate equation (1), x∗ is an at-
tractor in ACG and a repellor in CG, whereas x = 0 and
x = 1 are repelling fixed points in ACG and attracting
in CG.

To account for fluctuations arising when the popula-
tion size is finite, the evolutionary dynamics is imple-
mented in terms of fitness-dependent birth-death pro-
cesses [2, 3] describing, e.g., the evolution of the prob-
ability Pn(t) to have n individuals of type A at time t:

dPn(t)

dt
= T+

n−1Pn−1 + T−

n+1Pn+1 − [T+
n + T−

n ]Pn. (2)

Here, an individual chosen proportionally to its fitness
produces an identical offspring which replaces a randomly
chosen individual [15], and the total population size N
is conserved. Thus, in the master equation (2), the re-
action rates for the birth/death transitions n → n ± 1
are given by T±

n = χ±(fA(n), fB(n))n(N − n)/N2,
where χ±(n) are functions of the fitness of each species,
fA(n) = 1−w +wΠA(n) and fB(n) = 1−w +wΠB(n).
As often in EGT, we focus on systems evolving ac-
cording to the fitness-dependent Moran process (fMP)
for which χ+(n) = fA[(n/N)fA + (1 − n/N)fB]

−1 and
χ−(n) = fB[(n/N)fA + (1 − n/N)fB]

−1 [2, 15]. It is
worth noticing that χ+(n) and χ−(n) intersect only at
the fixed point value n = Nx∗ for 0 ≤ n ≤ N , which en-
sures that the properties of the replicator dynamics (1)
are recovered when N → ∞ [1–3, 16, 17].

The fitnesses fA(n) and fB(n) are comprised of a base-
line contribution [the constant (1 − w)] and a term ac-
counting for selection [wΠA for fA], where the parameter
0 ≤ w ≤ 1 measures the selection intensity [2, 3]. The
latter is weak for w → 0, when T±

n ∝ n(N − n)/N2,
and strong for w → 1, when the baseline fitness becomes
negligible. As n ∈ [0, N ] and n = 0, N are absorbing, the
boundary conditions to Eq. (2) are T±

0 = T±

N = 0.

WKB THEORY OF ANTI-COORDINATION

GAMES

Our WKB-based approach is presented in the frame-
work of ACG (e.g. snowdrift and hawk-dove games [1]),
where the absorbing states n = 0 or x = 0 (all B′s),
and n = N or x = 1 (all A

′s) are separated by the
interior attractor x∗ [in the language of the rate equa-
tion (1)]. However, in the presence of noise x∗ becomes
metastable, which is very naturally accounted by our the-
ory. For Nx∗ ≫ 1, after a short relaxation time tr, the
system settles into a long-lived metastable state whose
population size distribution is peaked in the vicinity of
Nx∗ [13]. This implies that fixation of either species

occurs only in the aftermath of a long-lasting coexis-
tence. At t ≫ tr, only the first excited eigenvector of
(2), πn, called the quasi-stationary distribution (QSD),
has not decayed and hence determines the shape of the
metastable PDF. Indeed, at t ≫ tr the higher eigen-
modes in the spectral expansion of Pn(t) have already
decayed, and the metastable dynamics of the population
sizes PDF satisfies [13]

Pn(t) ≃ πne
−t/τ for n ∈ [1, N − 1], (3)

where
∑

n πn = 1. Thus, at t ≫ tr the dynamics of the
probabilities to be absorbed at n = 0 and n = N satisfies

P0(t) ≃ φ(1− e−t/τ ) , PN (t) ≃ (1− φ)(1 − e−t/τ ). (4)

Here, φB = φ and φA = 1 − φ are the fixation proba-
bilities of the B and A species, respectively, τ is the un-
conditional MFT, and a very strong inequality τ ≫ tr
holds. The fixation probability and MFT are determined
by the fluxes into the absorbing states. Therefore, using
Eqs. (2) and (4), one obtains

τ =
[

T−

1 π1 + T+
N−1πN−1

]−1
, and φ = T−

1 π1τ. (5)

Similarly, the respective conditional MFTs of species
A and B (conditioned on the fixation of type A and

B, respectively) are τA =
[

T−

N−1πN−1

]−1
and τB =

[

T+
1 π1

]−1
. According to Eq. (5), these quantities are de-

termined once we have obtained π1 and πN−1 from the
full expression of the QSD that we now compute.
The QSD satisfies the quasi-stationary master equa-

tion, obtained by substituting Eq. (3) into (2) and ne-
glecting the exponentially small term πn/τ (to be verified
a posteriori):

T+
n−1πn−1 + T−

n+1πn+1 − [T+
n + T−

n ]πn = 0. (6)

For N ≫ 1, we define the transition rates T±(x) =
T±
n [14] as continuous functions of x, and treat Eq. (6)

by employing the WKB ansatz [9–11]

πn ≡ πxN = π(x) = A exp[−NS(x)− S1(x)] , (7)

where S(x) and S1(x) are respectively the system’s action
and its amplitude, and A is a constant prefactor intro-
duced for convenience. The WKB approximation is here
an asymptotic series expansion in powers of 1/N based
on the exponential ansatz (7) (see, e.g., [9–11]) [18]. Sub-
stituting (7) into Eq. (6) yields closed equations for S(x)
and S1(x). To leading order, similarly as in Hamiltonian
systems, the action obeys the Hamilton-Jacobi equation
H(x, S′) = 0. In this case, the underlying Hamiltonian
is

H(x, p) = T+(x)(e
p − 1) + T−(x)(e

−p − 1), (8)

where we have introduced the auxiliary momentum
p(x) = dS/dx [9–11]. Therefore, to leading order,
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the “optimal-path” followed by the stochastic system,
from the metastable state to fixation, is pa(x) =
− ln [T+(x)/T−(x)], corresponding to the zero-energy tra-
jectory H(x, pa) = 0 with non-zero momentum. The ac-
tion along pa(x) is

S(x) = −

∫ x

ln [T+(ξ)/T−(ξ)] dξ. (9)

Performing the subleading-order calculations, one ob-
tains S1(x) = (1/2) ln[T+(x)T−(x)] [10, 11]. Imposing
the normalization of the Gaussian expansion of the QSD
(7) about x = x∗, one finds the constant A, yielding

π(x) = T+(x
∗)

√

S′′(x∗)

2πN T+(x)T−(x)
e−N [S(x)−S(x∗)] .(10)

This expression is valid sufficiently far from the bound-
aries, where T±(x) = O(1) [11], and generally leads to a
non-Gaussian QSD with systematic deviations from the
Gaussian approximation near the tails, as illustrated in
Fig. 1(a).
To obtain the full QSD we need to match the WKB

result (10) with the solution of Eq. (6) in the vicin-
ity of the absorbing boundaries, where the transition
rates can be linearized [11]. For instance, near x = 0,
T±(x) ≃ xT ′

±(0), so Eq. (6) yields (n − 1)T ′
+(0)πn−1 +

(n + 1)T ′
−(0)πn+1 − n[T ′

+(0) + T ′
−(0)]πn = 0. Its recur-

sive solution is πn = (π1/n)(R
n
0 − 1)/(R0 − 1), where

R0 = T ′
+(0)/T

′
−(0). Matching this expression with the

leading order of Eq. (10) in the vicinity of x = 0 yields

π1=

√

NS′′(x∗)

2π

T+(x
∗) (R0 − 1)

√

T ′
+(0)T

′
−(0)

eN [S(x∗)−S(0)]. (11)

A similar analysis at x ≃ 1 with R1 = T ′
−(1)/T

′
+(1) gives

πN−1=

√

NS′′(x∗)

2π

T+(x
∗)(R1 − 1)

√

T ′
+(1)T

′
−(1)

eN [S(x∗)−S(1)]. (12)

Hence, the expressions (10)-(12) provide us with the com-
plete QSD.

FIXATION IN ANTI-COORDINATION GAMES

We now apply the general results obtained in the pre-
vious section to study fixation in ACG, when the system
follows the fMP. In this case the action given by Eq. (9),
becomes

S(x) = [B/(B −A)− x] ln[Ax+B(1 − x)]

+ [D/(C −D) + x] ln[Cx+D(1− x)], (13)

where A = 1−w+wa, B = 1−w+wb, C = 1−w+wc, and
D = 1−w+wd [19]. Provided that N [S(1)−S(x∗)] ≫ 1,
and N [S(0)− S(x∗)] ≫ 1 (which imposes a lower bound
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FIG. 1: (Color online). (a) ln πn vs. n (with N = 150):
theoretical predictions [Eqs. (10)-(13)] (solid) compared with
numerical results (dashed) and with the Gaussian approxi-
mation of the QSD (dashed-dotted). (b) ln τ−1 as a function
of N : theoretical predictions [Eqs. (5), (11)-(13)] (solid) and
numerical results (symbols). Parameters are a = 0.1, b = 0.7,
c = 0.6, d = 0.2, w = 0.5 and the system follows the fMP.
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FIG. 2: (Color online). (a) ln τ vs w: theoretical [Eqs. (5),
(11)-(13)] (solid) and numerical results (symbols). (b) De-
pendence of ln τ on the initial number n of A’s, for w = 0.2,
0.5 and 0.8 (bottom to top): comparison between theoret-
ical (solid) and numerical (dashed) results. (c) Theoretical
[Eq. (14)] (solid) and numerical (symbols) results for the ra-
tio φA/φB vs w. (d) Same as in panel (b) for φA/φB (w
grows from top to bottom). Parameters are a = 0.1, b = 0.7,
c = 0.7, d = 0.2, N = 200 and the system follows the fMP. In
the numerical results of (a) and (c), n is chosen sufficiently
large so that fixation does not occur immediately (see text).

on w), the MFTs and fixation probability are obtained
from Eqs. (5) and (11)-(13) with T−

1 = T+
N−1 ≃ N−1.

These results generalize those obtained previously in the
limiting cases Nw ≪ 1 [3, 5] and w = 1 (for which
A = a, B = b, C = c, and D = d) [6]. As illus-
trated in Fig. 1(b), one finds that the unconditional
MFT asymptotically exhibits an exponential dependence
on the population size N , τ ∝ N1/2eN(Σ−S(x∗)), where
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the governing exponent Σ ≡ min [S(0), S(1)] is readily
obtained from (13). With (10)-(12), this confirms that
πn/τ is indeed exponentially small. For 0 < w < 1, one
finds that Σ increases monotonically with w, as shown
in Fig. 2(a). Here (as in our other figures), the theo-
retical predictions are compared with the numerical so-
lution of the master equation (2) yielding an excellent
agreement. It also follows from (5),(11)-(13) that for
N ≫ 1 and small (but not too small) selection inten-
sity, N−1 ≪ w ≪ 1, the conditional MFTs grow expo-
nentially as τA ∼ N1/2eNw(a−c)2/[2(c−a+b−d)], and τB ∼
N1/2eNw(b−d)2/[2(c−a+b−d)], with τ = τAτB/(τA+τB) ∼
min(τA, τB).
As our approach assumes that fixation occurs after the

metastable state is reached, the expressions obtained for
the MFTs are independent of the initial number n of A’s,
when n ≫ 1. This is confirmed in Fig. 2(b) where theory
and numerical results agree excellently.
The ratio φA/φB = φ−1−1 between the fixation prob-

abilities of the A’s and B’s allows to understand the in-
fluence of selection and the interplay between selection
and demographic stochasticity. Indeed, with Eqs. (5),
and (11)-(13), our theory yields

φA

φB
=

πN−1

π1
=

√

BD

AC

(

C−A

B−D

)

BN( B
B−A )DN( D

C−D )

AN( A
B−A )CN( C

C−D )
.(14)

In Fig. 2(c), we show the ratio φA/φB and find a nontriv-
ial exponential dependence on w in excellent agreement
with numerical calculations. Contrary to the neutral case
w = 0 (not covered by our theory), where the ratio of fix-
ation probabilities strongly depends on the initial number
of A’s [2], Eq. (14) predicts that φA/φB is independent
of the initial condition when the selection strength is fi-
nite. Indeed, the numerical results presented in Fig. 2(d)
confirm that for n ≫ 1, the ratio φA/φB coincides with
(14) and becomes independent of n when w is nonzero
(for w ≪ 1 the convergence requires n ∼ Nx∗).

WKB THEORY AND FIXATION IN

COORDINATION GAMES

As a further illustration of our theory, we accurately
compute the fixation probability in CG (e.g. stag-hunt
game [1]). Here, the fixed point x∗ is a repellor while
x = 0, 1 are attracting, hence there is no metastability
and fixation occurs quickly [6]. As a result, with an initial
minority of A’s, n < Nx∗, the fixation of B’s is almost
certain, and we are interested in calculating the exponen-
tially small probability φA

n ≡ φA(x) that A’s fixate. Such
a probability satisfies the following equation [2, 3, 6]:

T+
n φA

n+1 + T−

n φA
n−1 − [T+

n + T−

n ]φA
n = 0, (15)

which is the stationary backward master equation of this
problem [7], with boundary conditions φA

0 = 0, φA
N = 1.

At this point, it is convenient to introduce the auxiliary
quantity

Pn ≡ φA
n+1 − φA

n ≡ P(x), (16)

which is a normalized PDF peaked at x∗. From Eq. (16),
the fixation probability φA

n can be easily obtained, yield-

ing φA
n =

∑n−1
m=0 Pm. Substituting Eq. (16) into Eq. (15),

one arrives at a difference equation for the PDF P(x)
which reads

T+(x)P(x) − T−(x)P(x − 1/N) = 0. (17)

This equation can be treated with the WKB ansatz
P(x) = ACGe

−NS(x)−S1(x). To leading order one
has T+(x) − T−(x)e

S
′(x) = 0, whose solution is

S(x) = −S(x) [where S(x) is given by Eq. (9)].
In the subleading order, after some algebra, one
finds S1(x) = (1/2) ln[T+(x)/T−(x)]. Normalizing
∑N−1

n=0 Pn ≃ N
∫ 1

0 P(x)dx = 1, and assuming a main
Gaussian contribution arising from x ≃ x∗, we find
ACG ≃

√

|S′′(x∗)|/(2πN)e−NS(x∗). In the realm of the
WKB approach, we have thus obtained an expression of
P(x) that holds for 0 ≤ x ≤ 1. [It can be checked that
such a WKB result satisfies Eq. (17) also near the ab-
sorbing boundaries [21].] From the expression of P(x),
the fixation probability thus reads

φA
n =

√

|S′′(x∗)|

2πN

n−1
∑

m=0

√

T−
m/T+

m eN [S(m/N)−S(x∗)]. (18)

Of special interest is the limit of n ≪ Nx∗ correspond-
ing to the fixation of a few mutants in a sea of wild-type
individuals [2]. In this case, it can be shown that Eq. (18)
can be well approximated by φA(x) ≃ P(x)/[eS

′(x) − 1]
when w = O(1), while for small selection N−1 ≪ w ≪ 1,
φA(x) ≃

√

N |S′′(x∗)|/(2π)
∫ x

0 dy eN [S(y)−S(x∗)] [21]. A
comparison between theory (18) and numerical results,
using S(x) from Eq. (13), is shown in Figs. 3 and 4(a)
and an excellent agreement is observed.

The WKB theory presented in this section (as well as
that dedicated to the ACG) is valid as long as w ≫ N−1.
For small selection intensity, w ≪ 1 [20], the fixation
probability is often computed using the FPA (or diffu-
sion approximation) [3–5], usually considered within the
linear noise approximation [7]. Thus, for N−1 ≪ w ≪ 1
(and N ≫ 1), the predictions of the WKB and FPA
approximations can be compared (together with results
of numerical simulations) to determine their respective
domains of validity.
For the purpose of comparison, it is conve-

nient to rewrite both WKB and FPA predictions
in the following form: φA(x) ≃ Ψ(x)/Ψ(1),
where Ψ(x) =

∫ x

0 dy e−
∫

y

0
dzΘ(z). From Eq. (18),

one finds that for the WKB approach the expo-
nent reads ΘWKB(z) = N ln [T+(z)/T−(z)], whereas
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FIG. 3: (Color online). The fixation probability φA(x) for the
fMP process: theoretical result (18) (solid), numerical calcu-
lations (dashed) and FPA (dash-dotted), with a = 4, b =
0.2, c = 0.3, d = 3.8, N = 100. Insets: ratio between theoret-
ical results and those of the FPA, see text. (a) For w = 0.1,
Nw2 = 1 and all curves agree well, with an error of about 7%
in the predictions of the FPA for x → 0. (b) For w = 0.75,
Nw2

≫ 1, the curve obtained from the FPA systematically
deviates from the others and yields exponentially large errors.
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FIG. 4: (Color online). (a) Fixation probability φA(x) as
function of w: theoretical result (18) (solid), numerical calcu-
lations (dashed) and FPA (dash-dotted), for a = 1, b = 0.2,
c = 0.3, d = 0.8, and N = 200. (b) Ratio between the predic-
tions of the FPA and those of our theory vs N , for w = 0.25,
a = 4, b = 0.2, c = 0.3, and d = 3.8. The results of the
FPA deteriorate when both w and N increase. In (a) and
(b), n = 10 thus x = 10/N , and the system follows the fMP.

for the FPA one has the exponent ΘFPA(z) =
2Nz

[

T ′
+(x

∗)− T ′
−(x

∗)
]

/ [T+(x
∗) + T−(x

∗)] [7]. Hence,
it can be shown that in the vicinity of x = x∗, ΘWKB(x)−
ΘFPA(x) ∼ Nw2(x − x∗)2 [21]. Therefore, while the
WKB result (18) is accurate for any finite value of w
[as shown in Fig. 4(a)], the FPA is unable to account
for fixation and yields exponentially large errors when
w & N−1/2. In fact, the predictions of the FPA (within
linear noise approximation) are accurate only when the
selection intensity satisfies w ≪ N−1/2, which is a more
stringent condition than w ≪ 1. This is illustrated in
Figs. 3 and 4 which display a comparison between our
predictions and those of the FPA for various values of w
and N .

CONCLUSION

We have studied fixation in evolutionary games un-
der non-vanishing selection and elucidated the nontrivial
relation between selection intensity and effects of demo-
graphic fluctuations. This has been achieved by general-
izing a recent WKB-based theory to account for multi-
ple absorbing states. This approach naturally accounts
for non-Gaussian behavior and allows an accurate treat-
ment of large fluctuations. In the framework of mod-
els of cooperation dilemmas, we have analytically com-
puted the QSD (shape of the metastable PDF), MFTs
and the fixation probabilities beyond the weak selection
limit. While it does not cover the w → 0 limit (where
the FPA holds), our theory agrees excellently with nu-
merical simulations over a broad range of finite selection
strength (0 < w ≤ 1), where the FPA generally fails.
For concreteness, our approach has been illustrated for
two classes of (formally solvable) 2× 2 games, but is nei-
ther restricted to linear payoffs nor to a specific choice of
the transition rates [21]. Importantly, our theory can be
adapted to study evolutionary processes for which there
is no rigorous analytical treatment (e.g. 3× 3 games [1])
and help generalize the concept of evolutionary stability.
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