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Automating Knowledge Discovery for Toxicity Prediction Using
Jumping Emerging Pattern Mining
Richard Sherhod,† Valerie J. Gillet,*,† Philip N. Judson,‡ and Jonathan D. Vessey‡

†Information School, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, U.K.
‡Lhasa Limited, 22-23 Blenheim Terrace, Woodhouse Lane, Leeds, LS2 9HD, U.K.

ABSTRACT: The design of new alerts, that is, collections of structural features observed to result in toxicological activity, can be a slow
process and may require significant input from toxicology and chemistry experts. A method has therefore been developed to help automate
alert identification by mining descriptions of activating structural features directly from toxicity data sets. The method is based on jumping
emerging pattern mining which is applied to a set of toxic and nontoxic compounds that are represented using atom pair descriptors. Using
the resulting jumping emerging patterns, it is possible to cluster toxic compounds into groups defined by the presence of shared structural
features and to arrange the clusters into hierarchies. The methodology has been tested on a number of data sets for Ames mutagenicity,
oestrogenicity, and hERG channel inhibition end points. These tests have shown the method to be effective at clustering the data sets
around minimal jumping-emerging structural patterns and finding descriptions of potentially activating structural features. Furthermore, the
mined structural features have been shown to be related to some of the known alerts for all three tested end points.

■ INTRODUCTION

Having the ability to predict potential toxic and environmental
effects of chemical compounds is of growing importance to the
pharmaceutical, cosmetics, and agrochemical industries.1−3 The
motivation for the development of computational tools arises
from their low cost compared to in vivo or in vitro experiments;
the possibility of applying the methods to compounds that have
not yet been synthesized; and ethical factors such as reducing
the need for animal testing.
The toxicity of a compound can be attributed to its

physicochemical and structural properties so that many of the
structure−activity relationship (SAR) methods that are used to
predict therapeutic activities have also been applied to toxicity
prediction. However, predicting toxic effects is particularly
challenging for a number of reasons: multiple different end points
exist; the same end point can arise through multiple mechanisms;
and for many end points, such as carcinogenicity, the mechanisms
are poorly understood.4 Statistical methods of prediction such as
quantitative structure−activity relationship (QSAR) modeling have
limited success due to the poor quality and quantity of available
toxicity data and the breadth of mechanisms that exist. Machine
learning methods such as neural networks, random forests, and
support vector machines have also been applied to toxicity

prediction;5 however, in many cases, it is not possible to extract an
interpretable SAR from the models.
Expert systems, on the other hand, are based on knowledge from

human experts encoded into multiple rules about relationships
between structure and different toxic effects. These knowledge
based systems can make predictions about many end points,
provided that appropriate information is present within the
knowledge base. The rules within an expert system’s inference
engine often include conditional clauses that link physicochemical
and structural properties to a particular biological mechanism.6 For
example, the Derek Nexus system7 encodes structural features that
have been associated with particular toxicological effects as structural
alerts alongside other parameters such as physicochemical
properties and uses a reasoning model to weigh up multiple
arguments both for and against toxicity. A disadvantage of
expert systems is that the process of developing new structural
alerts to expand the knowledge base requires considerable time
and effort from domain experts and involves detailed analysis of
relevant literature. The aim of this work on emerging pattern
mining is to help automate the process of knowledge extraction
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from toxicity data sets and thus reduce the time and effort
required in identifying new structural alerts.
Emerging pattern (EP) mining aims to identify combinations

of descriptors that are able to discriminate between classes of
objects.8 Emerging patterns may be extracted from any data
that can be expressed as a series of discrete binary properties. A
simple example of emerging pattern mining is the identification
of patterns of characteristics of mushrooms that discriminate
edible mushrooms from poisonous examples. An example of an
emerging pattern in the edible class is the set of characteristics
{“no odor” “smooth stalk surface below ring” “one ring only”}.9

Within chemistry, Auer and Bajorath10 have applied emerging
pattern mining to the prediction of biological activity based on
physicochemical and molecular properties. Continuous value
descriptors were discretized into bits, for example, discrete ranges
of molecular weight and log P values. Emerging pattern mining was
then used to identify combinations of bits (representing ranges of
different physicochemical properties) that are more prevalent in
active compounds than in inactives. More recently, Lozano et al.11

described an approach to identifying “jumping fragments” present
in toxicological data. “Jumping” is a term used in emerging pattern
mining to indicate a pattern that is exclusive to the objects in one
class. Using this terminology, Lozano et al. define a jumping
fragment as one that is frequent in the actives while being absent
from the inactives. Their method is graph-based and involves
enumerating connected subgraphs directly from the active
compounds and searching for each independently in the actives
and inactives, retaining those that meet a set of defined criteria. This
approach is similar to that described by Kazius et al. who
enumerate subgraphs and select those which are most
discriminative between mutagenic and nonmutagenic com-
pounds.12 However, Lozano et al.’s method does not make use
of the emerging pattern mining algorithms that enable
combinations of features to be identified.
Emerging pattern mining shares it roots with formal concept

analysis,13 otherwise known as Galois lattice theory14 or
association rule mining. However, whereas emerging pattern
mining is a supervised technique and finds patterns that
distinguish one class from another; association rule mining is
unsupervised. An association rule is an implication of the form
X ⇒ Y where X and Y are disjoint subsets of all available items;
X is called the antecedent and Y is the consequent. Jullian and
Afshar’s Knowledge Extraction and Management (KEM)
software15 is based on association rule mining. They describe
an application of KEM to a data set of reproductive toxicants
and innocuous compounds. The compounds are first
fragmented into substructures of various sizes and each compound
is encoded as binary properties indicating the presence or absence

of the substructural fragments together with its activity, which is
also encoded as a binary property. KEM can be used to find
association rules that relate substructural fragments to activity by
limiting the extracted rules to those containing the presence of
activity as the consequent.
In other related work, Nicolaou et al.16 describe an automated

approach to identifying structural motifs associated with the
active compounds in an HTS data set. The active compounds are
clustered into nodes and a substructure common to the
compounds in each node is identified. This process is repeated
iteratively to produce a hierarchy of nodes by clustering the
compounds in each newly created node and forming new
common substructures. The inactive compounds are then used
to populate the classes in a postprocessing step. The resulting
clusters consisting of both actives and inactives can then be used
to derive structure−activity relationships. Harper et al.17 also
describe a data driven clustering method aimed at identifying
motifs that are common to actives compounds in an HTS data
set. The motifs are based on reduced graphs which are generated
for all compounds and are then ranked based on the activity
values of the compounds that exhibit them. This approach is not
intended as a predictive system and indeed many small active
clusters will not be identified, instead it is intended as an aid to
identifying gross features in a data set such as compounds
synthesized in library design efforts or compounds that interfere
with the assay due to the presence of large common motifs.
Here our focus is on using emerging pattern mining to

identify structural features that may be associated with toxicity and
which can be presented to knowledge base developers for further
analysis. We use structural fingerprints as the descriptors and
emerging pattern mining methods to identify combinations of bits
that are present in the active compounds and absent from the
inactives. The use of structural fingerprints enables the active
compounds to be organized into hierarchies in which the structural
descriptions identified become more detailed as a hierarchy is
descended. The resulting hierarchies represent a form of supervised
clustering in which the clusters are formed around features present
in actives and absent from inactives, thus features that are common
to both actives and inactives are ignored in the initial clustering
(although they may be identified later). The hierarchies allow the
knowledge base developers to browse through a set of compounds
in a highly organized way and to choose a level of description that is
consistent with any other knowledge that is available. Using
structural fingerprints also permits the identification of patterns
consisting of disconnected fragments.
Following a brief introduction to emerging pattern mining, we

describe how we have adapted published emerging pattern mining
algorithms to identify structural features in data sets of chemical

Figure 1. Hypothetical data set containing the emerging pattern {a, c}.
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Figure 2. All possible subsets of the entries in the hypothetical class 2. The minimal and maximal borders are shown below, from which all of the
subsets can be enumerated.

Figure 3. Six minimal JEPs each consisting of three atom pair descriptors and found in the same set of 29 active molecules are shown mapped onto
one of the active molecules.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci300254w | J. Chem. Inf. Model. 2012, 52, 3074−30873076



structures and how we link the patterns and the sets of active
compounds that contain them into hierarchies. We then validate
the methods on data sets in which the features associated with
toxicity are already known and compare the patterns found with
the structural alerts contained within Derek Nexus.

■ METHODOLOGY
The concept of an emerging pattern is illustrated for a hypothetical
data set consisting of data entries in two classes shown in Figure 1,
where each class consists of six entries, one per row. Each data
entry is composed of a set of up to five binary properties, or items
(a, b, c, d, e); if an item is present in a data entry then its label is
shown in the corresponding row, otherwise the label is absent. A
set of properties of any length (cardinality) is called an item set or
pattern. Any pattern that is a proper subset (a subset of fewer
items) or is equal to the item set of one or more of the data entries
and occurs more frequently in one of the two classes is said to be
“emerging” in that class. In Figure 1, the two highlighted items, a
and c, represent an item set that occurs more frequently in data
entries in class 1 relative to class 2 so that the pattern {ac} is
emerging in class 1. Thus, an emerging pattern can be considered
to be a characteristic of the entries in one class that distinguishes
them from those in the other class, regardless of the discriminatory
ability of any individual item in the pattern.
The proportion of data entries in a class that contain a pattern

is referred to as its support; the support of pattern, pat, in
class D is

=D
D

D
Supp( )pat

pat

total

where Dpat and Dtotal are the number of entries in class D that
contain the pattern and the total number of entries in D,
respectively. Thus, an emerging pattern is one which has greater
support in one class relative to the other. The emerging pattern

highlighted in Figure 1, {ac}, has support 0.67 in class 1, since
it occurs in 4 of 6 data entries, whereas it has support of only 0.5
in class 2, since it occurs in 3 of 6 data entries. When an EP is
present in only one class, it is known as a jumping-emerging
pattern (JEP), i.e. it is jumping and emerging into the class in
which it occurs.
Conceptually, the simplest method of identifying EPs and

JEPs in one class compared to another is to enumerate all
possible item sets in the class of interest and then to search for
each item set in the data entries for each class and determine
their relative supports. However, this process represents a huge
combinatorial problem, even for low dimensional data sets.
Dong and Li have developed two methods which have been
adopted in this work to speed up the process of identifying
JEPs considerably: the border description8 and the border-
differentials method.18 The border description method allows a
complete set of enumerated patterns to be defined from any
data set represented by binary properties, without full
enumeration of the patterns themselves. In any list of item
sets, if an item set is as large as possible while not containing
any other complete item set as a proper subset, that item set is
said to be minimal; conversely, if an item set is as small as
possible while not being present as a subset of any larger item
set from the list, that item set is maximal. The minimal and
maximal patterns of a list of item sets are the border
descriptions and define the full list of item sets that can be
generated from the list. As an example, full enumeration of the
entries in the hypothetical class 2 in Figure 1 results in 19
unique patterns as shown in Figure 2: the individual items a, b,
c, d, and e are highlighted in blue and are the minimal patterns

Figure 4. An example support hierarchy for five JEPs and the support
sets extracted from the hypothetical example in Figure 1.

Figure 5. Example of two overlapping hierarchies for seven JEPs and their support sets. The highlighted nodes are common to both trees.

Figure 6. Nonminimal JEP consisting of the maximum common set of
atom pairs, mapped to a supporting active molecule.
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of the set; the item sets {bde} and {acde} are highlighted in red
and are the maximal patterns. The border description in Figure
2 implies that any proper superset of the items d or e will occur
in the fully enumerated list of patterns from class 2, providing it
is also a subset of either of the item sets {bde} or {acde}. The
minimal patterns are the individual items represented in the set
and we use the Horizon-Miner algorithm of Li et al.19 to define
the maximal border.
The border differential algorithm identifies the border

description of the JEPs in one class by taking the differences
in the border descriptions of the two classes. The border
description of the JEPs consists of a set of minimal JEPs
together with a set of maximal JEPs. If required, the full set
of JEPs can be enumerated from these two limits.
Applying JEP Mining to Toxicity Data. We apply the

JEP mining algorithm to compound sets in which the items
(descriptors) are atom pairs of the form:

π π− −A n X B n( , ) ( , )A A B B

where A and B represent atoms, n is the number of non-
hydrogen atoms connected to the atom; π is the number of
π-bonds connected to the atom; and X is the path length
measured as the number of atoms between A and B including
the two atoms themselves. Given a data set consisting of known
actives and inactives, the procedure for mining JEPs is as
follows:

1. Generate all atom pairs under user-defined constraints
from the active compounds in the data set and form
atom pair fingerprints for both the actives and inactives

2. Apply the Horizon-Miner algorithm to extract the
maximal patterns for both the actives and the inactives
using the atom pair fingerprints

3. Apply the border-differential algorithm to mine the set of
all possible minimal JEPs in the actives compared to the
inactives

4. Reduce the set of minimal JEPs to those that occur in
distinct sets of actives

5. Identify relationships between the supporting actives of
minimal JEPs and arrange them into hierarchies

6. Extract the maximum set of commonly occurring atom
pairs from the set of actives that support each minimal
JEP, to form the largest and most descriptive
representation of their common structural features.

In step 1, only those atom pairs that occur in the actives
and which meet the defined constraints are put into the JEP
mining algorithm. This is because the JEPs represent sets of
atom pairs that are unique to the actives; atom pairs that
occur only in inactives can only be relevant to the properties
of the inactives and not the actives. The path length range used
to generate the atom pairs is user-definable. For example, a
range of 2−4 would include atom pairs with X = 2, 3, and 4.
Also a threshold on absolute occurrence is applied to each
atom pair. The rationale for the threshold is that a JEP that is
supported by a very small number of actives is unlikely to be
of interest and, for a JEP to be above a given support threshold,
each atom pair must also occur above the threshold in the
active compounds.
Step 4 is required since there can be multiple minimal JEPs

that describe (or are supported by) the same set of compounds.
For example, consider a hypothetical case in which {a}, {b},
and {c} are not JEPs in class 1 but {ab} and {bc} are; then, both
{ab} and {bc} will be minimal even if they are supported by the
same set of data entries. This is illustrated in Figure 3 for atom
pair JEPs mined from an Ames mutagenicity data set, where
each of the six minimal JEPs is supported by the same set of

Figure 7. Alerts for Ames compounds: (a) aromatic nitro; (b) epoxide; (c) alkylating agents; (d) α,β-unsaturated aldehydes.
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active compounds. The atom pairs in each of the JEPs are
shown mapped onto one of the compounds in the set (where
an atom pair occurs multiple times, one potential mapping is
chosen arbitrarily). Thus step 4 involves comparing the support
sets for all minimal JEPs and retaining one minimal JEP only
(note that the atom pairs common to all compounds in a
support set, whether they form part of a JEP or not, are
determined in a later step).
Many JEPs fall into families consisting of subset−superset

relationships, with similar relationships existing between the
compound sets that support them. In step 5, the JEPs within a
family are arranged in a hierarchy with the smallest JEP forming
the root node of a tree, together with the compounds that
support it. The remaining JEPs are placed below the root node
in order of increasing size. As a tree is descended, the JEPs
become larger and therefore more descriptive while the

compounds that support them become fewer. The formation of
hierarchies is illustrated in Figure 4 based on the hypothetical
example in Figure 1: the tree is composed of five JEPs from
class 1 arranged in a tree of six nodes. Within the tree, each
node represents a JEP and includes the data set entries that
support that pattern, indicated using brackets, e.g. [1 2 3]. The
JEP is shown below the support set and is indicated using
braces, e.g. {abc}.
The hierarchies resulting from this process represent a form

of supervised clustering, i.e. the clustering is based on structural
features that only occur in the active compounds. The clusters
found using JEPs are overlapping since a molecule can be
present in more than one node of a hierarchical tree, and in
more than one hierarchy. This is distinct from conventional
hierarchical clustering methods, which do not typically result in
overlapping clusters or multiple hierarchies. An example of two

Figure 8. Descriptions of two hERG inhibition toxicophore alerts in Derek Nexus with example actives.

Table 1. Number of JEPs, Hierarchies (Trees), and Run Times for Different Atom Pair Path Length Ranges and Minimum
Occurrence Thresholdsa

total support ≥ 6

minimum occurrence JEPs trees JEPs trees time (mm:ss)

path lengths: 2−4 1% 1041 199 206 40 02:41
3% 953 174 206 40 01:40
5% 799 150 195 33 00:41

path lengths: 2−5 1% 1874 268 448 74 46:38
3% 1758 248 448 74 29:16
5% 1498 206 418 57 10:54

aThe columns headed “total” gives the total numbers of JEPs and trees found whereas the columns headed “support ≥ 6” gives the numbers of JEPs
and trees supported by at least six actives.
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overlapping trees is shown in Figure 5. Seven hypothetical JEPs
labeled R1, R2, A, B, C, D, and X, and composed of abstract
properties, a, b, c, d, and e, are shown arranged in two trees,
one of six nodes and the other of five nodes. The tree with
the root node R1, previously shown in Figure 4, shares the

three highlighted nodes with the tree with root node R2.
These three common nodes consist of two distinct JEPs;
{abc} and {abcd}.
The final step (step 6) involves expanding the set of atom pairs in

each of the minimal JEPs to include all atom pairs that are common

Figure 9. The JEPs and support sets for four root nodes that describe aromatic nitro compounds. The atom pairs comprising the JEPs are illustrated
as substructures below each set of compounds. There is significant overlap between root nodes 1 and 2. The compounds that are unique to each
cluster are shaded. The separation of aromatic nitro compounds into multiple overlapping nodes reflects the presence of aromatic nitro groups
within the inactivessee text for further details.
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to the supporting compounds. This is achieved by applying a bitwise
AND operation to the atom pair fingerprints of the supporting
compounds. As an example, there are nine atom pairs that are
common to all 29 compounds that support each JEP in Figure 3,
and this set includes the atom pairs in all six minimal JEPs together
with three additional atom pairs, as shown in Figure 6.
Knowledge Extraction. Having arranged the compounds

into hierarchical sets, the JEPs and their associated compounds can
be browsed by knowledge base developers to assist in the time-
consuming process of identifying new alerts. This would typically
involve the identification of structural hypotheses based on a
combination of the structural features identified in the data and
prior knowledge. A search of the literature would then be made to
identify compounds that fit the hypothesis and that either support
or contradict it. If a biological mechanism for toxicity can be
established, the hypothesis could lead to a new structural alert
being formed, or an existing alert being extended, and the
expansion of the knowledge base. The details of how this
procedure would be carried out in practice will be described in a
subsequent paper aimed at the toxicology community.

■ EXPERIMENTAL SECTION
Data Sets. The JEP mining has been applied to three data

sets: an Ames mutagenicity data set; an oestrogen data set; and
a hERG data set.

The Ames mutagenicity test20 is an in vitro bacterial assay
that measures the ability of a compound to cause mutations in
several different strains of Salmonella typhimurium. Mutage-
nicity is considered to be an early alert for carcinogenicity. It is
a well studied end point in toxicity prediction.12,21,22 The Ames
data set selected here consists of 195 active compounds
(comprising alkylating agents; α,β-unsaturated aldehydes;
epoxides; and aromatic nitro compounds) and 424 inactive
compounds extracted from the Lhasa Limited Vitic 4
database. Figure 7 shows the set of alerts that correspond to
these indicators of Ames activity where it can be seen that the
activating features are believed to be relatively small substructural
fragments.
Oestrogenicity is known to result from interactions with specific

binding receptors and is dependent on more complex and often
longer ranging structural features than give rise to Ames
mutagenicity. The oestrogen data set was obtained from the
Distributed Structure-Searchable Toxicity (DSSTox) network,
hosted by the US EPA.23 The data set is composed of 232
compounds with 131 classed as active (ER_RBA+) and 101
classed as inactive (ER_RBA−) based on oestrogen receptor
binding affinity data, obtained through in vitro assay experiments.
This data set has also been examined by Jullian and Afshar15 using
their closely related Galois lattice mining method.
hERG (protein derived from human Ether-a-go-go Related

Gene) is a potassium ion channel, which is of particular
importance in the maintenance of normal heart function.24

Molecules that bind to and block the channel can lead to
arrhythmia of the heart with potentially fatal consequences. The
structural features giving rise to hERG activity are thought to
consist of both small well-defined activating substructures and
features at relatively long distance separation. The knowledge
base of Derek Nexus includes a number of alerts for hERG
inhibition. However, in most cases, Derek Nexus bases its
hERG predictions for the data set used in this study on the two

Figure 10. Two aromatic nitro compounds in the set of inactives.

Figure 11. Supporting active compounds (top) and JEPs (bottom) for two root nodes representing epoxides. The atom pairs of the JEPs are
illustrated as substructural fragments.
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alerts summarized in Figure 8, together with example
compounds which exhibit the relevant alert and are known to
be active. The hERG inhibition data set consists of 148
compounds extracted from Lhasa Limited’s Vitic database. The
compounds were classified using an IC50 threshold of 20 μM:
compounds with IC50 values below 20 μM were classified as
hERG active; while those with values of 20 μM or above were
classified as inactive. This resulted in 114 active molecules and
34 inactives.

■ RESULTS

Ames Mutagenicity. JEPs and support hierarchies were
mined from the Ames data set using atom pairs with two
different path length ranges, 2−4 and 2−5, and at three
different minimum occurrence thresholds, 1%, 3%, and 5%. The
number of unique JEPs and support hierarchies produced, and
the time taken to mine the JEPs, are shown in Table 1. The
columns headed “total” refer to the total number of JEPs and

Figure 12. JEPs (bottom) and supporting active compounds for root nodes that represent alkylating agents.
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Figure 13. Node 18, a root node, supported by mostly alkylating agents. The JEP of the child node encodes an aliphatic carbon adjacent to the ester
oxygen and excludes the aromatic compound, number 49, which is nonalkylating due to the moderating effect of the aromatic ring adjacent to the
ester oxygen.

Figure 14. Compounds represented by the most supported root node identified for the oestrogen compounds.
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trees (or hierarchies) identified, whereas the columns headed
“support ≥ 6” refer to the number of JEPs that are supported
by at least six active compounds. As the minimum occurrence
threshold on the atom pairs is increased, the number of JEPs
decreases as does the time taken to find them. This effect is
most noticeable when the total number of JEPs is considered.
The initial threshold that is set for atom pairs determines also
the minimum potential value for final support: so processing
time can be reduced by setting the initial threshold on atom
pairs to the minimum acceptable for final support. Increasing
the range of atom pairs increases the number of JEPs found and
increases the time taken considerably. This is simply due to the
increased number of descriptors.
The results described below are for atom pairs 2−5;

minimum occurrence of 3%; and JEP support ≥ 6. Note that
a JEP can have lower support than any of its component atom
pairs so that although each atom pair must occur in at least six
compounds (at 3% of 195) without a threshold on support
JEPs could be found which occur in fewer than six compounds
and which are not likely to be of interest. These parameters
result in a total of 448 JEPs arranged into 74 trees. There is,

however, considerable overlap between the JEPs (and their
corresponding support sets).
Figure 9 shows the root nodes of four trees that represent

structural variations of aromatic nitro compounds: the
molecules that support each JEP are shown together with a
substructural pattern that has been composed to represent the
atom pairs in the JEP. JEPs are restricted to patterns that occur
only in active compounds, and so numerous JEPs are formed
that describe variations in the structural features surrounding
the nitro group in the active molecules that are not present in
the inactives. Figure 10 shows two inactive aromatic nitro
compounds; the molecule on the right of Figure 10 contains a
carbonyl group with only one heavy neighbor, rather than the
secondary carbonyl group included in the JEP of root node 1.
Root node 1 is the highest supported JEP, and there is a large

overlap in the actives that support root nodes 1 and 2; the
active molecules that are unique to each set are shaded. There
is overlap because the respective JEPs describe similar, fairly
generic, structural features. The support sets of root nodes 16
and 44 are much smaller, with the corresponding JEPs
describing more specific structural features. The JEP of root
node 16 describes a point of substitution ortho to the nitro

Figure 15. JEP that represents steroidal ring systems shown together with the compounds that support it. The graph shows the relationship of this
node to the root node. The corresponding KEM association rule is shown bottom right. The substructure is present in 18 of the active compounds
and none of the inactives, so according to KEM the probability of the substructure being associated with activity is 1.0.
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group with a further meta or para substituent. The JEP also
describes the presence of a terminal carbon that is mostly found
as a methyl substituent on the ring. The JEP of root node 44
describes the presence of at least one aromatic nitrogen atom,
in addition to details of ring substituents. In all cases, the most
significant features of the aromatic nitro group alert are
included, together with additional atom pairs that are required
to fully distinguish active aromatic nitro compounds from
inactives.
Figure 11 shows the two largest supported root nodes that

describe epoxide containing compounds. Node 13 represents
molecules where both carbons of the epoxide are substituted
with one of the substituents being an aromatic atom. Node 33
represents molecules with a single substitution on the epoxide
ring.
Figure 12 shows five root nodes that represent alkylating

agents. Nodes 25 and 67 include quite similar structures with
the main difference being the halogen atom. In both cases their
associated JEPs include details of aromatic rings. The JEP of
node 38 is very generic and simply describes a bromine atom
two bonds away from a methyl group.
Figure 13 shows a further example of a root node composed

largely of alkylating agents. The JEP describes a sulfonic ester
group which is present in the Derek Nexus alert. However, the
node also contains a molecule where the ester group is adjacent
to an aromatic ring. A toxicologist would likely determine that
this molecule is not an alkylating agent due to the moderating
effect of the aromatic ring’s adjacency to the ester oxygen atom.
Although the JEP at the root node does not contain sufficient
structural information to exclude the nonalkylating agent, the
JEP of a child node of the root extends the substructure to
include an aliphatic carbon adjacent to the ester oxygen which
does therefore exclude the aromatic compound. In this case, a
node below the root node maps more closely to the Derek

Nexus alert and forms a better representation the known
sulfonic ester toxicophore.
For the Ames data set, the JEP mining has been successful in

producing clusters of compounds that are representative of the
Derek Nexus structural alerts. Although a relatively large
number of nodes are produced, in most cases it is the root level
nodes that map most closely to the alerts and it is not necessary
for a user to traverse the whole tree. In some cases, however,
the more detailed descriptions below the root are more
representative of the alerts. The presence in the inactives of key
parts of alerts associated with activity, for example, aromatic
nitro compounds and epoxide compounds, has resulted in
longer patterns being identified by the algorithm that take
account of the different environments in the actives. This level
of detail might be difficult to see manually in a large data set.

Oestrogenicity. JEP mining was based on atom pairs of
length 2−5. The root node with largest support represents 38
active compounds as shown in Figure 14. The associated JEP is
composed of five atom pairs only, that describe aromatic and
aliphatic carbon atoms at various path lengths and which are
not sufficient to separate the different structural classes
contained within the cluster. However, this node is the root
of a hierarchical tree with the known different structural classes
emerging as the tree is descended. Figure 15 shows a node
consisting of a set of steroidal compounds, with the relationship
of this node to the root illustrated on the right, and Figure 16
shows a set of 4,4′-dihydroxydiphenyl-ethane and -ethene
compounds together with the relationship of this node to the
root node.
This data set was also analyzed by Jullian and Afshar using

their KEM program and some of the association rules that
relate substructural fragments to activity are also shown. In
Figure 15, the substructure that forms the association rule
occurs in 18 molecules, and the probability of the rule being

Figure 16. JEP that represents dihydroxydiphenyl-ethane and -ethene compounds shown together with the compounds that support it. The graph
shows the relationship of this node to the root node. The corresponding KEM association rule is shown bottom right. The substructure is present in
16 of the active compounds and 2 of the actives, so according to KEM the probability of the substructure being associated with activity is 0.89.
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associated with activity is equal to 1.0, indicating that it is absent
from the inactives, that is, this fragment can be considered as a
“jumping” fragment. The corresponding JEP includes features in
addition to the steroidal ring system, namely the terminal methyl
and the hydroxy group, and illustrates an advantage of mining
and constructing structural features from a diverse set of small
components (atom pairs) in a data driven process, rather than
from predefined substructural fragments. In Figure 16, the
corresponding KEM pattern occurs in 18 molecules of which 16
are actives. The probability of the rule being associated with
activity is 0.89. This example demonstrates an advantage of
association rule mining over JEP mining in which rules are
identified that may also be present in inactives and are therefore
more resistant to noise within the data.

For the oestrogenicity data set, the JEP mining has produced
clusters of compounds that are similar to those produced by some
of the association rules mined by Jullian and Afshar using KEM. A
larger number of nodes are produced than for Ames mutagenicity,
and few of the JEPs at the root level are capable of separating
different structural classes. However, separation of these classes is
achieved by more detailed JEPs further down the trees.

hERG Channel Inhibition. The JEP mining was based on
atom pairs of length 2−8. The long-range descriptors were
included because the known toxicophore alerts indicated that
there could be up to eight atoms separating the aromatic ring
and the trivalent nitrogen atom. Increasing the range of the
atom pair descriptors typically leads to a significant increase in
the time taken to mine the JEPs due to the increased number of

Figure 17. JEPs (left) and supporting active compounds (right) for two root nodes representing hERG channel inhibitors. The atom pairs of the
JEPs are illustrated as substructural fragments.
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descriptors, as well as an increase in the number of JEPs
identified. The data set is highly skewed toward actives with
more than three active compounds for every inactive. So a
threshold of 17% (equivalent to 20 compounds) was applied
when generating the initial set of atom pairs.
The root node with largest support represents 65 of the active

compounds. However, the JEP for this node did not distinguish
between the different structural families within the actives: it
consists of six atom pairs which describe a series of aromatic and
aliphatic carbon atoms at varying numbers of bond distances and
does not include the crucial nitrogen atom since the distance from
the aromatic ring varies among the compounds in the set. Figure
17 shows two root nodes that have much lower support, but their
JEPs successfully represent some of the key structural features of
the alerts, including the trivalent nitrogen atom. Both JEPs include
a number of longer atom pairs that link together the fragments
shown in Figure 17. This provides some indication of the range of
distances that are observed between the fragments.
For the hERG channel inhibition data set, the JEP mining has

successfully produced clusters of compounds and JEPs that are
representative of the crucial features of both of the Derek Nexus
structural alerts. However, only poor separation of structural
classes is achieved, even when traversing down the trees. Indeed,
separation remains consistently poorer than for oestrogenicity, as
the structural classes of hERG inhibitors are much harder to define
due to the diversity of the input data. Overall, mining JEPs for
hERG inhibition represents a middle-ground between Ames
mutagenicity and oestrogenicity. Atom pair JEPs are capable of
describing the alerts for hERG inhibition, as they are for Ames
mutagenicity, but supervised clustering performed badly in this
case because so few inactives were available for comparison.

■ CONCLUSIONS
We have developed a tool aimed at knowledge discovery that can
assist knowledge base developers in the time-consuming process of
compiling structural alerts for use in an expert system for toxicity
prediction. We have validated the approach on data sets in which
the features giving rise to the toxic effects are well understood.
Although a large number of structural patterns can be generated,
they are arranged hierarchically with a strict subset-superset
relationship existing between nodes at different levels in the
hierarchy, in terms of atom pairs included in the JEPs and the
molecules that support them. The approach is not intended to
generate definitive toxicological alerts wholly automatically, but to
provide a tool for experts who are exploring data in order to
develop alerts. Our future work is focused on mining emerging
patterns as distinct from jumping emerging patterns, that is,
patterns which are prevalent in the actives but which may also
occur in inactives, albeit with lower frequencies.
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