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Abstract

In this paper, an autonomous multiple target detection and tracking technique
for dynamic scenes that are influenced by illumination variations, occlusions
and camera instability is proposed. The framework combines a novel Dynamic
Reverse Analysis (DRA) approach with an Enhanced Rao-Blackwellized Parti-
cle filter (E-RBPF) for multiple target detection and tracking respectively. The
DRA method, in addition to providing accurate target localization, presents the
E-RBPF scheme with costs associated with the differences in intensity caused
by illumination variations between consecutive frame pairs in any video of a
dynamic scene. The E-RBPF inherently models these costs, thus allowing the
framework to a) adapt learning parameters, b) distinguish between camera-
motion and object-motion, ¢) deal with sample degeneracy, d) provide appro-
priate appearance compensation during likelihood measurement and e) handle
occlusion. The proposed detect-and-track method when compared against other
competing baseline techniques has demonstrated superior performance both in

accuracy and robustness on challenging videos from publicly available datasets.
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1. Introduction & Related Work

Detection and tracking are challenging research problems, particularly in un-
constrained surveillance scenarios. Much research efforts have been spent in de-
veloping state-of-the-art detection and tracking methodologies including detect-
and-track [I], track-before-detect [2], 3], Probability Hypothesis Density (PHD)
filter based multiple target tracking techniques [4] 5], among many others. De-
spite advances, detection and tracking are still challenged by the presence of
illumination variations [4], occlusions [6l 7], and camera movements [§]. Al-
though many approaches have been proposed that address these issues in a

mutually exclusive manner, the joint problem is still far from being solved.

The concept of illumination invariance during target detection and tracking has
been addressed in different ways which can be categorized into feature-based [9]
and appearance-based methods [I0]. A good example of the feature-based de-
tection technique can be found in [9], where a sparse set of salient illumination
invariant features are considered. Similarly, in the work of [I1l 2], the bi-
parametrization of different combinations of color spaces have been studied for
dynamic target tracking. However, such methods have failed to adequately
discriminate targets against the background, during detection. A comprehen-
sive overview of the recent efforts in background modelling based detection
approaches can be found in [I3] [14]. From a tracking point-of-view, some initial
work has been done in joint target localization and estimation of illumination
variations as in [I5,[I6]. Similarly, a method for coping with appearance changes
of targets during tracking has been proposed in [I7]. Although such methods are

proven to handle constrained gradual illumination changes, modelling of illumi-



nation changes continues to be highly complex. This can mainly be attributed
to factors such as: a) non-linearity of illumination changes in real-scenarios, b)
ambiguity in the interpretation of the differences in intensity variations caused
by the motion of targets as against due to illumination changes, and c) disre-
garding certain pertinent visual information to provide illumination invariance

that can cause difficulties in handling occlusion and related challenges.

Occlusion detection during tracking is considered a hard problem in most general-
purpose tracking algorithms [I8]. The primary challenge in handling occlusion is
to accumulate sufficient evidence from observations so that reliable data associ-
ation becomes possible. Research indicates that performing occlusion handling
within tracking is limited only to analysing pixel variations using multi-modal
distributions in order to encompass statistical properties of occluders to dis-
tinguish it from the target(s)-of-interest [19]. However, most assumptions of
feature-level similarity become invalid when considering real-world scenarios.
In the study by [19], it has been shown that the contextual content which en-
capsulates motion information is also capable of handling occlusion. In another
example, the problem of target initiation and termination has been shown to be
handled using a hierarchical particle filtering framework [20]. Further, the use
of spatio-temporal modelling has been proposed for human silhouette extraction
from noisy and occluded data [7]. Though attempts have been made to tackle
occlusion issues during tracking, the following complexities continue to remain:
a) localization of the targets when occlusion is unknown, b) updating target
descriptors during appearance changes, ¢) robustness against noise and clutter,

and d) coping with disappearances and re-appearances of targets.

Motion in the background, target deformation and changes in the camera posi-
tion during jitter all present similar effect on the spatio-appearance of targets
during detection and tracking. In order to model spatio-temporal appearance
changes of targets in the joint space, the use higher order distributions has

become a popular choice [2I]. Recent studies have focused on using Alpha-



stable [2I] and Cauchy [22] distributions to model pixel intensity variations
caused by camera shake during detection. Further, the generation of spatio-
temporal methods for handling camera movements within a background mod-
elling framework has also been recently proposed in [23]. However, the robust-

ness of such models for dynamic scenes have not been fully explored.

This brief survey of the literature has clearly highlighted that the treatment
of these challenges in a mutually exclusive manner cannot facilitate robust de-
tection and tracking in real-world scenarios. On the other hand, incorporating
different adaptations into a singular model may not always help solving all prob-
lems jointly. Therefore, in this paper, a tight integration of the constituent pro-
cesses into a unified framework for the detection and tracking of dynamic scenes
is proposed. It is hypothesized that an integrated detect-and-track technique
capable of generating sufficient statistics of illumination variations during the
accurate localization, when tunnelled across to an enhanced RBPF framework

shall provide robust tracking of multiple targets within a dynamic scene.

2. Novelty & Contributions

One key novelty of the proposed framework is the use of DRA within background
modelling for accurately detecting (or spatially localizing) multiple moving tar-
gets under changing illumination conditions. Furthermore, such a detection pro-
cedure allows extracting sufficient statistics that are indicative of the temporal
location, type and extent of the illumination variations in the dynamic scene.
Another important novelty is the tight integration of the qualitative and quan-
titative outputs from the DRA-based target detection method together with
the E-RBPF tracking algorithm for adaptation against dynamic illumination
and camera movements. Finally, a loose integration of the E-RBPF framework
with appropriate noise models and likelihood measurements have allowed the

framework to compensate for local (dis)order.
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Figure 1: Functional block diagram of the proposed framework.

The rest of the paper is organized as follows. In Section [3] a detailed descrip-
tion of the proposed detect-and-track framework is presented. Following this,
performance evaluation and comparison of the proposed detection and tracking
methodologies against the state-of-the-art is described in Section [l Section

concludes.

3. Proposed Methodology

The proposed framework for multiple target tracking is a modularized yet cou-
pled approach. The method tightly integrates a) a hybrid background modelling
scheme for accurate target detection with b) an enhanced particle filtering frame-
work for robust target tracking. An illustration of the proposed framework is

presented in Figure

The proposed hybrid background modelling method combines conventional back-
ground initialization and maintenance processes with a reverse analysis scheme
for accurate target detection. The DRA technique exploits deviations in the
foreground detection procedure between forward and reverse directions to ex-
tract sufficient statistics on the changes in illumination conditions to determine

a) the composition of optimal frames that produces a representative background
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Figure 2: Illustration to demonstrate the impact of illuminations changes on background
modelling. Results of background modelling on the original frame (a) and illumination changed
frame (d) are presented in (c) and (f) respectively with the corresponding ground truth in (b)
and (e).

model and b) control of adaptation parameters for coping with dynamic changes.

In contrast to the rigorous detection process, tracking is developed as an en-
hancement to the Rao-Blackwellized particle filter (E-RBPF) comprising of a
data association and likelihood models by incorporating detection prior along
with an advanced re-sampling scheme and spatio-temporal appearance sepa-
rated noise model. The use of the detection prior within the likelihood model
allows coping with occlusion and improving tracking accuracy while its use with

the re-sampling method help solving the degeneracy problem.

3.1. DRA-based Background Modelling for Target Detection

Foreground (target) detection using background subtraction is based on the
principle of updating an online statistical background model. Each pixel in a
new image is classified as background if it fits the stochastic statistical back-
ground model, otherwise labelled foreground. During the process of building a
statistical background model, the intensity variation of pixels over a history of

previous frames is usually considered. The variations thus studied not only im-
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Figure 3: Results of forward background modelling in (b), (e) and (h) and backward back-
ground modelling (c), (f) and (i) on frames undergoing illumination changes as in (a), (d) and

(8)-

pact the correct classification of background pixels but also helps the background
model adaptation during the maintenance phase. Therefore, a judicious selec-
tion of image frames for initializing the background model is key to achieving
good detection accuracy, particularly under changing illumination conditions.
Consider the example shown in Figure a), acquired at constant illumination
conditions and its corresponding labelled ground truth detection in Figure b).
When, a conventional adaptive background modelling technique, such as [24] is
used for detection, it produces an output as in Figure (c) However, in the
event of a sudden change in the illumination condition as in Figure [2(d) or
Figure (g), it can be noticed that the foreground detection fails until further
adaptation e.g. Figure [[f) or Figure [2{i).

Reverse-time correlation (RTC) analysis is a popular method of tuning dy-

namics, popularly used for investigating model behaviour [25]. In order to



motivate the use of DRA in background modelling, Figure [3| is considered.
The original images at different illumination conditions are displayed in Fig-
ure [3(a),Figure [3(d) and Figure [3[g), respectively. The results of foreground
detection using a history of frames from the forward direction are presented in
in Figure[3|(b), Figure[3(e) and Figure[3|(h). Similarly, the foreground prediction
results using future frames in the reverse directions is as shown in Figure c),
Figure [3(f) and Figure [3i). The disagreements in these results between the
forward and reverse directions indicate changes in the illumination conditions

of the environment.

In this paper, the disagreements between the forward and reverse prediction
analysis of frames in foreground detection is the underlying motivation for the
proposed DRA-based hybrid background modelling technique that is illustrated
in Figure 4l The method works in two phases. In the first phase, a history of
frames from the forward direction and future frames from the reverse direction
are used independently to make their predictions of the current frame (frame
4 in Figure . A measure of similarity between the predictions of the forward
and reverse directions is made and continued temporally. Further, a temporal
analysis of the intensity variation allows extracting sufficient statistics of the
illumination changes. These statistics enable determining the appropriate num-
ber of frames from the forward and reverse directions to be chosen to build an
accurate hybrid background model to be used in the second phase. In addition,
the adaptation (or learning) parameters of model are also updated using these

statistics online during background maintenance.

A mathematical formulation of the DRA-based hybrid background modelling
using GMM is described as follows. Here, each pixel is characterized by its
intensity in a chosen color space (usually RGB color space). The posterior
probability of observing the current pixel is formulated as:

1331 by

P(X;) = P(X, /M) (1)
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Figure 4: A process flow illustration of the proposed DRA-based Hybrid Background Mod-

elling framework.

where X; represents the intensity of pixels at time ¢, M represents a model
of the background learnt from a selected subset of 5L> image frames from the
forward direction and & from the reverse direction.
K
(i1_> &) i &ty KU
P(Xt|M ’ = ngN(X(t7—>7<—)7,UJ? E) (2)

j=1

where w] is the weight of the j'* Gaussian at time t. After initializing the

mean (u) and estimation of the covariance matrix (X) using an EM algorithm,
foreground detection is performed. Next, the parameters are updated in order
to maintain the background model. Once the K Gaussian variables are ordered
appropriately, the first B Gaussian distributions which exceed certain threshold

T, are retained for a background distribution:

b
B= argmbin Z(wﬁ >T1) (3)

i=1
The other distributions are considered to represent the foreground (target).
When a new image frame arrives at time instant ¢ + 1, the pixels are matched
using a distance metric (usually Mahalanobis distance) to determine the match-

ing Gaussian distribution and hence classify it as a foreground (target) or back-



ground. When a match is found to one of the K Gaussian variables, for the

component matched, update is performed as:

w{H:(l—a)wg—i—a

; ; &t Py
i =1 —ppi +pXt+1, -, =)

Ut2’+j1 =(1-po;’ + P(thﬂ - N{H)-(Xgﬂ - N{H)/ (4)

where a and p are constant learning rates, conventionally referred to as the

adaptation control parameter and convergence control parameter, respectively.

In lieu of above description of the problem, the main contributions of this paper

are detailed below:

e determining the optimal composition of = frames in the forward direc-
tion and <2 frames in the reverse directions to be considered in building
the model M of the pixel intensity variation X over time using a mixture

of K Gaussian variables.

e adaptively estimating the values of the control parameters for adaptation
« and convergence p by appropriately modelling the temporal changes in

the illumination conditions.

The process of dynamic reverse analysis involves building directional foreground
predictive models using the conventional GMM-based method using the poste-

rior probability framework as below:

€1
Py(X) = P(X¢|M )
€t4+1

Py(Xy) = P(Xy M) (5)

where, Pr(X;) and Py(X;) represent the posterior probabilities measured using
€t—1 €t41
the model M *) in forward and M ) in backward directions, respec-

tively.
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Further, a metric to evaluate the extent of similarity x between foreground (tar-
get) predictions of the directional models is proposed. This similarity criteria
X consists of a weighted combination of: a) the difference between the fore-
ground detected outputs of the current image frame I; and a selected history of
previous outputs I;_.; for some constant k and b) the normalized amount of
the foreground classified pixels in the current frame th, where ¥ and v are the

weights.

X(Pp(.), Py(.)) = (AL, — T _gt)) + 0(T7) (6)

Finally, a temporal distribution of the similarity is modelled as x;(.) . The
peaks of this temporal distribution of similarity between the directional models

is estimated using:

Cn = argmax(x; > Tb) (7)

where, the n peaks (, of this temporal distribution are analysed and landmarked
to represent the points of change in the illumination conditions and T3 is a
predefined threshold. Sufficient statistics are estimated using such analysis to
determine the class (type) of the illumination change, rate of change, between
consecutive points by modelling the pixel intensity variations as the function

that distinguishes this illumination change from the foreground (target) motion.

Kn = ¢(Xn7Xn+1|Cn) (8)

Furthermore, a self-adaptive learning mechanism that parametrizes illumina-
tion changes using ¢ to model the pixel intensity variations producing x. This
parametrization process is used to approximate the composition of frames from

both the forward and reverse directions through a localization function /.

(5, w) = E(Hn, Xt) (9)

11



The localization function ¢ in conjunction with the mapping function x and
the location of the current frame with respect to n, allows computing approx-
imate estimates for ¢ and v together with the duration of illumination change
measured as a distance, e.g. d, = d((n, (nt1) to allow building the hybrid back-
ground model and controlling the adaptation parameters o and p respectively,

where d is any distance function, typically Euclidean distance.

3.2. E-RBPF based Target Tracking

In order to track multiple targets using the proposed E-RBPF technique, the tar-
get representation model is first chosen. In this paper, an 8-D ellipse model

is used to describe the dynamics of the target:

{x’ Al’? y’ Ay7 H? AHV M/’ AW} (10)

where (z,y) represents the centroid of the elliptical model, (Ax,Ay) repre-
sents the velocity, (H, W) denotes the scale parameters - horizontal and vertical
half lengths of the elliptical axes, and (AH, AW) are the corresponding scale
changes. This chosen model is standard and has been adopted in a manner
similar to the work of [26]. The main use of the 8-D elliptical model is that
it facilitates the splitting of the state space of the filter between root variables
(R) containing motion information and leaf variables (L) consisting of the scale
parameters. In general, the RBPF framework allows the propagation of the root

variables one step ahead using ([L1)).

R'=TRy_1 +nri1 (11)

where T represents the transition matrix and 7, is random noise. Given its
conditional dependence on the root variables, the leaf variables form a linear-

Gaussian substructure that is optimally estimated using a typical Kalman filter.

Lt = ALt_l + ‘I’(Rt,Rt_l) + &1 (12)

12



where ® encodes the relationship between the leaf variable L and the root
variables R from ¢t —1 to t, € is Gaussian random noise and A denotes a constant
matrix. The image observations combining both the linear and non-linear states

is represented as Z; as given in .

Zt = T(Rtthvno,t) (13)

where 7, represents observation noise, T is a non-linear functional mapping and
the auxiliary observations corresponding to the leaf variables that share a linear

relationship is modelled using ((14)).

O, =CL; +¢ (].4)

where Oy is the set of observations for the leaf at time instant ¢, ¢ is Gaussian

random noise and C' represents a constant matrix.

The functionality of the RBPF is similar to a generic particle filter, where the
posterior density is represented by a set of weighted particles, S; = {s¢,wi|1 <
i < N}. Each represents a particle from p(R;|Z;) and p(L¢|R}, Z;). Therefore
each particle is represented by si =< Ri ui 0! >. The RBPF algorithm will
approximate the non-linear component involving the root variables using a par-
ticle filter, while apply Kalman filter to estimate the scale parameters which are
conditional on the root variables. The proposed enhancements in the RBPF
framework is presented through detailed description of the individual models in

the following sections.

3.2.1. Motion Model
In general, particles are propagated at each time step using . The target
motion is modelled using the Bayesian expansion given in .

p(Rt|Ria Zy) = P(Zt|Rt)P(Rt|R§) (15)

13



After this step, an a-priori estimate of the variables < MR, *,* > is produced.
In conventional particle filtering, the observation model is applied directly after
this step to estimate likelihood. However, in the RBPF framework, a Kalman

prediction for the leaf variables is initiated according to .

p(L! Ty, Rt Ly, 21 (16)

The state of the Kalman filter is propagated using . The estimates of the
Kalman filter is performed in a manner similar to [26] and is described in (I7),

H = H_,+B —yi1)/" (17)
iri Hj i

Wy = W;Wt—l

6 = Aol A+ P

0, = Ciy

where the parameters 8 and 7 control the scale change rate of the ellipse with

respect to the motion of the target.

3.2.2. Observation Model

The next step in the E-RBPF algorithm is the application of the observation
model to measure likelihood. One main novelty of our E-RBPF framework is
the tight integration of results of the proposed detection technique and tracking
likelihood to model the observations. The concept of the observation model is

to evaluate for each particle is given in .

wi = p(Zi|RY, 1k, Z1t) (18)

In order to compute the weights (w!), three main component information are
combined: a) tracker confidence, b) detector confidence and ¢) tracker-detector

deviation. The representation of the combination is as follows ,

wh = @1.G},.Gy + @w2.p(R — U) + w3.9.p(F — R) (19)

14



where (w1, wa, w3) are constants, component G;‘L.G; represents the tracker con-
fidence, p(R—0U) is detector confidence, and p(S—R) represents tracker-detector
deviation.

Tracker Confidence: The tracker confidence term estimates the likelihood of
each particle using color histogram and gradient features. This component of
the weights is independent of the other weights as used in conventional tracking

algorithms.

a) Similarity between color histograms of the particle and the target regions

is estimated using ,

1 1— p[sk,r]?
Gy = exp(—————— 20
h \/%0'5 p( 20_2 ) ( )

where p[['*, 7] measures the similarity (Kullback-Leibler Divergence) between the

color histogram I' for each particle i (ellipse) characterised by (xi,yt, Hf, W})

using ,

where 0* is the Kronecker delta function and h(6,,) is a bin-assignment function
at each location characterised by 6,, and color u. k weights the pixels closer to

the center higher than others.

b) The second sub-component of the tracker confidence consists of measuring
the gradient difference between the particles and the target. The weight from
the gradient component is considered as given in .

1 I
G = exp(———IL )
7 \27oy p( 202 )

Detector Confidence: In order to compute the detector confidence, a trained

(22)

model based method as in [27] is evaluated on the image patch defined at the
location of the particle with the corresponding size. Such an evaluation produces

a detector output referred to as U. Further, the (dis)similarity between the

15



detection using the proposed algorithm R and the model-based detector output
U is estimated as the detector confidence p(f — U). This confidence term uses
color and gradient information as aforementioned to assess the detection process
against a model-specific method.

Tracker-Detector Deviation: The final factor evaluates the (dis)agreement
between the output of the detector and the tracker at the location specified by
the particle with the corresponding size. This computes the distance between the
particle prediction of the target denoted as &, and the detection (R) using the
proposed algorithm. Such a factor enables the robust guiding of particles. This
is attained by associating one detection to each target and implemented using a
matching score metric for each pair (&, R*). The maximum score is iteratively
selected and only the associated detections with matching score higher than a
pre-defined threshold are used for association. A detailed description of the

matching score matrix is presented in |3.2.6

8.2.3. Re-Sampling

Re-sampling of particles is performed to create a new particle set such that
mismatches can be corrected and also to avoid degeneracy of particles. One
common approach is through replacement by weighing particles and re-sampling
according to those weights. The resulting particle set indeed approximates the
target distribution. Such a re-sampling technique can be represented using .

p(< R, pi 00" >=<R{",pi", 0] >) x ] (23)

The prediction PDF is modified using the newest measurements for the root
as well as leaf variables. Following this step, the new samples are of the form

i i 0= i
St =< Rt?ﬂ’t Ot >

The re-sampling mechanism proposed in this paper is based on the replacement
of particles with low weights with particles regenerated based on the location of
targets as detected by the detector nearest to the current location of the target

as being tracked.

16



3.2.4. Update
Kalman update is accomplished using ,

Ki=0=C'(Coi=C + Q) !
py =+ K{(Op1 — Cpy7)
ol =0l — KiCol~ (24)

where K} is the Kalman gain that aims to minimize the posterior error covari-
ance. Here, the samples are updated into the form s{ =< R{, ut, o >. Further,

the mean state is computed by averaging the state particles in the manner

mentioned in .

N
D1 5t

Bls) = ==

(25)

8.2.5. Noise Model

The choice of the noise model can play a crucial role in the accurate localization
and tracking of targets, particularly in the presence of clutter. This paper pro-
poses the distinguished choice of noise models for the location and appearance
components of the target. That is, Gaussian noise is modelled for both location
and appearance; assuming independence between the two. Mathematically, it

can be represented using .

p(x|z,01,04) = p(xL|2L, OL).p(Xa|24, @ 4) (26)

A Gaussian noise with zero mean and scalar covariance is considered for both

the location and appearance parameters of the target in the form given in ,

p(xrlzr) N(0,Xp =op.I)

p(XAle) N(072A:0’A.I) (27)

17



using parameters @ = (or,04). Therefore the conditional probability can be

reduced to .

2 2
1 7HXL*;LH 1 7HXA’§AH
=— L —me A (28)
2woy 2mo?

p(x|z,0)

This produces two main parameters oy, and o4 that require estimation. Due
to the independence assumed between location and appearance, each of these
parameters can be separately estimated using a Maximum Likelihood formula-
tion. Parameter estimation is carried out such that the convergence guarantees

an increase of the likelihood.

3.2.6. Data Association

With the presence of noisy measurements and multiple targets, it is important
to associate one detection to at most one target, and thereby solve the data
association problem. The association algorithm computes a matching score
matrix for each pair (7%, 0*), where 7* represents all tracked targets and o* refers
to detector outputs. The matching function estimates the distance between

particles of tracked target (T') at various detections (¢*) as given in (29),

R(S*, RY) = RS, R p(S — ®) (29)

where R(S3*, R*) is the gating function and p(& — R*) is the same component
that measures the tracker-detector deviation mentioned earlier. Note that, the
tracker-detector deviation is measured for each tracked target only once and
used for both the likelihood computation and data association.

Gating Function: In addition to the distance between the detection and
tracker, the gating function assesses each detection based on its location with
respect to the velocity and direction of the target. The probabilistic gating
function can be represented using .

R(77, 0%) = p(size|S™)p(pos|37) (30)

18



4. Experiments & Analysis

In this section of the paper, experimental details evaluating the proposed model
and comparing it against competing baseline techniques are presented. Two
types of experiments are conducted: 1) that evaluates the detection and track-
ing in a mutually exclusive manner and 2) in an integrated fashion. Further, all
the methods are validated on a wide range of both real and synthetic datasets
using standard performance metrics. For experimental evaluation, 12 real scenes
and 24 synthetic sequences have been chosen from a variety of publicly available
datasets. The real scenes include sequences from the PETS 2001, PETS 2004,
and PETS 2006 datasets [28] captured both in indoor and outdoor environments.
The scenario depicted in these sequences demonstrate dynamic illumination that
have been categorized into 5 distinct levels of difficulty: a) normal (N) consist-
ing of no dominant illumination changes, b) difficulty level 1 (D1) including
gradual changes in the illumination, either increasing or decreasing, ¢) difficulty
level 2 (D2) involving abrupt changes in the illumination introduced in a pe-
riodic manner, d) difficulty level 3 (D3) with a combination of short, gradual,
and abrupt changes in the illumination introduced in an irregular manner and
e) difficulty level 4 (D4) containing randomly introduced illumination changes
against dynamic backgrounds. From a tracking perspective, these videos are
chosen to contain moving targets, mostly people and vehicles, encompassing a
range of tracking complexities including occlusion, camera shake/jitter, false
alarms, motion dynamics, etc. All datasets contain ground truth annotation for

both target detection and tracking.

Experimental validation is performed through both on qualitative and quanti-
tative evaluations. For qualitative evaluation, results of detection and tracking
are presented as output frames to be verified through visual inspection. On the
other hand, in order to quantitatively evaluate and benchmark our detection

technique, the precision-recall ratio, F-measure and PSNR metrics are used.
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These measures are described in Equations (31H34)),

. TP
Precision = m (31)
TP
- - 2
Recall TP LN (32)

Precision.Recall
F—-M = 2.
easure Precision + Recall (33)

MAX?

(34)

where TP (true positives), FP (false positives) and FN (false negatives) denote
those number of pixels correctly detected, detected incorrectly, and undetected
but incorrectly, respectively. The F-measure is a metric to determine the accu-
racy of the tests that is derived quantitatively as a balance between precision
and recall, wherein, a higher value indicates better accuracy. PSNR is measured
as the ratio between the maximum possible power of a signal and the power of
corrupting noise that affects the fidelity of its representation. Here, M AX is
the maximum possible pixel value of the image and M SE denotes the Mean

Squared Error.

In order to benchmark the tracking procedure through quantitative evalua-
tion, the use of two popular performance metrics from the tracking domain [29)
namely: Multiple object tracking precision (MOTP) and b) Multiple object
tracking accuracy (MOTA) is proposed. These estimates are based on deter-
mining the distance dj between the target 7 and its corresponding hypothesis

at each instant of time ¢t. The MOTP and MOTA measures are described in

Equations (35436,

Zt,T d%—
2

MOTP =
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where ¢;7 represents the number of matches found at each instant of time ¢,

MOTA=1- 24

(36)

my,f] and h] represent the misses, false positives and mismatches, respectively,

and g7 represents the number of targets present at time instant ¢.

In addition to these measurements, the following metrics inspired by the work
of [30] are also computed. a) Mostly Tracked (MT)%: Percentage of the ground
truth trajectories which are covered by the tracker output for more than 80% in
length, b) Mostly Lost (ML)%: Percentage of ground truth trajectories which
are covered by the tracker output for less than 20% in length (smaller the better),
c¢) Fragments (Fr): The total number of times that a ground truth trajectory is
interrupted by the tracker (smaller the better), d) ID Switches (IDS): The total
number of times that a tracker trajectory changes its matched ground truth
identity (smaller the better) and f) Root Mean Squared Error (RMSE) error:
The difference between the target and ground truth trajectories on the (MT)

trajectories.

A selection of 3 baseline methods are chosen to benchmark the proposed DRA-
base hybrid target detection framework. These include: the famous adaptive
background modelling of [31], a spatially adaptive illumination modelling tech-
nique for background subtraction proposed by [32] and the background mod-
elling technique based on bi-directional analysis as in [33]. The proposed method
can be distinguished from these baselines in the manner as follows: a) the pro-
posed technique is based on the reverse analysis of frames for building robust
background models as against analysing pixel changes only in forward direction
as shown in [31], [32] b) the proposed technique does not only perform reverse
analysis to pick the best of the two (forward and backward) results as in [33],
however, builds a hybrid model using a selected composition of frames from

the forward and reverse directions using sufficient statistics, ¢) in addition to
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autonomously detecting the number of frames required from the forward and
reverse directions to build the hybrid model, the proposed method also provides
a mechanism of self-adaptation through implicitly learning the changes in illu-
mination conditions that is not feasible with the baseline techniques proposed
in [31], [32] and [33] and d) the proposed method also makes fewer assumptions
on the nature of illumination changes and hence is more generic to the changes

in the real-world scenarios.

The proposed E-RBPF model is compared to 4 state-of-the-art tracking tech-
niques including: a) Generic RBPF tracker (G-RBPF) for multiple target track-
ing [34], b) a Probabilistic Data Association particle Filtering (PDAF) technique
for multiple object tracking proposed in [35], ¢) an extended version of the con-
text tracking (CT) algorithm proposed in [36] and c¢) the locally orderless track-
ing (LOT) from [37]. The relevance of these baseline trackers to the proposed
E-RBPF model can be described as follows. In comparison to the G-RBRF and
PDAF trackers, the usefulness of integrating the extended detect-track likeli-
hood model, data association and noise models into a unified joint E-RBPF
framework are demonstrated. Further, the differences in the use of similar noise
models in comparison against the Locally Orderless Tracker (LOT) are also

demonstrated.

4.1. Detection Results

In Figure [f] the results of target detection on one frame of a D3 category se-
quence (in row 1) and two frames of a D4 category sequence (in row 2 and row 3)
are compared. As it can be observed, the results of the proposed hybrid detec-
tion technique in Figure[5{c), Figure [fg) and Figure [f[k) resemble the ground
truth in Figure b), Figure (f) and j) more closely than the adaptive back-
ground modelling of [31] counterpart in Figure[5d), Figure[5{h) and Figure[f|1).
The superiority in the performance of the proposed method can be attributed
to the selective composition of frames from the forward and reverse directions

that has facilitated building a more robust and accurate background model in
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Figure 5: Comparative results of the proposed DRA-based hybrid background modelling

method (dubbed as hybrid) (c&g&k) against the adaptive background modelling method
of [31] (d&h&l) and the corresponding ground truth (b&f&j) on one original frame (a) of a

D3 category sequence and two original frames (e&i) of a D4 category sequence.

comparison to the baseline method of [3I] that has demonstrated poorer seg-

mentation with respect to the ground truth and the proposed hybrid method.

For quantitative evaluation, the proposed hybrid detection method is bench-
marked against baselines on different frames using Recall and Precision in Ta-
ble [1} and using F-measure and PSNR in Table |2 on selected frames of the
same D4 category sequence as used in Figure[5| The comparative evaluation on
recall and precision from Table [I| shows consistent superiority of the proposed
algorithm against competing baselines on a majority of the frames. A similar
trend in performance can also be noted using the F-measure and the PSNR,

wherein, the proposed method outperforms its competing baselines in Table

Furthermore, the proposed framework was also tested on the collective dataset
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Frame Recall Precision

Hybrid =10 =3 3] Hybrid B0 33 3]

50 0.632 0.595 0.615 0.598 0.579 0.513 0.551 0.565
75 0.767 0.760 0.762 0.760 0.635 0.556 0.603 0.598
100 0.720 0.644 0.707 0.679 0.730 0.519 0.716 0.676
125 0.685 0.671 0.680 0.683 0.670 0.548 0.665 0.587

Table 1: Comparison of quantitative performance of the proposed detection technique (dubbed
as Hybrid) against state-of-the-art methods ([31], [33] & [32]) using the Precision and Recall
metrics on selected frames (50,75,100,125) of the D4 category sequence used in Figure

Frame F-Measure PSNR
Hybrid (33] [32] Hybrid [31) [32]

50 0.604 0.551 0.581 0.581 30.60 16.17 27.65 26.51
75 0.695 0.643 0.673 0.669 31.49 22.40 29.63 25.38
100 0.725 0.575 0.711 0.677 37.10 15.66 33.12 30.76
125 0.677 0.603 0.603 0.631 35.16 24.40 34.06 31.82

Table 2: Comparison of quantitative performance of the proposed detection technique (dubbed
as Hybrid) against state-of-the-art methods ([31], [33] & [32]) using the F-measure and PSNR
metrics on selected frames (50,75,100,125) of the D4 category sequence used in Figure

consisting of sequences at various levels of difficulty. The comparative results
of the proposed and baseline techniques using the Recall and Precision metrics
are presented in Table [3] and using the F-measure and PSNR are presented in
Table[dl As one would anticipate, the performance of all the models deteriorate
with increasing difficulty. However, in comparison to the state-of-the-art meth-
ods, the proposed technique is capable of producing more accurate and robust

detection particularly with the D2, D3 and D4 category sequences.

Level Recall Precision
Hybrid [31) 33] [32] Hybrid [31) 33] (32]
N 0.752 0.755 0.754 0.753 0.876 0.878 0.875 0.876
D1 0.646 0.649 0.647 0.647 0.857 0.866 0.860 0.866
D2 0.610 0.594 0.598 0.603 0.619 0.533 0.582 0.567
D3 0.597 0.576 0.583 0.578 0.593 0.520 0.551 0.548
D4 0.603 0.576 0.579 0.591 0.568 0.519 0.536 0.534

Table 3: Comparison of quantitative performance of the proposed detection technique (dubbed
as Hybrid) against state-of-the-art methods ([31], [33] & [32]) using the Precision and Recall
metrics averaged on all frames of the various categories of sequences with increasing complexity

from N to DA4.
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Level F-Measure PSNR

Hybrid 31 33 [32] Hybrid 31 33 [32]
N 0.809 0.812  0.810  0.810 29.44 29.50 29.00 29.26
D1 0.737 0.742  0.738  0.740 28.07 28.22 28.30  28.24
D2 0.615 0.562 0.590  0.584 23.02 13.54 20.62 19.85
D3 0.595 0.547 0.566  0.562 21.92 9.07 18.16 12.56
D4 0.585 0.547 0.557  0.561 19.50 8.14 12.58 10.75

Table 4: Comparison of quantitative performance of the proposed detection technique (dubbed
as Hybrid) against state-of-the-art methods ([31], [33] & [32]) using the F-measure and PSNR
metrics averaged on all frames of the various categories of sequences with increasing complexity

from N to DA4.

Difficulty Forward Backward Hybrid

N 91% 8% 1%
D1 76% 12% 12%
D2 65% 16% 19%
D3 23% 28% 49%
D4 13% 16% 71%

Table 5: Comparison of the percentage number of time that the forward, background and hy-
brid models are being built by the proposed detection technique against increasing complexity

of video sequences through from N to D4.

As indicated earlier, one key novelty of the proposed detection technique is in
building a hybrid background model using a selected composition of frames from
the forward and backward directions. During experimentation, as observed in
Table [3] and Table [d] with increasing complexity in illumination conditions, the
hybrid background model is built more frequently than the models in either
the forward or backward directions. In Table |5 the percentage frequency of
each type of background model being built against increasing complexity of
video sequences is presented. It can be proven beyond doubt that the role of
hybrid background model becomes apparent with increasing complexity of the
sequences. In particular, for the D4 category video sequence, in order to guaran-
tee better detection results, frames from both forward and reverse directions are
hybridized at times nearly 50% more often than in either directions individually.
The improved target detection as depicted in Figure [6] solicits all previous
claims of the hybrid model being more effective in representing the dynamic

background.
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Figure 6: Results of the proposed target detection technique demonstrating the capacity of
the hybrid model (column d) against forward (column b) and backward (column c) directional

models on selected original frames (357,463&647) (column a) of a D4 category sequence.

4.2. Tracking Results

In this section, results comparing the proposed E-RBPF tracker against baseline
trackers are presented. In Figure [7] the qualitative tracking results comparing
the E-RBPF framework against the baseline methods: G-RBPF, PDAF, CT and
LOT are illustrated. The results in Figure [7| shows tracker outputs on selected
frames (represented as columns) of video sequences with increasing levels of dif-
ficulty through from D2 to D4 (across different rows). The results in Figure
clearly demonstrate the superiority of the proposed E-RBPF tracker against
other baselines. The CT and LOT trackers produce more comparable results to
the proposed method as against the G — RBPF and the PDAF trackers. With
increasing levels of difficulty, the baseline methods, particularly the G — RBPF
and the PDAF trackers are more susceptible to drift than the other trackers.
The E-RBPF framework has proven to remain accurate in target localization

despite abrupt changes to illumination conditions, occlusion and clutter.

Additionally, the qualitative results of the proposed E-RBPF method (red bound-
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Figure 7: Qualitative target tracking results of the E-RBPF method (red bounding box)
compared against the baseline methods: G-RBPF (yellow bounding box), PDAF (magenta
bounding box), CT (blue bounding box) and LOT (green bounding box) on multiple frame
samples (columns) on video sequences of increasing levels of difficulty through from D2 (row

1), D3 (row 2) and D4 (row 3).
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Figure 8: Target tracking results of the E-RBPF method (red bounding box) on multiple
frame samples from the PETS database [28].

ing box) on example frames from video sequences consisting of multiple moving
targets (both humans and vehicles) captured at various perspectives and scales,
under varying real-world illumination conditions from PETS 2001, PETS 2004,
and PETS 2006 sequences can be found in Figure [§ A quick visual inspection
of these results reveals the superior accuracy and robustness of the proposed

E-RBPF tracker.

In addition to qualitative comparison, the trackers are benchmarked against
each other using quantitative evaluation metrics which are summarized in Ta-

ble

It is important to note that the success of the trackers as outline above can be
mainly attributed to the accurate localization of targets during the detection
phase. In order to quantify the influence of the hybrid detection strategy on

the tracking results, competitive tracking results are generated by initializing
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Method MOTA MOTP MT ML IDS FR
ERBPF 73.2% 84.98% 53.73% 27.61% 9 312
G-RBPF 55.61% 73.52% 33.41% 29.43% 23 427
PDAF 56.19% 71.56% 31.53% 33.69% 27 468
cT 61.58% 77.88% 42.12% 32.06% 18 394
LOT 60.36% 79.91% 47.92% 35.85% 19 409

Table 6: Quantitative evaluation comparing the proposed E-RBPF tracker against the baseline
trackers (all initialized using the proposed hybrid detector) using various performance metrics

averaged on all frames of the different categories of video sequences.

Method MOTA MOTP MT ML IDS FR
ERBPF 59.87% 66.34% 37.62% 57.61% 15 402
G-RBPF 36.12% 41.79% 17.93% 66.87% 27 519
PDAF 39.83% 44.27% 18.18% 69.98% 36 527
CcT 41.69% 51.38% 27.51% 66.17% 23 486
LOT 43.55% 54.62% 24.47% 71.28% 26 491

Table 7: Quantitative evaluation comparing the proposed E-RBPF tracker against the base-
line trackers (all initialized using the baseline detection technique of [33]) using various per-

formance metrics averaged on all frames of the different categories of video sequences.

the tracker with the baseline detection method of [33]. The differences in the
results of tracking are presented in Table [7] and is itself indicative of the power

of the proposed detection framework.

In Table 8] the RMSE error between the tracked targets and the ground truth
MT trajectories are detailed. This measure is indicative of the deviation of the

target trajectory from the ground truth.

Finally, with regards to the comparison of computational demand of the pro-

posed hybrid detection strategy against its uni-directional counterpart, intu-

Method D1 D2 D3 D4
ERBPF 38 42 17 36
G-RBPF 128 143 109 227
PDAF 134 150 127 186
CcT 112 138 126 107
LOT 64 97 73 59

Table 8: Comparison of RMSE error of the predicted target trajectory estimated using all
trackers (initialized using the proposed hybrid detector) against its corresponding MT ground

truth trajectory averaged across all video sequences from each categorized levels of difficulty

D1 to D4 (columns).
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itively nearly 3 times overhead is expected. However, with an optimized circular
buffer implementation for processing the learning frames, it has been possible
to reduce the computational overhead to approximately 1.5 times existing uni-
directional background modelling schemes. At this point, a judicious decision on
the trade-off between the accuracy of detection to the computational demands
requires to be made. In the context of the detector having to initialize the
tracking algorithm (as proposed), little such compromise can be made on the
accurate detection of the targets. However, a more relaxed detection may suffice
the needs of the likelihood measurement step during tracking. During tracking,
comparable computational requirements between the proposed E-RBPF and the
G-RBPF could be observed assuming a-priori detection. Tests indicate that the
the tracking procedure in its unoptimized MATLAB implementation with 1000
particles and 100 iterative cycles can converge to 2 fps of tracked output in

real-time.

5. Conclusion

In this paper, a method that seamlessly integrates a DRA-based background
modelling mechanism for target detection with a E-RBPF tracking framework
for accurate target localization under the presence of illumination changes, oc-
clusion and camera shake is proposed. The results of comparing the proposed
model against baselines has shown significant improvements both quantitatively
and qualitatively. The future of this research is to extend the model for tracking

large number of targets in crowded scenes and across multiple cameras.

References

[1] M. Han, A.Sethi, W. Hua, Y. Gong, A detection-based multiple object
tracking method, in: In the Proc. of International Conference on Image

Processing (ICIP), Vol. 5, 2004, pp. 3065-3068.

[2] S.J.Davey, M.G.Rutten, B.Cheung, A comparison of detection performance

30



[3]

[6]

[10]

for several track-before-detect algorithms, in: In the Proc. of International

Conference on Information Fusion (ICIF), 2008, pp. 1-8.

Y.Boers, H.Driessen, J.Torstensson, M.Trieb, R.Karlsson, F.Gustafsson,
Track-before-detect algorithm for tracking extended targets, In the Proc.
of IEE Radar, Sonar and Navigation 153 (4) (2006) 345-351.

J. Wu, S. Hu, Y. Wang, Adaptive multifeature visual tracking in
a probability-hypothesis-density filtering framework, Signal Processing
93 (11) (2013) 2915-2926.

R. E. Bethel, B. Shapo, C. M. Kreucher, {PDF} target detection and track-
ing, Signal Processing 90 (7) (2010) 2164 — 2176.

Y. Li, H. Xiao, Z. Song, R. Hu, H. Fan, A new multiple extended target
tracking algorithm using {PHD} filter, Signal Processing 93 (12) (2013)
3578-3588, special Issue on Advances in Sensor Array Processing in Mem-

ory of Alex B. Gershman.

X. Zhou, X. Li, Dynamic spatio-temporal modeling for example-based hu-

man silhouette recovery, Signal Processing 110 (0) (2015) 27-36.

A.Yilmaz, O. Javed, M. Shah, Object tracking: A survey, ACM Computing
Surveys 38 (4).

S. Das, N.Vaswani, Particle filtered modified compressive sensing (pafi-
mocs) for tracking signal sequences, in: In the Proc. of Asilomar Conference

on Signals, Systems and Computers (ASILOMAR), 2010, pp. 354-358.

G. Yu, H. Lu, llumination invariant object tracking with incremental sub-
space learning, in: In the Proc. of International Conference on Image and

Graphics (ICIG), 2009, pp. 131-136.

P. Prez, C. Hue, J. Vermaak, M. Gangnet, Color-based probabilistic track-
ing, in: In the Proc. of European Conference on Computer Vision (ECCV),

2002, pp. 661-675.

31



[12]

[17]

[18]

[19]

F.Moreno-Noguer, A. Sanfeliu, D.Samaras, A target dependent colorspace
for robust tracking, in: In the Proc. of International Conference on Pattern

Recognition (ICPR), Vol. 3, 2006, pp. 43—46.

M. Cristani, M. Farenzena, D. Bloisi, V. Murino, Background subtrac-
tion for automated multisensor surveillance: A comprehensive review,

EURASIP Journal of Advanced Signal Processing 2010 (2010) 43:1-43:24.

T. Bouwmans, Traditional and recent approaches in background modeling

for foreground detection: An overview, Computer Science Review II (12).

H. Veeraraghavan, P. Schrater, N. Papanikolopoulos, Robust target de-
tection and tracking through integration of motion, color, and geometry,

Computer Vision and Image Understanding 103 (2) (2006) 121 — 138.

G. Silveira, E.Malis, Real-time visual tracking under arbitrary illumination
changes, in: In the Proc. of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2007, pp. 1-6.

Z. Khan, T. Balch, F. Dellaert, A rao-blackwellized particle filter for eigen-
tracking, in: In the Proc. of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Vol. 2, 2004, pp. 980-986.

X. Xu, B. Li, Rao-blackwellised particle filter for tracking with application
in visual surveillance, in: In the Proc. of IEEE International Workshop on
Visual Surveillance and Performance Evaluation of Tracking and Surveil-

lance, 2005, pp. 17-24.

J. Pan, B. Hu, J. Q. Zhang, Robust and accurate object tracking under
various types of occlusions, IEEE Transactions on Circuits and Systems

for Video Technology 18 (2) (2008) 223-236.

P. Chavali, A. Nehorai, Hierarchical particle filtering for multi-modal data
fusion with application to multiple-target tracking, Signal Processing 97 (0)
(2014) 207-220.

32



[21]

[22]

[26]

[27]

[29]

H.Bhaskar, L.Mihaylova, A.Achim, Video foreground detection based on
symmetric alpha-stable mixture models, IEEE Transactions on Circuits

and Systems for Video Technology 20 (8) (2010) 1133-1138.

J.Batista, P.Peixoto, C.Fernandes, M.Ribeiro, A dual-stage robust vehicle
detection and tracking for real-time traffic monitoring, in: In the Proc. of

Intelligent Transportation Systems Conference (ITSC), 2006, pp. 528-535.

A. Romanoni, M. Matteucci, D. G.Sorrenti, Background subtraction by
combining temporal and spatio-temporal histograms in the presence of cam-

era movement, Machine Vision and Applications 25 (6) (2014) 1573-1584.

A Mittal, N.Paragios, Motion-based background subtraction using adaptive
kernel density estimation, in: In the Proc. of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Vol. 2, 2004, pp. 302-309.

G. Kovai, L. Tao, D. Cai, Michael.J.Shelley, Theoretical analysis of reverse-
time correlation for idealized orientation tuning dynamics, Journal of Com-

putational Neuroscience 25 (3) (2008) 401-438.

X. Xu, B. Li, Adaptive raoblackwellized particle filter and its evaluation
for tracking in surveillance, IEEE Transactions on Image Processing 16 (3)

(2007) 838-849.

F.Han, Y.Shan, R.Cekander, H.Sawhney, R.Kumar, A two-stage approach
to people and vehicle detection with hog-based svm, in: In the Proc. of
IEEE International Workshop on Performance Metrics for Intelligent Sys-
tems, 2006.

Dataset - pets: Performance evaluation of tracking and surveillance (2000~
2014).

URL http://www.cvg.rdg.ac.uk/slides/pets.html

K. Bernardin, R. Stiefelhagen, Evaluating multiple object tracking per-
formance:the clear mot metrics, EURASIP Journal on Image and Video

Processing 2008.

33


http://www.cvg.rdg.ac.uk/slides/pets.html
http://www.cvg.rdg.ac.uk/slides/pets.html

[30]

[32]

[33]

[36]

Y. Li, C. Huang, R. Nevatia, Learning to associate: Hybridboosted multi-
target tracker for crowded scene, in: In the Proc. of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2009, pp. 2953-2960.

C. Stauffer, W. E. L. Grimson, Adaptive Background Mixture Models for
Real-Time Tracking, in: Computer Vision and Pattern Recognition, Vol. 2,

1999, pp. 2246-2252.

J.K.Paruchuri, E.P.Sathiyamoorthy, S.S.Cheung, C.-H. Chen, Spatially
adaptive illumination modeling for background subtraction, in: In the Proc.
of IEEE International Conference on Computer Vision Workshops (ICCV),
2011, pp. 1745-1752.

A.Shimada, H.Nagahara, R.[.Taniguchi, Background modeling based on
bidirectional analysis, in: In the Proc. of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2013, pp. 1979-1986.

S. Srkk, A. Vehtari, J. Lampinen, Rao-blackwellized particle filter for mul-

tiple target tracking, Information Fusion Journal 8 (2005) 2007.

M.Ekman, Particle filters and data association for multi-target tracking,
in: In the Proc. of International Conference on Information Fusion (ICIF),

2008, pp. 1-8.

T. B. Dinh, N. Vo, G. Medioni, Context tracker: Exploring supporters
and distracters in unconstrained environments, in: In the Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2011,
pp. 1177-1184.

S. Oron, Locally orderless tracking, in: In the Proc. of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2012, pp. 1940-1947.

34



	Introduction & Related Work
	Novelty & Contributions
	Proposed Methodology
	DRA-based Background Modelling for Target Detection
	E-RBPF based Target Tracking
	Motion Model
	Observation Model
	Re-Sampling
	Update
	Noise Model
	Data Association


	Experiments & Analysis
	Detection Results
	Tracking Results

	Conclusion

