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Quantum Well and Dot Self-Aligned Stripe
Lasers Utilizing an InGaP Optoelectronic

Confinement Layer
Kristian M. Groom, Member, IEEE, Benjamin J. Stevens, P. Joel Assamoi, John S. Roberts, Maxime Hugues,

David T. D. Childs, Ryan R. Alexander, Mark Hopkinson, Amr S. Helmy, Senior Member, IEEE,

and Richard A. Hogg, Member, IEEE

Abstract—We demonstrate and study a novel process for fabri-
cation of GaAs-based self-aligned lasers based upon a single over-
growth. A lattice-matched n-doped InGaP layer is utilized for both
electrical and optical confinements. Single-lateral-mode emission
is demonstrated initially from an In0 .17 Ga0 .83 As double quantum
well laser emitting ∼980 nm. We then apply the fabrication tech-
nique to a quantum dot laser emitting ∼1300 nm. Furthermore,
we analyze the breakdown mechanism in our devices and discuss
the limitations of index guiding in our structures.

Index Terms—Quantum well (QW) laser, semiconductor device
fabrication, semiconductor laser.

I. INTRODUCTION

L
ASERS based upon the GaAs materials system offer a

number of advantages over their InP counterparts, namely

the use of larger substrates (>3 in) for reduced fabrication

costs and a more favorable band offset enabling higher tem-

perature (or uncooled) operation through improved carrier con-

finement. Recent developments, such as high-quality dilute ni-

tride quantum wells (QWs) [1] and InAs quantum dots (QDs) at

1.3 µm [2], have brought about the commercialization of GaAs-

based optical communication devices. Buried heterostructures

and self-aligned stripes are typically utilized in the manufac-

ture of InP telecommunication lasers yielding devices with high

reliability, small active widths, high-quality interfaces, reduced

nonradiative recombination at exposed surfaces, and control

of carrier flow permitting high local current densities for low

drive currents, allowing the use of inexpensive drive electronics.

Additionally, the flexibility provided by this approach affords

narrower and more symmetric far-field emission profiles, thus

allowing more efficient fiber coupling.
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Epitaxial regrowth in GaAs-based structures is problematic,

mainly due to the Al containing layers within the structure,

which, when exposed to oxygen, result in poor regrowth inter-

faces that are deleterious to the laser performance. Previous so-

lutions have included the use of Al-free epitaxial structures [3],

steam oxidation for current confinement [4], in situ etching and

regrowth within a metal–organic vapor phase epitaxy (MOVPE)

reactor [5], and antiguided [6], buried ridge [7], or self-aligned

structures [8], [9], where Al layers were exposed to oxygen. All

these have associated difficulties in process control, reliability,

and design flexibility.

In this paper, we demonstrate and study a novel technique

for the fabrication of GaAs-based self-aligned lasers utilizing a

lattice-matched n-doped InGaP current blocking layer that also

provides optical confinement via predominantly index guiding.

The key novelty introduced is the simultaneous current and op-

tical confinement due to the InGaP layer. Furthermore, this tech-

nology relies upon the careful design of the epitaxial structure

to ensure that no AlxGa1−xAs is exposed during the fabrica-

tion process, in contrast to [7]–[9]. We combine these ideas in

a device structure to avoid issues with oxidizing AlxGa1−xAs

layers during device processing. In this paper, we first utilize a

980-nm-QW active region design, as previously introduced in

[10]. Such media find widespread application as optical pumps

for erbium-doped fiber amplifiers, but is used in this case sim-

ply as a robust material for initial investigation. The technol-

ogy is perhaps better suited for exploitation of long-wavelength

QD and dilute nitride technology for application in metro and

access data communications. As such, we also investigate a

1.3-µm self-assembled QD self-aligned laser in this paper.

Lasers fabricated demonstrate extremely encouraging charac-

teristics, and importantly, the dot emission is shown to be robust

to the GaAs/AlGaAs regrowth as no blue-shift is observed, indi-

cating that this technique will be suitable for realizing advanced

QD structures, devices, and integrated circuits.

II. REALIZATION OF QW SELF-ALIGNED STRIPE LASER

A. Device Design and Fabrication

The schematic of our completed device is shown in Fig. 1(a).

The basic elements of the device are the combination of p-n-p-n

current blocking layers and the refractive index contrast of the

GaAs, Al0.42Ga0.58As, and InGaP to simultaneously achieve

optical and carrier confinement. Fig. 1(b) shows modeling of

1077-260X/$25.00 © 2009 IEEE
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Fig. 1. (a) Schematic diagram to assist in identifying the layers of the self-
aligned stripe. (b) Optical mode as modeled in Fimmwave (only index guiding
is considered). (c) Cross-sectional SEM of the regrown structure. The dotted
line is a guide to the eye for the contrast difference.

the fundamental TE mode within the structure using Fimmwave

software [11], a development of the film mode matching method

for mode solution in dielectric waveguides.

The initial MOVPE epitaxial growth was carried out on a

3◦-OFF (1 0 0) n+ GaAs substrate to create a large number of re-

action sites due to the greater step density. Following the growth

of a GaAs buffer, 1000 nm Si-doped Al0.42Ga0.58As (to a con-

centration of 5 × 1017 cm−3) lower cladding was grown. The

double QW (DQW) active region comprises two In0.17Ga0.83As

QWs separated by 20 nm GaAs, grown within a 100 nm GaAs

separate confinement heterostructure. Above the active region,

300 nm Al0.42Ga0.58As (Zn-doped 5 × 1017 cm−3) was grown.

A 600 nm lattice-matched n-doped InGaP layer (Si-doped 5 ×

1017 cm−3) was then sandwiched between two undoped 10 nm

GaAs layers, which are sufficiently thin to be doped to a high

concentration from residual doping and diffusion. AlGaAs was

grown at a thermocouple temperature of 700 ◦C, InGaP at

710 ◦C, and the DQW at 680 ◦C.

The planar wafer was patterned and wet chemically etched

(ex situ) into a series of narrow stripes parallel to the major

flat (1 1 0). Etching proceeded first with C6H8O7/H2O2 to

selectively etch the GaAs, then H3PO4/HCl to selectively etch

the InGaP, leaving a smooth GaAs surface at the bottom of the

stripe. No AlGaAs is exposed. Prior to regrowth, the wafer was

Fig. 2. Cross-sectional dark field 0 0 2 TEM of the overgrown structure at
(a) 690 ◦C and (b) 650 ◦C. Part of the structure in (a) has been etched back
through the top cladding. Supplied by [13].

cleaned in 1% buffered HF. The low-pressure regrowth process

consisted of rapidly ramping up to 690 ◦C (measured by EpiTT

pyrometer) in an arsine mole fraction of 7.5 × 10−3 , before

growth of 100 nm GaAs (C-doped 5 × 1017 cm−3), 1000 nm

Al0.42Ga0.58As (C-doped from 5 × 1017 to 1 × 1018 cm−3),

and a 200 nm GaAs contact layer (C-doped 2 × 1019 cm−3).

The material was etched into wide ridges for electrical isolation

and AuZnAu contact metallization was deposited and annealed

at 360 ◦C. After thinning the substrate, InGeAu back contacts

were deposited and annealed at 340 ◦C. Key features of this layer

structure are the GaAs layers that sandwich the InGaP layer.

The lower GaAs layer prevents the exposure of Al0.42Ga0.58As

to oxygen during the fabrication process and acts as an etch

stop. The upper GaAs layer has two roles: first, preventing an

exchange interaction between P and As during the regrowth step,

and second, pinning the wet etch employed to define the laser

stripe. The thickness and doping concentration of these layers

were chosen to minimize current leakage, thus resulting in the

current being localized to the area defined by the stripe, while the

refractive index profile that these layers provide simultaneously

confines the optical field to the active region below the stripe.

A cross-sectional SEM of the completed device is shown in

Fig. 1(c). This corresponds to a 500-nm-wide stripe structure.

Contrast between the GaAs, Al0.42Ga0.58As, and InGaP layers

is observed, although the QWs and thin GaAs insertions are not

resolved. The image is indicative of the excellent regrowth qual-

ity, free from obvious defects. Furthermore, careful inspection

of the SEM image reveals a slight contrast difference for the

AlxGa1−xAs immediately above the laser stripe, compared to

that grown on top of the InGaP layer. This is suggestive of a

compositional variation of AlxGa1−xAs grown upon a nonpla-

nar surface [12], Al being depleted above the stripe.

Careful inspection of the dark field 0 0 2 transmission elec-

tron micrograph (TEM) image in Fig. 2(a) demonstrates a high-

quality interface with no defect or dislocation present. Although

part of the structure has been etched away through the upper

cladding, there is no evidence of the formation of dislocation

“twins.” Such twins would be evident in the first ∼100 nm of

AlGaAs, as they are in the structure overgrown at lower temper-

ature [Fig. 2(b)] and originate almost as soon as the AlGaAs is

formed. V-shaped defect clusters are apparent above the edges

of the infill region and propagate to the surface of the semi-

conductor. Dark field 0 0 2 imaging conditions are sensitive to

Authorized licensed use limited to: Sheffield University. Downloaded on June 29, 2009 at 09:34 from IEEE Xplore.  Restrictions apply.



GROOM et al.: QUANTUM WELL AND DOT SELF-ALIGNED STRIPE LASERS UTILIZING AN InGaP OPTOELECTRONIC CONFINEMENT LAYER 821

Fig. 3. Current density–voltage characteristics of mesa diodes processed from
p-i-n (solid circles) and p-n-p-n (open circles) portions of the wafer.

composition, revealing important differences in the composition

of the overgrown material. In Fig. 2(a), the overgrown GaAs ap-

pears to have formed uniformly on all exposed surfaces, and

the TEM reveals contrast differences within the AlxGa1−xAs

above the laser stripe, indicative of a compositional variation

in the AlxGa1−xAs grown above the stripe, and suggests the

occurrence of preferential growth in the (1 1 1) directions. This

is in addition to the contrast noted in the SEM above which a

contrast is identified between the AlxGa1−xAs above the stripe

and that outside of the stripe.

B. Results and Discussion

In order to characterize the electrical characteristics of the

current blocking layers, 100-µm-diameter circular mesas were

processed from portions of the wafer where the InGaP was

removed (p-i-n structure) and where the InGaP is left intact

(p-n-p-n structure). Fig. 3 plots the current density versus volt-

age characteristics recorded for these two devices. The p-i-n de-

vices exhibit typical diode characteristics, turning ON at ∼1.5 V.

The p-n-p-n device exhibits effective current blocking, with

a breakdown of the current blocking evidenced by the large

increase in current commencing ∼17 V. At forward voltages

<17 V, current flow in the buried heterostructure lasers should

therefore be confined to the stripe region.

One-millimeter-long (uncoated) devices were mounted epi-

side-up on AlO2 tiles and tested at room temperature without

active cooling. The continuous-wave (CW) output power and

voltage versus current responses for a device with a 3-µm-wide

aperture in the InGaP is shown in Fig. 4(a), together with a corre-

sponding lasing electroluminescence (EL) spectrum in Fig. 4(b).

The threshold current is 20 mA, corresponding to a threshold

current density (Jth ) of 666 A·cm−2 , calculated without taking

into account any current spreading, and hence, provides an upper

limit to the value for Jth . From comparison between different

stripe widths (not shown), we estimate the total current spread-

ing as 1 µm. Hence, a more likely Jth value of 500 A·cm−2 is

determined. The maximum CW output power from one facet is

98 mW (limited by thermal rollover), with 0.3 W/A per facet

slope efficiency. The higher than expected series resistance∼5 Ω

could be a result of the inverted-trapezoidal profile of the block-

ing layer or carrier leakage.

Fig. 4. (a) CW output power and voltage versus current response of a 3-µm-
wide stripe laser. (b) Lasing spectrum at (lower) 40 mA CW and (upper) for a
portion of the spectrum to demonstrate the absence of competing lateral modes.

Fig. 5. (a) High-temperature performance of the 980 nm self-aligned laser
demonstrated as a series of P versus I curves over the range of temperatures
10 ◦C–90 ◦C. (b) Jth plotted as a function of temperature. The thick line demon-
strates the region 10 ◦C–50 ◦C where a T0 of 150 K is extracted.

The above-threshold EL spectrum exhibits a Fabry–Perot las-

ing envelope at a central wavelength of 994 nm, with no obvious

competition from higher order lateral modes observable in the

spectrum (inset).

Devices were tested up to 90 ◦C (Fig. 5), where CW operation

was still achieved with no active cooling. A characteristic tem-

perature T0 of 150 K is extracted over the range 10 ◦C–50 ◦C.

Fig. 6 plots the horizontal and vertical far-field profiles of

the device for (a) low current (40 mA) and (b) high current

(400 mA), recorded by coupling the light into a standard far-field

goniometer with InGaAs detector. The measured low-current di-

vergence angles of 33◦ vertical and 14.6◦ horizontal correlate

well with those predicted using Fimmwave software [Fig. 6(a)]

of 33.3◦ and 14.4◦. The difference in far-field divergence is at-

tributed to uncertainties in the AlxGa1−xAs composition due to

regrowth on a patterned surface and the effects of gain guid-

ing in the structure. A wider divergence is observed at higher

Authorized licensed use limited to: Sheffield University. Downloaded on June 29, 2009 at 09:34 from IEEE Xplore.  Restrictions apply.
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Fig. 6. Horizontal (circles) and vertical (squares) far-field sections for drive
currents of (a) 40 mA and (b) 400 mA. Simulated far-field sections are plotted
in both figures as dotted lines.

Fig. 7. Experimentally measured horizontal (closed squares) and vertical
(open triangles) near-field sections of the far-field profile plotted in the inset.

currents and is attributed to an enhanced contribution of gain

guiding. Nearly symmetric far fields (22.2◦, 28.7◦) were attained

for narrower (500 nm wide) stripes.

The device clearly operates on the fundamental lateral mode

under all injection conditions, even up to the maximum output

power at 400 mA. However, as further proof of the single-lateral-

mode nature of the emission, the 2-D near-field profile was

scanned using a lensed single-mode optical fiber. The measured

lateral and vertical near-field sections are shown in Fig. 7. The

inset plots the full 2-D near-field profile.

The near-field optical profile exhibits a single peak. The cone

of light is measured to originate from a single ∼3 µm ×2 µm

section of the device in the center of the 50-µm-wide device.

However, the near-field resolution is of the order of∼2 µm (lim-

ited by the lensed fiber), so while detailed mapping of the near

field is not possible, this measurement serves to demonstrate the

effective current and optical confinement within the device.

III. REALIZATION OF QD SELF-ALIGNED STRIPE LASER

A. Device Design

The initial molecular beam epitaxy (MBE) growth was again

carried out on a 3◦-OFF (1 0 0) n+ GaAs substrate. Following

growth of a GaAs buffer, 1500 nm Si-doped (5 × 1017 cm−3)

Fig. 8. (a) PL spectrum recorded before and after MOVPE regrowth at room
temperature under identical excitation conditions. No blue-shift is observed,
with peak identical at 1.27 µm. (b) PL recorded for a similar structure for
growth on (1 0 0) and 3◦ misoriented substrates.

Al0.42Ga0.58As lower cladding was grown (growth temperature

Tg = 620 ◦C). Six InAs QD layers were each capped with a

6 nm In0.15Ga0.83As strain reducing layer (Tg = 510 ◦C) and

separated by 50 nm GaAs spacer (Tg = 580 ◦C), incorporating a

modulation doping layer providing∼12 additional acceptors per

dot (situated 25 nm below each dot layer). This was embedded

within 100 nm GaAs separate confinement layers. Above the ac-

tive region, 300 nm Al0.42Ga0.58As (Be-doped 5 × 1017 cm−3 ,

Tg = 600 ◦C) was grown before a 600 nm lattice-matched Si-

doped (5 × 1017 cm−3) InGaP layer (Tg = 520 ◦C) was sand-

wiched between two Be-doped 20 nm GaAs layers. These were

thicker than for the QW structure only as part of an experiment

investigating native oxide removal.

Again, the planar wafer was patterned and selectively wet-

etched (ex situ) through the InGaP into a range of narrow

stripes, leaving a smooth GaAs surface at the bottom of each

stripe, and the regrowth process consisted of ramping up to the

growth temperature in an arsine environment, before growth of

100 nm GaAs, 1500 nm Al0.42Ga0.58As, and 200 nm GaAs

contact layer (C-doped 5 × 1017 to 1 × 1018 cm−3 to 2 ×

1019 cm−3 , respectively). Broad-area (20–50 µm) ridges were

again etched for the purpose of electrical isolation and contacts

were applied as before.

B. Photoluminescence (PL) Characterization

Room-temperature PL spectra were recorded from the ma-

terial under identical excitation conditions before and after the

MOVPE regrowth, and are plotted in Fig. 8. No blue-shift of

the QD emission, which peaks at 1.27 µm, is observed. QD

emission wavelength has previously been shown to shorten as a

result of annealing at temperatures similar to those used in the

MOVPE regrowth of our structures, e.g., [14]. In such cases,

Ga vacancies are either present or they are created during the

anneal process, and are often enhanced through use of sput-

tered or plasma-enhanced CVD (PECVD) SiO2 layers [15]. The

presence of Ga vacancies close to the dots allows the outdiffu-

sion of In, resulting in a blue-shift. In our structures, growth is

Authorized licensed use limited to: Sheffield University. Downloaded on June 29, 2009 at 09:34 from IEEE Xplore.  Restrictions apply.
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Fig. 9. (a) Output power as a function of CW current for 5-µm-wide stripe,
1-mm-long laser. (b) Temperature dependence of Jth .

initiated rapidly after thermally cleaning the surface in an at-

tempt to control point defect diffusion.

The active region design used in this study exhibits emission

at 1.3 µm when grown on (1 0 0) substrates. However, the re-

quirement of 3◦ misoriented substrates for high-quality MOVPE

regrowth has the result of shortening the emission wavelength

compared to the ON-axis case, as demonstrated in Fig. 8(b),

recorded for a similar sample where the PL peak wavelength

reduced from 1.3 to 1.28 µm. This could be a result of an in-

creased number of steps in the substrate that would manifest

itself in an increased dot density and shorter wavelength, and/or

the potential to change the shape of the dots. The impact on

laser gain and efficiency will be studied elsewhere.

C. Laser Performance

One-millimeter-long (uncoated) devices were tested as a

function of temperature. Room-temperature CW output power–

current response for a device with a 5-µm-wide stripe in the

InGaP is shown in Fig. 9(a). The threshold current is 40 mA. A

threshold current density Jth of 300 A·cm−2 is calculated with-

out taking into account any current spreading, hence providing

an upper limit to its value. The maximum CW output power

from one facet is 25.5 mW (limited by thermal rollover), with

0.14 W/A slope efficiency.

Devices were tested under pulsed injection up to 90 ◦C

[Fig. 9(a)], where a negative characteristic temperature T0 was

observed around room temperature. Such negative T0 is typ-

ical of QD lasers. The excellent temperature performance of

the present lasers highlights the high-quality material grown,

despite being grown OFF-axis and suggests an improvement in

temperature performance, most probably as a result of surround-

ing the active waveguide with semiconductor.

The above-threshold room-temperature EL spectrum

(recorded at 2Jth ) is shown in Fig. 10(a) together with a plot

of the lasing wavelength as a function of temperature between

10 ◦C and 90 ◦C. The room-temperature EL exhibits a central

wavelength of 1270 nm and the device continues to operate via

the ground state transition over the range of temperatures stud-

ied. This is characterized by the continuous increase in wave-

Fig. 10. (a) Low-resolution room-temperature lasing EL spectrum (lasing
centered at 1.27 µm). (b) Wavelength is plotted as a function of temperature.

Fig. 11. Far-field profiles (pulsed injection, room temperature) of the device
at 90, 210, and 300 mA in the (a) horizontal and (b) vertical directions. All
demonstrate emission only from the fundamental mode.

length as a function of temperature. For devices shorter than

1 mm, lasing proceeded via an excited state transition. This was

also the case for ridge waveguide devices processed from iden-

tical material (not shown here), and suggests that the internal

losses are very similar.

Fig. 11 plots the horizontal (a) and vertical (b) far-field pro-

files of the device for a range of drive currents at room tempera-

ture using a standard far-field goniometer with InGaAs detector.

The measured low-current divergence of 55◦ (vertical) and 6◦

(horizontal) increase to 72◦ and 11◦ at high current as a re-

sult of enhanced gain guiding. This QD self-aligned laser was

not designed for optimum far-field profile, and exhibits strong

asymmetry typical of narrow lasers with relatively high Al com-

position cladding.

The device operates on the fundamental lateral mode under

all injection conditions studied, even up to the maximum output

power at 300 mA. Such single-lateral-mode behavior is further

evidenced through scanning a single-mode optical fiber to obtain

the near-field profile. The near-field profile plotted in Fig. 12

exhibits a single peak, with the cone of light originating from a

single ∼7 µm ×7 µm section of the device, in the center of the

50-µm-wide ridge. However, this is of the order of the resolution

of the scanning fiber (no lens), so while detailed mapping of the

Authorized licensed use limited to: Sheffield University. Downloaded on June 29, 2009 at 09:34 from IEEE Xplore.  Restrictions apply.
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Fig. 12. Experimentally measured room temperature near-field profile at
120 mA (CW) with resolution limited ∼7 µm full width at half maximum
(FWHM) in both directions.

Fig. 13. Experimental horizontal and vertical far-field divergences plotted as
a function of drive current for 2 µm QD and QW self-aligned lasers. Dashed
lines represent simulated divergences.

near field was not possible, the measurement demonstrates the

effective current and optical confinement within the device, i.e.,

the device operates as a single-spatial-mode self-aligned laser

rather than as a broad-ridge laser.

The QD self-aligned laser exhibits a notably different far-field

profile when compared to that observed in their QW counter-

parts studied in [10] in terms of the asymmetry and its de-

pendence upon drive current. This is demonstrated in Fig. 13

for 2-µm-wide stripes, which both operate on the fundamental

lateral mode over the whole current range. For the QW laser,

the divergences are ∼18◦ horizontal and 30◦ vertical just above

threshold. There is then a gradual increase in the horizontal di-

vergence as a function of current above threshold. For the QD

laser, the horizontal and vertical divergences are ∼6◦ and 55◦,

respectively, and a more prominent increase in far-field diver-

gence is observed with increasing drive current.

Fig. 14. Modeled horizontal and vertical far-field divergences plotted as a
function of drive current for 2-µm-wide stripe (a) QW and (b) QD self-aligned
stripe lasers. Corresponding modeled near-field profiles are plotted in (c) and
(d) for QW and QD, respectively, superimposed on the simulated layer struc-
ture. The sloped InGaP profile is approximated as vertical for computational
efficiency—there is negligible difference compared with inclusion of slopes.

These differences can be explained through waveguide sim-

ulation. In addition to their different emission wavelengths, the

QD structures have a wider active core (∼450 nm) resulting

in narrower vertical divergence compared to the QW structures

(∼135 nm). These have an effect on the effective refractive in-

dex profiles of the two structures and hence the optical confine-

ment. This is demonstrated in Fig. 14, which shows horizontal

and vertical far-field profiles simulated for QW (a) and QD (b)

self-aligned stripe lasers of 2 µm stripe width. The QD laser

is predicted to yield divergences of 6.7◦ and 54◦ in the hori-

zontal and vertical directions, respectively, while the QW laser

is predicted to yield divergences of 14.7◦ and 33◦. These are

superimposed as dashed lines in Fig. 13.

The simulated optical near fields are shown in Fig. 14(c)

and (d) for QW and QD self-aligned stripe lasers, respectively.

For the QD laser, the optical mode is positioned lower down

in the structure than for the QW, resulting in reduced overlap

of the mode to the index differential created by the stripe, and

hence, less confined in the lateral direction, thus resulting in

narrower lateral divergence. As a consequence, the QD laser

should experience a greater relative contribution of gain guiding

and is hence more dependent upon drive current. This result

implies that there are important limitations to the usefulness

of this approach for wide active core structures such as those

utilizing QDs.

IV. BREAKDOWN OF CURRENT BLOCKING

Fig. 15 demonstrates the mechanism behind the electrical

breakdown of current blocking in self-aligned lasers in forward

bias, in this case for a QW laser of length 1 mm and 1 µm stripe

width. The P–I curve exhibits an abrupt decrease in power with

increasing drive current. Further increase in current results in

a modest increase in power before the device exhibits thermal

Authorized licensed use limited to: Sheffield University. Downloaded on June 29, 2009 at 09:34 from IEEE Xplore.  Restrictions apply.



GROOM et al.: QUANTUM WELL AND DOT SELF-ALIGNED STRIPE LASERS UTILIZING AN InGaP OPTOELECTRONIC CONFINEMENT LAYER 825

Fig. 15. Breakdown hysteresis effect demonstrated for a 1-mm-long, 1-µm-
wide stripe. Step changes in I–V and P –I curves are accompanied by a com-
mensurate change in the horizontal divergence (top).

rollover. With decreasing current, the power reduces to 0.5 mW

before recovering to prebreakdown levels exhibiting a 25 mA

hysteresis. The reason for the marked decrease in power before

the power recovers is unknown.

To illustrate the reason for the form of the P–I horizontal

far fields were measured and are shown for various points on

the curve. The far fields for points A and B on the curve have

a shape that is consistent with lasing occurring only from the

section defined by the stripe rather than the 8 µm ridge in which

the stripe is positioned. As the current is increased further, the

power continues to increase. However, by point C, the far field

is beginning to narrow, suggesting degradation in the current

confinement manifesting itself in a narrower far field. By point

D, there has been a total breakdown of the current confinement

and the far field is consistent with the device lasing from the

8 µm ridge that provides electrical isolation between the ridges.

The current blocking in self-aligned stripe lasers is expected

to eventually breakdown, permitting current flow across the

whole ridge that is used to isolate devices and manifesting it-

self in a narrowing of the horizontal far-field divergence. At

the breakdown point, the voltage across the device increases

as the breakdown occurs and reduces as the current blocking

recovers. Fig. 3 suggests that breakdown should not occur until

a voltage of ∼18 V has been applied; however, for the laser

devices in Fig. 15, breakdown occurs ∼3.5 V. We attribute the

lower breakdown voltage of the laser device compared to mesa

devices to the 54◦ etch profile of the InGaP stripe causing lo-

cal high-electric-field regions allowing breakdown to occur at

lower voltages. Such a change in far field could be exploited as

a possible modulation scheme and also offers the possibility of

a variable divergence laser.

V. CONCLUSION

In summary, we have demonstrated a novel GaAs-based self-

aligned laser in both 980 nm QW and 1300 nm QD schemes.

Careful design in order to avoid the exposure of Al containing

alloys is combined with an InGaP current blocking and opti-

cal confinement layer to result in single-lateral-mode behavior.

This single-overgrowth design offers a simple manufacturable

method for single-lateral-mode lasers on GaAs substrates. Fur-

thermore, we have described the limitations of both index guid-

ing and current blocking in our design.
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