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ABSTRACT 

Blockages may be detected in pipes by sending acoustic signals down the pipe and measuring 

the echo from the blockage. This presents a fast and efficient way of determining the 

presence of a blockage and this method is now being used, for example, to probe the integrity 

of sewer systems. In this article a method is presented for obtaining both the length and the 

equivalent cross-sectional area of a blockage using only a single microphone to capture the 

incident and reflected pulse. The method presented uses the change in phase between the 

incident and reflected acoustic signals caused by a blockage, as well as the difference in the 

amplitude of each pulse, to generate two independent equations from which the area ratio and 

the length of the blockage may be recovered. This requires measurements to be carried out in 

the plane wave region of the pipe, however it is shown that through appropriate processing of 

each signal in the frequency domain the area ratio and length of a relatively large number of 

blockages can be successfully recovered. 

 

1. INTRODUCTION 

 

It is common to use a sound source to probe the conditions of a duct or pipeline.  The use of 

sound is attractive as it provides a non-destructive method for locating items such as defects 

in pipelines, or in establishing the geometry of a remote section of ductwork.  Engineering 

applications include the monitoring of blockages, cracks and leaks in pipelines [1,2] and the 

quality control of musical instruments [3].  In each application a remote sound source is used 

to launch a short pulse, which is then reflected back by the object of interest.  A comparison 

between the properties of the incident and reflected pulse then permits an inverse analysis 

aimed at finding the geometrical characteristics relating to the test object.  It is common 
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practice here to use a pulse of limited frequency bandwidth and then to directly compare the 

amplitudes of the incident and reflected pulse [1], or alternatively to deconvolve the 

measured reflection with the incident pulse and measure the impulse response function of the 

test object [2-5]. For example, a lossy ‘layer peeling algorithm’ is often used to reconstruct 

the area changes of tubular musical wind instruments based on impulse response 

measurements [2-5]. However, the axial resolution of this algorithm is directly related to the 

sampling frequency, and the sampling frequency is limited by the radius and length of the 

pipe because a plane wave assumption is used in the algorithm. Consequently, the layer 

peeling algorithm cannot be readily applied to sewer system blockage detection applications 

because the radius and the length of the pipe are both much larger than those used in musical 

instruments. Accordingly, this article seeks to determine the characteristics of a blockage 

placed within a pipe by comparing the amplitude and phase of the incident pulse and the 

pulse reflected by the blockage. This has a number of applications, for example in the 

investigation of the integrity of gas pipelines [6], or in the location of blockages in sewer 

systems [7] which is the application of interest in this article. 

 

It is, of course, straightforward to locate a blockage in an acoustic waveguide using time of 

flight calculations [6], but in order to obtain additional information, such as the size of the 

blockage some further signal processing is required.  For example, Antonopoulous-Domis [8] 

used a frequency domain technique that measured the axial resonant frequency of the duct 

with and without the blockage present in order to recover the cross sectional area and the 

location of the blockage. Qunli and Fricke [9] used a similar method for a duct with a rigid 

termination, and it was also shown that similar results may be obtained using multiple axial 

resonant frequencies for closed-closed and closed-open duct geometries [10].  However, 

those methods that require measurements to be taken with and without a blockage have 
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limited use in applications where one does not normally have prior access to an empty duct. 

To address this issue, Qunli [11] later showed that the axial duct eigenfrequency without a 

blockage can be estimated from measurements taken only with the blockage in place in a pipe 

with closed-open boundary conditions, although this method is limited to blockages that are 

asymmetric about the axial midpoint of the duct.  By measuring both the resonance and anti-

resonance frequencies in a duct de Salis and Oldham [12] showed that it is possible to use a 

similar technique to recover blockage area for closed-open boundary conditions.  This 

method requires measuring under anti-resonance conditions within the duct so that the 

acoustic pressure is very small at the closed end of the duct; the authors note that ability to 

locate the anti-resonance frequencies corresponding to pressure minima is likely to be 

affected by background noise, and so a deterministic maximum length sequence was used to 

drive the loudspeaker in order to minimise this problem.  It was also later shown by the same 

authors [13] that by using Qunli’s approach [11] one could also remove the requirement to 

undertake additional measurements for an unblocked duct.  Accordingly, techniques are now 

available that can reconstruct the blockage area in a duct of finite length, provided at least 

one well defined boundary condition is present such as a rigid or open duct termination.  

However, a reliance on generating axial resonances within the duct does limit the length of 

the duct that may be studied successfully.  

 

If one wishes to remove restrictions such as limited duct length and/or the presence of a well-

defined duct termination, then it is possible to use a narrow band pulse and to apply 

techniques such as pulse reflectometry. This method is attractive because it allows for the 

straightforward separation of the incident and reflected signals and one can easily filter out 

reflections from say, a termination and/or other known area discontinuities in the duct. 

Examples of pulse reflectometry applications can be found in the literature, see for example 
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[1-7], and this method is particularly popular in the reconstruction of the bore size of musical 

instruments. Sharp and Campbell [2] also show that pulse reflectometry can be used to obtain 

the complex input impedance of a pipe using its impulse response, which can be used to 

obtain the depth and radius of a leak. Since the depth of the leak is the same as the thickness 

of the pipe, Sharp and Campbell proposed a technique to estimate the radius of the hole from 

the measured input impedance of the pipe.  

 

The lossy ‘layer peeling algorithm’[14, 15] is often used in pulse reflectometry applications 

to reconstruct cross-sectional area change of the pipe as a function of discretised axial 

coordinates. To do so the impulse response of the test object must be measured first. The area 

change of the pipe is then calculated using amplitude reflection ratios in a time domain 

sample by sample basis. This algorithm requires a fine sampling frequency to be used, which 

limits its application to relatively small and short objects. The layer peeling method also 

suffers from cumulative errors, especially due to low frequency components, and the 0Hz 

frequency component in the impulse response measurement can produce a systematic offset 

to the reconstruction profile. To address these issues, Sharp and Li [16] proposed the 

insertion of a calibration tube between the source tube and the test object to remove the 

offset. Furthermore, the impulse response spectrum is improved by combining the low 

frequency components measured using a bass loudspeaker, with the higher frequency 

components measured using a compression-driver loudspeaker. Amir et al. [17] later 

investigated the presence of corrosions, blockages etc. in a condenser pipe using pulse 

reflectometry. It is shown that the characteristics of the discontinuity can be revealed from 

the form of the reflected pulse. For instance, a constriction will create a positive reflection, 

whereas a dilation (increase in cross section) will create a negative reflection. However, the 

size of the blockage or corrosion is not revealed.  
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The standard pulse reflectometry normally involves the use of a short transient pulse as the 

incident signal. Kemp et al. [5] showed that it is possible to use a logarithmic sine sweep 

signal in such applications, which has the advantage that the energy of the incident signal can 

be increased. Good signal to noise ratio is achieved using a signal lasting of the order of 10 s. 

In this case, the forward and backward going waves between the sound source and the test 

object superimpose. Kemp et al. proposed a multi microphone technique to separate these 

waves. The system impulse response can then be performed by deconvolving the forward and 

backward going waves. Kausel [18,19] developed a similar optimisation method to 

reconstruct the area changes of tubular musical wind instruments based on the frequency 

domain input impulse response measurement. The input impulse response of the arranged 

instrument is calculated from a one-dimensional plane wave model, and the optimisation 

parameters are then changed until the calculated input impulse response match the actual 

measured input impulse response.  

 

In this paper, an alternative inverse technique is proposed to reconstruct the area ratio and the 

length of a blockage in a relatively long and large pipe. Standard pulse reflectometry is used, 

and a short transient pulse is projected into the pipe. The incident and the reflected pulses are 

separated in the time domain, provided that the distance between the microphone, 

loudspeaker and the blockage is large enough to avoid signal overlapping. These pulses are 

then transformed into the frequency domain. The phase change between the incident and 

reflected pulse is combined with the power reflection ratio to determine the area ratio and the 

length of the blockage at a single frequency. Multiple frequencies allow an over-determined 

problem to be formed, and most accurate predictions can be selected at places where signal to 

noise ratio is high. The inverse technique has a major advantage over previous techniques due 
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to its simplicity. Unlike the layer peeling algorithm which requires complex signal processing 

procedures, the method we propose is based on simple analytical expressions which are very 

easy to implement. This method also avoids the need to measure the impulse response of the 

blockage, and thus does not suffer from bandwidth limitations or offset problems. However, 

this method can only give an averaged area ratio and cannot calculate area changes of the 

blockage in the axial direction. This is not a problem for engineering applications since the 

relative size of the blockage is of most interest whereas the shape and subtle area changes are 

not as important. The underlying principle of this technique is discussed in section 2.  The 

method is then implemented in section 3 using experimental measurements taken for 14 

different blockages and its success is reviewed in terms of robustness and accuracy in section 

4. 

 

2. THEORY 

 

The technique described here is a pulse reflectometry technique that relies on the 

measurement of an incident and reflected narrow band pulse propagating in a pipe.  This 

requires the study of guided waves, which can be problematic because the sound energy 

propagates in the form of duct modes. Accordingly, one is always faced with a decision on 

how many modes, and also which modes, to adopt when undertaking an inverse analysis in a 

waveguide.  For example, in the ultrasonic non-destructive testing of pipelines one normally 

has no choice but to tolerate the presence of higher order modes and this can add significant 

difficulties to the interpretation of data reflected from a defect.  For an acoustic waveguide it 

is much more straightforward to restrict the analysis to the propagation of a single, planar 

mode, simply by careful choice of the centre frequency of the incident pulse; however, this 
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has the potential disadvantage of limiting the amount of information one may obtain for the 

blockage. Therefore, one must balance the amount of information required about the 

blockage with the difficulty in processing the modal-based information scattered by the 

blockage. In this article, analysis is restricted to the plane wave region only and it will be 

shown that this is sufficient to recover the area ratio and the length of the blockage. Whilst it 

is attractive to make use of higher order modes, maybe to try and recover more information 

about the shape of the blockage, this has been found to be very difficult to do, even under 

very controlled laboratory conditions [20].  This is believed to be because higher order modes 

are very sensitive to the boundary conditions in a duct and this sensitivity makes it difficult to 

develop a reliable and robust technique suitable for use under less controlled conditions, such 

as sewer systems [20].  Furthermore, higher order modes are dispersive and so this makes a 

methodology that utilises a change in phase more difficult to implement. Accordingly, the 

emphasis of this article is on developing an approach for use in industrial applications that is 

both reliable and robust. 

 

For plane wave propagation a simple set of analytic expressions may be obtained provided 

one matches continuity of pressure and volume velocity over the area discontinuities at each 

end of the blockage, see planes 1 and 2 in Fig. 1.  This is, of course, an approximation of the 

true matching conditions and so errors will be apparent even for the plane wave region. 

Therefore, in order to investigate the effect of these errors, the plane wave based predictions 

will be compared against a full treatment of the problem (based on a mode matching 

approach) in section 3 [20, 21]. 
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For plane wave propagation, one may write the sound pressure as a sum of the incident and 

reflected plane waves propagating in any particular region; thus, for region ݍ, 

 

ሻݔሺ  ൌ ݁ି௫ܣ   ݁௫ǡ (1)ܤ

 

and the velocity is given as 

 

ሻݔሺݑܿߩ  ൌ ݁ି௫ܣ െ  ݁௫ǡ (2)ܤ

 

where a time dependence of ݁ఠ௧ is assumed with ݐ denoting time, ߱  the radian frequency 

and ݅ ൌ ξെͳ.  In addition ߩ is the fluid density, ܿ is the speed of sound,  is pressure, ݑ is the 

particle velocity, ܣq and ܤq are the amplitudes of the incident and reflected waves in the 

region q, and ݇ ൌ ߱ ܿΤ  is the wavenumber in air. The origin of the ݔ coordinate is defined on 

plane 1. 

For waves propagating in region 1 the sound pressure and volume velocity on plane 1 is ܣଵ  ܵ ଵ andܤ ଵሺܣଵ െ ଵሻܤ Τܿߩ , respectively, where ܵ denotes pipe cross-sectional area in 

region ݍ. For waves propagating in region 2, there will be a phase delay between the sound 

pressure and velocity on planes 1 and 2, and the sound pressure and volume velocity on plane 

1 is ܣଶ  ܵ ଶ andܤ ଶሺܣଶ െ ଶሻܤ Τܿߩ , respectively. The sound pressure and volume velocity on 

plane 2 is ܣଶ݁ି್  ܵ ଶ್݁ andܤ ଶ൫ܣଶ݁ି್ െ ଶ್݁൯ܤ Τܿߩ , respectively, where ܮ is the 

length of the blockage.  
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For waves propagating in region 3, the sound pressure and volume velocity on plane 2 is ܣଷ݁ି್ and ܵ ଷܣଷ݁ି್ Τܿߩ , respectively. To simplify the development of the equations 

that follow the modal amplitude in region 3 is normalised so that ܣଷ ൌ ଷᇱܣ ್݁. Furthermore, 

regions 1 and 3 have identical cross-sectional areas so that ܵଵ ൌ ܵଷ. Here it has also been 

assumed that there is no reflection from the far end of region 3. This means that in the 

experimental measurements the width of the incident pulse in the time domain must be 

sufficiently small so that any signal reflected by the end of the pipe (or other obstructions in a 

real sewer system) do not interact with the transmitted signal. This is relatively easy to 

achieve under laboratory conditions, and it is also common to adopt such practice in field 

tests.  

Matching pressure and volume velocity over planes 1 and 2, thus delivers the following 

equations: 

ଵܣ   ଵܤ ൌ ଶܣ   ଶ (3)ܤ

 

ଵܣ  െ ଵܤ ൌ ሾܣଶ െ ଶሿܤ Τߪ  (4) 

 

ଶ݁ି್ܣ   ଶ್݁ܤ ൌ ଷᇱܣ  (5) 

 

ଶ݁ି್ܣ  െ ଶ್݁ܤ ൌ ଷᇱܣߪ  (6) 

 

Here, ߪ is the area ratio, defined as ߪ ൌ ܵଵ ܵଶΤ .  It is straightforward to eliminate ܣଶ and ܤଶ 

from Eqs. (3) to (6) and to write 

 

ଵܣ  ൌ ߪʹଷᇱܣ ሾʹߪcos݇ܮ  ሺߪଶ  ͳሻ݅sin݇ܮሿ (7) 

 
and 
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ଵܤ  ൌ ߪʹଷᇱܣ ሺߪଶ െ ͳሻ݅sin݇ܮ (8) 

  

It is convenient now to work with the sound power, so that the power reflection ratio Ȧ is 

defined as 

 

 Ȧ ൌ ȁܤଵȁଶȁܣଵȁଶǡ (9) 

 

and the tangent of the phase difference ߰ on plane 1 is defined as 

 

 ߰ ൌ Imሺܤଵ ଵܤଵሻΤReሺܣ ଵሻΤܣ Ǥ (10) 

 

Substitution of Eqs. (7) and (8) into Eqs. (9) and (10) yields 

 

 Ȧ ൌ ሺߪଶ െ ͳሻଶሺߪଶ  ͳሻଶ  Ͷߪଶcotଶ݇ܮ ǡ (11) 

 

and 

 

 ߰ ൌ ଶߪܮcot݇ߪʹ  ͳ Ǥ (12) 

 

The task now is to re-write Eqs. (11) and (12) so that one may solve separately for the length 

and area ratio of the blockage. For the area ratio this delivers a quadratic equation, which has 

the general solution 
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ଶߪ  ൌ Ȧሺͳ  ߰ଶሻ  ͳ േ ʹඥȦሺͳ  ߰ଶሻͳ െ Ȧሺͳ  ߰ଶሻ Ǥ (13) 

 

Note here that the two solutions for ߪଶ simply deliver values for ܵଵ ܵଶΤ  and ܵ ଶ ܵଵΤ , this is 

because for the plane wave region the governing equations of an area expansion and area 

reduction are identical. Finally, for the blockage length, 

 

ܮ  ൌ ͳ݇ cotିଵ ቈሺߪଶ  ͳሻ߰ʹߪ   ߨ݇݊ ǡ        ݊ ൌ Ͳǡͳǡʹǡ ǥǤ (14) 

 

Here, there are an infinite possible number of solutions for ܮ at each frequency. However it 

will be shown in the next section that the length can readily be recovered provided that ߪ and ܮ can be obtained from a number of different frequencies, which permits the subsequent 

averaging of data in order to deliver more reliable predictions. Furthermore, in Eqs. (3) and 

(4) the origin of the ݔ coordinate is defined at plane 1 and so ݁ି௫ and ݁ ௫ terms in Eqs. (1) 

and (2) disappear. However, the microphone is not placed at plane 1, this means that one 

must account for the attenuation and phase shift introduced by the pipe as the pulse 

propagates from the microphone to the blockage (plane 1) and back again.  This effect is 

discussed further in the next section.  

 

3. EXPERIMENT 

 

The experimental apparatus consists of a blockage of arbitrary shape placed inside a 

cylindrical PVC pipe with an internal diameter of 150 mm.  At one end of the pipe is a Fané 

compression driver, which is placed against the end wall of the pipe to simulate a point 
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source. The blockage is placed at a distance of ܮଵ ൌ ͳʹ m from the sound source, and the 

distance from the end of the blockage to the far (open) end of the pipe is ܮଶ ൌ  m.  A 

Knowles Acoustics MEMS microphone is placed at a distance of ܮଵ െ ୫ܮ ൌ  m away from 

the sound source. Experimental measurements are taken at room temperature so that the 

speed of sound ܿ ൌ ͵Ͷ͵Ǥʹ m/s, and density ߩ ൌ ͳǤʹʹͷ kgȀmଷ.  A Gaussian weighted 

sinusoidal signal  

 ݂ሺݐሻ ൌ ܽ sinሺ߱ݐሻ ݁ିሺ௧ିఓሻమȀఛమ ǡ ݐ  Ͳ (15) 

 

is emitted by the driver. Here, ߤ is the position of the centre of the pulse, and ߬ controls the 

width of the pulse.  For the experiments undertaken here ߤ ൌ ʹܶ, ߬ ൌ ܶ and ܶ ൌ ͳȀ ݂, where 

݂ is the centre frequency of the pulse.  A National Instruments DAQ NI PXIE-6358 system 

was used to acquire the signal from the microphone.  This was controlled using LABVIEW  

software with a sampling rate of 48 kHz.  Measurements were undertaken in the plane wave 

region of the pipe and carried out at five centre frequencies of 200, 400, 600, 800 and 1000 

Hz. Five pulses were used to ensure that each pulse has a modest signal width in the time 

domain. For each measurement, the incident and reflected pulse are truncated and then 

Fourier transformed into the frequency domain. The distances between the microphone 

position, blockage and pipe end are sufficiently long to avoid signal overlap. In order to 

increase the signal to noise ratio, measurements are also obtained only for a relatively narrow 

frequency bandwidth so that for a centre frequency ݂ data are taken from ሺ ݂ െ ͳͲͲሻ Hz to ሺ ݂  ͺͲሻ Hz, which corresponds to a maximum sound power drop of 20dB. The use of five 

different centre frequencies permits a frequency range from 100Hz to 1080Hz to be covered.  

It should be noted that the choice of frequencies depends on the radius of the pipe, so that the 

upper frequency limit should fall well below the frequency at which the first high-order mode 
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cuts on.  For the pipe studied here this frequency is 1340Hz [22] and so the measurements 

were limited to an upper centre frequency of 1080Hz. A further benefit of using multiple 

pulses is that the reflection characteristics of the object being studied are normally frequency 

dependent. At certain frequencies very little energy will be reflected back and so the use of 

multiple pulses allows a centre frequency to be chosen where the reflected energy from the 

blockage is close to maximum.  

 

Before substituting the measured modal power reflection ratios and phase changes into Eqs. 

(13) and (14), it is necessary first to compensate for the attenuation and phase shift in a pulse 

when it travels between the observation location and plane 1. To do this the distance from the 

blockage to the microphone (ܮ) is first obtained by measuring the time of flight between the 

two locations using the incident and reflected pulse. The most obvious way to do this is to 

measure from the same point at the start of the incident and reflected pulse when viewed in 

the time domain. However, the start of each pulse is often buried in noise and so 

measurement error can easily be introduced. This error (ݔ) does not affect the amplitude of 

the attenuation calculations, but will shift the phase by ݁ିଶ௫. Accordingly, the time of 

flight is measured here by taking the cross-correlation between the incident pulse and the 

reflected pulse and measuring the time of flight using the point of maximum cross-correlation. 

It is observed that the time of flight differs slightly when the pulse frequency is altered. This 

is because the interaction between each pulse and the blockage changes with a change in 

centre frequency and so the shape of the reflected pulse changes. Furthermore, the thermal 

viscous losses are frequency dependent as the pulse propagates along the pipe and the signal 

is slightly dispersive. Consequently different frequencies will experience slightly different 

time of flights. To accommodate these variations the time of flight is averaged using the 
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reflected pulses that have the highest signal to noise ratio.  This will also help to maintain the 

same phase shift error ݁ିଶ௫ because the same ݔ is used throughout. Here, the number of 

pulses used to average the time of flight is determined by the length of the blockage because 

the number of power reflection ratio peaks in a certain frequency range is directly associated 

with the length of the blockage.  

 

In this section pipe attenuation is accommodated by factoring attenuation into the 

experimental measurements by replacing the wavenumber with a factor ߚ, where [22] 

 

ߚ  ൌ ݇ ቈͳ  ሺͳ െ ݅ሻ ሾͳ  ሺߛ െ ͳሻߦሿܳξʹ  (16) 

 

Here, ܳ  ൌ ܽሺ߱ȀߥሻǤହ, where ܽ  is the radius of the pipe, ߥ is the kinematic viscosity of the 

air, ߛ is the ratio of the specific heats and ߦ ൌ ͳȀඥ ܲ, with ܲ  the Prandtl number for the air. 

This attenuation factor is only used for the wave propagation between the observation 

location and the blockage. For the incident pulse, a compensation factor of ݁ିఉ should be 

used, while a factor of ݁ఉ should be used for the reflected pulse. The maximum loss in the 

blockage chamber region (see region 2 in Fig. 1) is less than 0.4% for a 300 mm long 

blockage up to 1080 Hz, and is negligible compared to the losses between the microphone 

and the blockage. The losses in region 2 of the pipe are therefore neglected.  

 

It is interesting first to review a comparison between the measured and predicted power 

reflection ratio Ȧ and tangent of the phase difference ߰.  For this purpose, a uniform 

axisymmetric blockage is placed in the centre of the pipe. This blockage is a hollow PVC 

cylinder, tightly covered with wooden lids from both ends.  It has a length of ܮ ൌ ͵Ͳͷ mm 
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and a diameter of 110 mm. In Fig. 2 values for Ȧ and ߰  are presented for five pulses with the 

centre frequencies described above. The frequencies are normalised in the form of Helmholtz 

number ݇ ݀, where ݀  is the diameter of the pipe, and thus the first high order mode in a 

cylindrical pipe always cuts on at ݇݀ ൌ ͵Ǥͺ. A ݇݀ range of 0-3 will ensure that pulses are 

reasonably far away from the cut-on frequency, and evanescent modes shall play a less 

important role. In the plane wave model, Ȧ and ߰  are calculated using Eqs. (11) and (12). It 

can be seen in Fig. 2(a) that the plane wave model slightly overpredicts the measured power 

reflection ratio in the frequency range of ݇݀ ൏ ͳǤͷ and that its spectrum is slightly shifted 

towards the higher frequency end.  The reason for this discrepancy is the approximation 

inherent in the volume velocity matching conditions used for the inlet and outlet plane of the 

blockage in the plane wave model.  This is confirmed by comparing plane wave predictions 

with a full finite element model [20,21], which is also shown in Fig. 2.  Clearly, the area ratio 

spectrum predicted by the finite element model is in better agreement with the measured data, 

although it is seen in Fig. 2(a) that the measured reflection ratio is lower than that predicted 

by the FEM. Equation (11) shows that when ݇ܮ ൌ ݉ ,ʹȀߨ݉ ൌ ͳǡ ͵ǡ ͷǡ ǥ, the power 

reflection ratioܴ ଵ will be maximum. In these situations, the length of the blockage is equal to 

odd integer multiples of a quarter of the wavelength. The first peak ݇݀ ൌ ͲǤͲ indicates that ݇ܮ ൌ   is thus calculated to be 336.6mm. This is larger than the actual blockageܮ Ȁʹ, andߨ

length 305mm. The reason is that the actual maximum reflection ratio ܴଵ happens at a 

frequency slightly lower than the predicted maximum reflection ratio ܴଵ in the plane wave 

model, which is shown in Fig. 2(a). The second peak ݇݀ ൌ ʹǤͳ corresponds to ݉ ൌ  ͵. As 

the frequency increases, the difference between the plane wave model and the FE model 

increases because evanescent modes are not considered in the plane wave model and these 

become more influential as one approaches the cut on frequency of the first cross-sectional 

mode. This discrepancy between a plane wave and FE model in terms of power reflection 
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ratio was also observed by Kirby [21]. Fig. 2(a) also shows that the maximum difference 

between the plane wave model and experiment is less than 8% in the frequency range studied 

here.  

 In Fig. 2(b) the measured tangent of the phase difference generally agrees well with the 

predicted value, except near  ݇݀ ൌ ͳǤͶ and 2.94. Around these values the sound power of 

the reflected signal is almost close to zero, and this makes it difficult to measure the reflected 

signal accurately. Fig. 2(b) also shows that around ݇݀ ൌ ͳǤͶ and 2.94, the phase difference 

between the incident and the reflected wave is around 90o, so that the tangent of the phase 

difference is close to infinity (positive or negative). It is clear then that predictions should 

avoid values close to ݇݀ ൌ ͳǤͶ or 2.94 where the length of the blockage is equal to integer 

multiples of a half of the wavelength. 

 

In Fig. 3 the predicted blockage area ratio and length is shown following the application of 

Eqs. (13) and (14).  In view of the results presented in Fig. 2 it is perhaps not surprising to see 

that the accuracy of this method depends on the centre frequency of the pulse.  For example, 

at frequencies where the maximum sound power is reflected by the blockage, the method is 

seen to work well, but when little sound power is reflected from the blockage the method is 

less effective.  This is especially true in the prediction of area ratio, where significant 

problems are observed as the amount of reflected sound power is reduced.  In Fig. 3b the 

length of the blockage is obtained using ݊ ൌ Ͳ and ݊ ൌ ͳ in Eq. (14), and here reasonably 

accurate predictions can be obtained. Eqs. (11) and (12) show that the power reflection ratio 

and tangent of the phase change would remain the same if the length of the blockage is 

increased by multiples of the half of the wavelength, and this is why infinite solutions are 

available for the blockage length as shown in Eq. (14). However, in the low frequency range 
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when  ݇݀ ൏ ͲǤͻ the wavelength is larger than 1 m, and so ݊ ൌ Ͳ and ݊ ൌ ͳ in Eq. (14) is 

enough to cover blockages that are less than 1 m long. For the 305 mm blockage used in Figs. 

2 and 3, the length of the blockage equals to half of the wavelength around ݇݀ ൌ ͳǤͷ, and so 

in Fig. 3(b) ݊ ൌ Ͳ corresponds to the true solution when ݇݀ ൏ ͳǤͷ and ݊ ൌ ͳ corresponds to 

the true solution when ݇݀  ͳǤͷ. Thus, the choice of ݊ is dictated by the wavelength of sound 

in relation to the length of the blockage.  

It is also evident in Fig. 3 that the regions where the reflected signals are strongest are where 

the calculation of area ratio and length is most successful. Thus, it can be concluded that the 

relationships obtained in Eqs. (13) and (14) are capable of delivering accurate predictions for 

the area ratio and length of the blockage, but this relies on a strong incident signal and on 

good agreement between the predicted and measured power reflection ratios. Thus, the use of 

five pulses with different centre frequencies is sensible for the success of the current method.  

This is because these pulses cover a large frequency range that permits the largest reflected 

sound power to be measured for a particular blockage. The most accurate predictions are then 

found to be at frequencies where the reflection from the blockage is strongest.  For example, 

in Fig. 2, the reflected sound power is strongest at ݇݀ ൌ ͲǤͲ and ݇ ݀ ൌ ʹǤͳ. Five samples 

of blockage area ratio and length centred at ݇݀ ൌ ͲǤͲ and ݇ ݀ ൌ ʹǤͳ are then averaged to 

find the blockage geometry.  In Fig. 2 this gives a prediction for the area ratio of ߪ ൌ ͲǤͷ͵, 

and a length of ܮ ൌ ͲǤʹͻʹ m, which gives an error of 0.3% for the area ratio, and 4% for the 

length of the blockage respectively.  

 

Since the inverse model is used in the plane wave region, the technique can be applied to 

different situations where the blockage is neither axisymmetric nor at the centre of the duct. 

A series of additional experiments were carried out for different types of blockages and 
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predictions are compared here with actual blockage sizes. Fig. 4 shows the measured power 

reflection ratio and predicted blockage area ratio and length for a rectangular brick placed in 

the pipe. The brick has an area ratio of 0.379 and a length of 218 mm, and is placed at the 

bottom of the pipe. Following the strategy for predicting the geometry of the blockage 

outlined above the maximum reflection is measured at ݇݀ ൌ ͳǤͳ and ݇ ݀ ൌ ʹǤͺͻ. These 

values are larger than those values seen in Fig. 3 and this is because the length of the brick is 

shorter than the length of the blockage in Fig. 3. Note that when the length of the blockage is 

less than 200 mm then only the one peak appears in the response for ݇݀  ͵. Furthermore, if 

the length of the blockage is less than 80 mm, then no peaks are observed and so this 

represents a limit below which problems of accuracy will be observed with this method.  In 

Fig. 4 five samples of blockage area ratio and length are taken and these are centred at ݇݀ ൌ ͳǤͳ, and three samples are also taken at Helmholtz numbers to the left of ݇݀ ൌ  ʹǤͺͻ. 

Here, the area of the brick is much less than the area of the blockage used in Fig. 3, however 

accurate predictions can still be obtained. Thus, the area ratio is predicted here to be 0.382 

with an error of 0.8%, and the length of this blockage is predicted to be 204 mm with an error 

of 6.4%. This represents good agreement between the predicted and actual blockage 

geometry, even for a relatively complex blockage. 

 

Fig. 5 shows the measured power reflection ratio, the predicted blockage area ratio, and the 

predicted length for a moulded blockage, which is designed to fit curvature of the pipe. The 

blockage area ratio is 0.175 and its length is 100 mm. Fig. 5(a) shows that the maximum 

reflected sound power is less than 5% of the incident sound power. This is because the area of 

the blockage is small and the majority of the sound power bypasses this blockage. This places 

a difficulty in measuring the reflection ratio and phase difference accurately, since the 

reflected signal is very weak. Accordingly, it can be seen in Fig. 5(a) that the agreement 
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between measurement and prediction is less successful when compared to Figs. 3(a) and 4(a). 

Here the predicted area ratio is ߪ ൌ ͲǤͳͻͲ and the predicted length is ܮ ൌ ͲǤͳͳ͵ m. This 

gives an error for the area ratio of 8%, and for the length the error is 13%.  This is because 

the blockage is relatively short when compared to the wavelengths of sound used to excite the 

object.  It is of no surprise here to see that inaccuracies in the measurement of length will 

appear when the size of the blockage is small when compared to the diameter of the duct, 

because high resolutions are very difficult to obtain with wavelengths that are long when 

compared to the geometry of the blockage, and one cannot compensate for this by 

significantly increasing the frequency of excitation because this will excite higher order 

modes in the pipe.  Thus, the accuracy of this method is limited for relatively short objects in 

large diameter pipes, although this restriction is likely also to apply to those other methods 

discussed in the introduction. 

 

In Fig. 6 the measured power reflection ratio, and predicted blockage area ratio and length, 

are shown for a cylindrical wooden blockage. This blockage has an area ratio of 0.226 and a 

length of 90 mm, and it is placed at the bottom of the pipe. The length of the blockage is very 

close to the one used in Fig. 5, and so the reflection ratio has a similar oscillation pattern. The 

maximum reflection from the blockage is measured to be at ݇݀ ൌ ͳǤ͵ and this yields a 

predicted area ratio of ߪ ൌ ͲǤʹ͵, and a predicted length of ܮ ൌ ͲǤͳͳ͵ m; this gives an error 

of 4.9% for the area ratio and 25.6% for the length.  Thus, it can be seen here that the method 

is generally successful in capturing the geometry of an object that is large enough to deliver 

sufficient power reflection for a given frequency range, although some errors are inevitable 

for relatively small objects. 
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Since the power reflection ratio and the accuracy of the predictions are strongly frequency 

dependent, a strategy for looking for the blockage area ratio and length can be summarised 

from the above figures. First, the power reflection ratio curve is obtained from the measured 

signals containing either one peak (Figs. 5 and 6) or two peaks (Figs. 3 and 4).  Second, five 

frequencies are selected around each maximum in the reflection curve, and five samples of 

area ratio and length are taken at these frequencies, or three frequencies to the left of the 

maximum if the maximum frequency is 1080Hz which coincides with the maximum 

frequency that is being measured. The blockage area ratio and length are then calculated for 

each frequency taken near the maximum reflection using Eqs. (13) and (14), and an average 

of these values is then taken to arrive at the final value.  

 

Following the strategy above, a series of further tests were conducted using ten additional 

blockages and these are summarised in Table 1. Here a range of different blockage 

geometries are studied in order to investigate the proposed method. The cross-sectional 

shapes of the blockages are given in Fig. 7. The length Lb in Table 1 is the length of the 

blockage in the axial direction, and W, H and R are the width, height or radius of the 

corresponding blockage shown in Fig. 7.  Here, all the blockages have been placed at the 

bottom of the pipe with the cross-section of the blockage perpendicular to the axis of the 

pipe.  It can be seen in Table 1 that most of the blockage area ratio predictions are reasonably 

accurate, with an error that is generally less than 20% for both the area ratio and the blockage 

length. The only exception is blockage No. 6 in which an error of 70.6% is observed for the 

area ratio. The reason for this is that blockage 6 is a small blockage with an area ratio of only 

5% and a maximum power reflection ratio of around 1%. Since the reflected signal is so 

weak, it proved very difficult to obtain a good prediction for this object and so this 

demonstrates the limit of the present technique in terms of its ability to estimate the area 
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ratio.  However, for the other blockages in Figs. 3 to 6 and in Table 1, the results presented 

demonstrate that this method is generally successful at recovering the area ratio and length of 

the blockage. Whilst higher levels of accuracy than those seen here would, of course, be 

desirable one must also remember that this data has been obtained using only one 

microphone.  Accordingly, one cannot expect very high levels of accuracy over a wide range 

of different geometries.  Moreover, for most applications in which one is interrogating 

blockages in a waveguide this level of accuracy is generally acceptable.  Thus, it is concluded 

here that this method provides a useful way of determining information about the geometry of 

a blockage using the phase information contained within a pulse, as well as the more usual 

amplitude information.  

 

4. CONCLUSIONS 

This article investigates a pulse-echo methodology for obtaining the geometry of a blockage 

in a pipe using only one microphone.  The power reflection ratio and phase change of the 

reflected signal with respect to the incident signal is combined in order to retrieve the 

characteristics of a blockage. The use of transient pulse signals allows each pulse to be 

windowed to filter out reflections from each end of the pipe. This method is therefore easier 

to implement when compared to those methods that use resonance or anti-resonance sound 

fields where boundary conditions must be carefully controlled. This method is also easier to 

implement than the layer peeling algorithm which requires complex signal processing 

procedures. 

The performance of this method in the presence of blockages of various shapes and 

dimensions has been investigated using pulses with different centre frequencies. These 

frequencies have been chosen to ensure plane wave propagation in the pipe and to permit the 
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measurement of the frequency response of a blockage within a reasonably broad frequency 

range. Predictions for the area ratio of a blockage are generally seen to be good, with errors 

of less than 20% for most blockages with a cross-sectional area of greater than 5% of the pipe 

cross-section. It is also shown that good predictions can be made even when the reflected 

sound power is around 5% of the incident sound power. For the blockage length, predictions 

are generally within 30% of the actual value, although problems were observed for relatively 

short blockages and here it is observed that problems will occur for values of ܮ Τߣ  that are 

less than approximately 0.3 (where ߣ is the shortest wavelength to be investigated and is a 

function of the pipe radius).   

 

Accordingly, the results presented here demonstrate that it is possible to recover both the area 

ratio and the length of a blockage using only one microphone.  Moreover, this can be 

accomplished in a pipe in which no special arrangement has been made regarding the 

boundary conditions, such as those terminating conditions required by a number of other 

methods.  This means that the method can be used in practical applications, such as sewer 

pipes, drainage systems and drained clean water pipes. Furthermore, it appears possible to 

extend this technique to the study of multiple blockages, where the relationship between the 

incident and transmitted waves associated with each blockage may be obtained through the 

same equations as those presented here, with the area ratio and length of each blockage being 

recovered sequentially. 
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FIGURE CAPTIONS 

Fig. 1 Experimental apparatus. 

 

Fig. 2(a) Power reflection ratio Ȧ , (b) tangent of the phase difference ߰: ņņņ, FE model; ņ 

ņ ņ , plane wave model; ז ז ז , experiment.  

 

Fig. 3(a) Blockage area ratio, (b) blockage length: ņņņ, FE model; ז ז ז , experiment; ņ 

ņ ņ , actual blockage size.  

 

Fig. 4(a) Power reflection ratio Ȧ , (b) blockage area ratio, (c) blockage length: ņņņ, plane 

wave model; ז ז ז , experiment; ņ ņ ņ , actual blockage size.  

 

Fig. 5(a) Power reflection ratio Ȧ , (b) blockage area ratio, (c) blockage length: ņņņ, plane 

wave model; ז ז ז , experiment; ņ ņ ņ , actual blockage size.  

 

Fig. 6(a) Power reflection ratio Ȧ , (b) blockage area ratio, (c) blockage length: ņņņ, plane 

wave model; ז ז ז , experiment; ņ ņ ņ , actual blockage size.  

 

Fig. 7 General shapes of the blockages used in Table. 1.  

 

 
  



29 
 

 

 

 

 

 

 

 

Fig. 1 Experimental apparatus. 

Sound source 

Microphone 
Plane 1 Plane 2 

λ 

Blockage 

L1 Lb L2 

Lm 

x 

Region 1 
Region 2 

Region 3 



30 
 

 

 

 

 

Fig. 2(a) Power reflection ratio Ȧ , (b) tangent of the phase difference ߰: ņņņ, FE model; ņ 

ņ ņ , plane wave model; ז ז ז , experiment.  
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Fig. 3(a) Blockage area ratio, (b) blockage length: ņņņ, FE model; ז ז ז , experiment; ņ 

ņ ņ , actual blockage size.  
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Fig. 4(a) Power reflection ratio Ȧ , (b) blockage area ratio , (c) blockage length: ņņņ, plane 

wave model; ז ז ז , experiment; ņ ņ ņ , actual blockage size.  
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Fig. 5(a) Power reflection ratio Ȧ , (b) blockage area ratio, (c) blockage length: ņņņ, plane 

wave model; ז ז ז , experiment; ņ ņ ņ , actual blockage size.  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

kd=1.67 

kd 

kd=1.67 

kd 

B
lo

ck
a

ge
 a

re
a

 r
at

io
 

B
lo

ck
a

ge
 le

ng
th

 (
m

) 



35 
 

 
 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3

kd 

kd=1.73 

kd=1.73 

kd 

P
ow

er
 r

ef
le

ct
io

n 
ra

tio
 

B
lo

ck
a

ge
 a

re
a

 r
at

io
 



36 
 

 
 
 

Fig. 6(a) Power reflection ratio Ȧ , (b) blockage area ratio, (c) blockage length: ņņņ, plane 

wave model; ז ז ז , experiment; ņ ņ ņ , actual blockage size.  
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Table 1. Experiments with various blockages 

 

No. Shape 
Dimensions 

(m) 

Area ratio Length ܮ (m) 

Actual Predicted 
Error 
(%) 

Actual Predicted 
Error 
(%) 

1 Brick 
ܹ0.105ൈ 0.032ܪൈܮ0.214 

0.192 0.215 12.0 0.214 0.197 7.9 

2 Brick 
ܹ0.104ൈ 0.018ܪൈ ܮ0.216 

0.108 0.115 6.5 0.216 0.201 6.9 

3 Brick 
ܹ0.075ൈ 0.065ܪൈ ܮ0.072 

0.277 0.282 1.8 0.072 0.087 20.8 

4 Brick 
ܹ0.063ൈ 0.049ܪൈ ܮ0.103 

0.175 0.186 6.3 0.103 0.120 16.5 

5 Brick 
ܹ0.103ൈ 0.049ܪൈ ܮ0.063 

0.283 0.284 0.4 0.063 0.084 33.3 

6 Cylinder 
ܴ0.017ൈܮ0.147 

0.051 0.087 70.6 0.147 0.162 10.2 

7 Half moon 
ܴ0.15ൈ 0.065ܪൈܮ0.08 

0.413 0.560 35.6 0.08 0.071 11.3 

8 
Trapezoid 

prism 

ܴ0.15ൈ ܹ0.15ൈ 0.065ܪൈܮ0.078 

0.362 0.406 12.2 0.078 0.080 2.6 

9 
Wooden 

block 

ܹ0.058ൈ 0.047ܪൈܮ0.215 
0.153 0.162 5.9 0.215 0.226 5.1 

10 
Wooden 

block 

ܹ0.09ൈ 0.09ܪൈܮ0.045 
0.458 0.437 4.6 0.045 0.062 37.8 
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Fig. 7 General shapes of the blockages used in Table. 1.  
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