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Abstract

In the data-based approach to Structural Health Monitoring (SHM) when

novelty detection is utilised as a means of diagnosis, benign operational and

environmental variations of the structure can lead to false alarms and mask

the presence of damage. The key element of this paper is to demonstrate a

series of pattern recognition approaches which investigate complex correlations

between the variables and thus potentially shed light on the variations within

the data that are of interest for SHM. The nonlinear manifold learning

techniques discussed here, like locally linear embedding (LLE) combined with

robust discordance measures like the minimum covariance determinant (MCD)

and regression techniques like Gaussian processes (GPs) offer a strategy that

includes reliable novelty detection analysis but also a method of investigating

the space where structural data clusters are lying.
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1. Introduction

When SHM technology is adopted as a tool for monitoring a structure, then

the system often has to run continuously and on-line. The effects of any

environmental variations must be considered and identified before choosing

and using a reliable feature for revealing any structural condition.

A catholic argument is that no sensor exists that can directly measure any type

of novelty. For this reason, feature extraction is used to derive useful metrics

from the raw data that can further be post-processed through advanced signal

processing tools. The methods for feature extraction serve two purposes; a

reduction in the dimensionality by mapping the data from high-dimensional

spaces to lower-dimensional spaces and a revealing of hidden aspects of the

data by learning the structure between the variables of interest.

One of the most challenging tasks in SHM methodology is to understand

and eliminate the influence of temperature on structural response. Especially

for bridges, which is the immediate concern of this study, temperature is

generally understood to be an important environmental factor which affects

the dynamic response of the structure, due to its influence on the stiffness of

structural parameters and on the boundary conditions of the structure [1–5].

Various methods and algorithms have been proposed in order to counteract

and remove the influence of external variations such as principal component

analysis, auto-associative neural networks [6] or more recently cointegration

[1, 7–13]. Although, these methods exhibit a series of advantages and disad-

vantages in terms of removing the influence of operational and environmental

conditions, little effort has been carried out in terms of constructing a robust

chain of methods that characterise the manifold that is constructed between

the variables and distinguishing which of the outliers indicated in the data are
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representing environmental/operational variations and which are representing

damage or structural performance degradation. For more details regarding

the different natures of outliers in multivariate statistics the reader can consult

[14–17].

A recent paper by Dervilis et al.[17] explores an approach of robust regression

and robust multivariate statistics as a means of characterising and distin-

guishing the influence of environmental and operational conditions on the

structural response. Specifically, the outliers may arise in the data as the

result of both benign and malign causes and it is important to understand

their sources[17].

The layout of this paper is as follows. The discussion begins with the

description of the Z24 bridge. In Section 3, the strategy that will be followed

in this paper is presented. Section 4 gives some background analysis regarding

the nonlinear manifold learning approach. The study concludes with the

presentation of some key results.

2. A quick overview of the Z24 bridge

The Z24 Bridge (see Fig.1) was a concrete highway structure in Switzerland

connecting Koppigen and Utzenstorf, and in the late 1990s, before its de-

molishment procedure, it was used for SHM purposes under the “SIMCES”

project [1, 18]. During a whole year of monitoring of the bridge, a series of

sensor systems captured modal parameter measurements, as well as a family

of environmental measurements such as air temperature, soil temperature,

humidity, wind speed etc. The critical point in this benchmark project was the

introduction of different types of real progressive damage scenarios towards

the end of the monitoring year (Table.1).
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For the purposes of this study, the four natural frequencies that were extracted

over a period of year, including the period of structural failure of the bridge

are used. Fig.2 shows the four natural frequencies with values between 0-12

Hz (vertical y − axis is the natural frequencies in Hz). The beginning of the

introduced failure occurs at observation 3476. The time instances between

Fig.2 and Fig.3 are the same. It has to be mentioned that some values of

failed measurements have been removed.

Sequence Damage scenarios

1 Settlement of foundation

2 Tilt of foundation

3 Spalling of concrete at soffit

4 Landslide

5 Failure of concrete hinges

6 Failure of anchor heads

7 Number of post-tensioning tendon failures

Table 1: Progressive damage scenarios.

The Z24 bridge was recently extensively analysed using robust methods such

as least trimmed squares (LTS) and minimum covariance determinant (MCD)

techniques as means of exploring environmental variations for SHM purposes

in a previous and ongoing work [16, 17]. It was found that environmen-

tal variations due to sub-zero temperatures manifest themselves differently

in feature space compared with the damaged condition. This was a very

vital information as it showed that the nature of outliers between opera-

tional/environmental variations and damage may have markedly different

characteristics.
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Figure 1: The Z24 bridge.

Furthermore, it was found that the Z24 bridge has a highly nonlinear be-

haviour.

It can be noted that there are some visible fluctuations between observations

1200-1500 (below -5 Celsius degrees). As one can see there are no visible

fluctuations after the introduction of damage (3476) and is clear that the

temperature fluctuation masks the dynamic presence of damage. This is the

reason that advanced machine learning techniques are utilised as a means of

revealing the hidden characteristics of the structural modal data.

The critical fluctuations are highly related to periods of very cold temperatures

much under zero degrees Celsius and there is a direct connection with increased

stiffness based on the freezing of the asphalt layer of the bridge deck. In

turn, these large temperature fluctuations are suitable candidates to introduce

nonlinear characteristics.

The motivation of this paper is to reveal the nonlinear manifold between the

natural frequencies and then to try to remove these temperature variations
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Figure 2: Time history of natural frequencies of the Z24 Bridge (The dotted lines represent

the very cold temperatures fluctuation and the black solid line the introduction of damage).
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Figure 3: Time history of deck temperature.
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and detect clearly the damage. The next section describes the strategy that

will be followed.

3. Strategy

The chain of methods applied in this paper aims to investigate the appearance

of benign fluctuations in data from the Z24 bridge. First, the whole data set

of the four natural frequencies is reduced to two dimensions using a nonlinear

manifold technique, in this case locally linear embedding (LLE) (nonlinear

principal component analysis via the usage of auto-associative neural networks

(AANN) [6] is another strong method). For the current purposes, LLE is used

as it is a much simpler tool than AANN.

Next, the minimum covariance determinant estimator (MCD) index is used

in order to reveal inclusive outliers without a priori knowledge of whether

benign variations are present in the normal test data [14–16, 19–22]. The

application of robust computation of location and covariance estimation of

multivariate data is of significant interest in the investigation of inclusive

outliers (for more details see also Appendix A).

In order to make visible the influence of temperature on the measured natural

frequencies, a powerful automatic clustering technique like affinity propagation

algorithm (AP) can be applied [23, 24], as here. AP identifies exemplars

among data points and forms clusters of data points around these exemplars.

The specific algorithm operates by simultaneously considering all data points

as potential exemplars and exchanging messages between data points until

a good set of exemplars and clusters emerges. More detailed information

about the exact procedure on how the AP algorithm is passing the messages

between data points can be found in [23, 24].
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The strategy finishes by trying to predict the components of the manifold in

order to remove any doubt about which data is influenced by environmental

fluctuations and which belongs to the damaged case. Use of Gaussian processes

is a current research area of increasing interest, not only for regression but also

for classification purposes (for more details readers are referred to Appendix B

and [25]). Gaussian processes (GPs) are a stochastic nonparametric Bayesian

approach to regression and classification problems. These Gaussian processes

are computationally very efficient and the nonlinear learning is relatively easy.

Gaussian process regression takes into account all possible functions that

fit to the training data vector and gives a predictive distribution around a

single prediction for a given input vector. A mean prediction and confidence

intervals on this prediction can be calculated from the predictive distribution.

The initial and basic step in order to apply Gaussian process regression is

to obtain a mean and covariance function. These functions are specified

separately, and consist of a specification of a functional form and a set of

parameters called hyperparameters. Here, a zero-mean function and a squared-

exponential covariance function are applied (see Appendix B or [25]). When

the mean and covariance functions are defined, then the inference method

specifies the calculation of the exact model and in simple terms describes

how to compute hyperparameters by determining the minimisation of the

negative log marginal likelihood. The software used for the implementation

of GP regression was provided by [25].

Setting an appropriate threshold in the absence of any damage-state data, as

is the case in this study, is a non-trivial task. A Monte Carlo simulation based

on extreme value statistics was used. The procedure that was conducted in

order to calculate the threshold is as follows:
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• A p× n (number of dimensions × number of observations) matrix is

constructed with each individual element a randomly generated number

from a normal distribution with zero mean and unit standard deviation.

• The distance value is evaluated for all matrix values, where the robust

mean and covariance matrix are inclusive. The largest (i.e.extreme),

value recorded for each trial matrix is stored.

• The process is repeated for a large number of trials in order to generate

an array of “extreme” distance calculations. Next, all the values are

ordered in terms of magnitude.The critical values (alpha value, α) can

take different values such as 5% or 1% for a test of discordancy. In this

paper α is set equal to 1% giving a 99% confidence limit.

4. Nonlinear manifold learning via locally linear embedding

As mentioned in previous sections, the combination of strong nonlinearity

and the influence of environmental fluctuations makes the damage detection

performance very weak. This is the reason that a quick and effective method

of nonlinear manifold learning such as locally linear embedding is introduced

in this study [26, 27].

An extensive overview of the algorithm can be found in [26, 27]. Briefly and

for the purposes of this paper a short description is given here.

The LLE method is based on simple geometric intuition. If the observations

consist of N real-valued vectors {xi} with dimensions D and they are sampled

from a smooth underlying nonlinear manifold, then each data point and

its neighbours is expected to lie on or close to a locally formed patch of

the manifold. The local geometries can be characterised by finding linear
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coefficients that can reconstruct each data point with respect to each set of

neighbours.

If one establishes K nearest neighbours per data point then the reconstruction

error is given by the cost function:

error(W ) =
∑

i

∣

∣

∣

∣

∣

{xi} −
∑

j

[Wij]{xj}

∣

∣

∣

∣

∣

2

(1)

where [Wij] is the weight contribution of the jth data point to the ith recon-

struction. In order to compute these weights the cost function has to be

minimised under the following constraints. The reconstruction errors that

are subject to the constrained weights should be invariant to rotations and

rescaling. In turn, in order that the LLE algorithm preserves this invariant

manifold idea as a final step of the method, each measurement {xi} should be

mapped to a lower dimensional vector {Yi} that minimises the cost function:

error(Y ) =
∑

i

∣

∣

∣
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∣

{Yi} −
∑

j

[Wij]{Yj}

∣

∣

∣

∣

∣

2

(2)

The main difference with the previous cost function is that here the weights

are fixed but the {Yi} co-ordinates are optimised.

5. Revealing the nonlinear manifold between the natural frequen-

cies

As can be seen from Fig.4, the Z24 natural frequency data is projected into

2-D space using the LLE algorithm and in the Table.2 a description of the

different data sets in relation to temperature is given.
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The condition “undamaged” is given as a label to the data when the monitoring

campaign started. The labels are just for characterising the “condition” just

throughout the monitoring year when the project started (as of course, the

bridge had been in operational service for some period before the monitoring

campaign has started).

The manifold that is revealed is giving two distinctive directions of the data

sets, one regarding the cold and very cold temperatures (green) and one

regarding the damage observations (black). Furthermore, it is worth noting

that the hot temperatures (red) lie in the same space as some early damage

data. If one tries to identify outliers without setting beforehand a training

set by using the MCD method, one can see that both the cold temperatures

and the damage will appear as outliers.

Of course, this connection between data and temperature is known if mea-

surements of the temperatures were obtained. If the measurements of the

temperatures were not known beforehand then an automatic clustering method

can be applied, in this case the AP algorithm. This automatic clustering

method is presented as a novel future tool in structural data analysis as

it offers the advanced characteristic of defining different categories within

the manifold of the variables. As an example in this case study in order to

make visible the dramatic influence of temperature on the measured natural

frequencies the AP tool presents the high potential of applying it on modal

data.

It can be seen in Fig.6 (free to find maximum number of clusters) and

especially Fig.7 (restrained), that the AP algorithm finds 5 classes which have

a very good agreement with the separation of data presented in Table.2. The

AP algorithm finds the cold, normal and hot temperature (and some damage
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data) influenced points as well as three stages of damage observations which,

in comparison with the MCD index, are showing a progressive direction.

As a last step after the MCD and AP tools are applied one can use GP

regression in order to predict the 1st component based on the 2nd one and

vice versa. As a training set for the GPs only the first 500 points were used

and the rest as testing set.

GP regression model error is used as an index of abnormal response. Further-

more, as it will be seen later using this regression error (residual error, which

is the difference between the algorithm predictions and the actual data) a

strong visualisation that indicates when faults occur will be presented. The

calculation of the threshold is explained in [6, 16].

As can be seen from Figs.8-9 the GPs predict/classify correctly most of

temperatures (especially Fig. 9 and mainly the very cold temperatures which

were found as outliers in Fig.5) and the residual error exceeds the thresholds

when damage is present.

This is a strongly encouraging result as the strategy followed, manages to

a great extent, to minimise the novelty due to temperature variations by

learning their nonlinear characteristics and by applying a strong nonlinear

regression tool like GPs to detect novelty that is directly connected with the

damaged state of the bridge.

It has to be pointed out that the training involved the first 500 points which

means no freezing temperatures below−5 Celsius degrees (as between points

1201-1500) are utilised in the training data set. This key comment is a vital

point in validating that the chain of strategic steps that are followed here can

offer a useful tool in the robust investigation of benign variations during a

monitoring campaign.
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Observation Condition Colour

1-400 undamaged blue

401-700 undamaged (with some cold temperature variations) yellow

701-1200 undamaged (with some cold temperature variations) pink

1201-1500 undamaged (very cold temperature) green

1501-2200 undamaged brown

2201-3475 undamaged (with hot temperature variations) red

3476-3932 damaged black

Table 2: Description of data sets as they appear in the Figs.4-5 and 8-9.
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Figure 4: Data projection of the four natural frequencies onto 2-D space using LLE.
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Figure 6: AP algorithm identifies 55 different classes on the LLE manifold.
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Figure 7: AP algorithm finds 5 different classes on the LLE manifold by limiting the desired

number of classes.
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Figure 8: GP prediction error of the 2nd component based on 1st component.
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6. Conclusion

The purpose of this paper is to highlight the key utility of some specific

machine learning methods, not only for novelty detection analysis but also

as a method of investigating the space where data clusters are lying. It also

gives a chain of tools for revealing the influence of benign variations like

temperature when modal parameters are extracted. The main benefit of the

approach taken here is that complicated algebraic analysis is not necessary.

Furthermore, in this paper, robust outlier statistics and unsupervised learning

techniques are used, focussed mainly on a high level estimation of the “masking

effect” of inclusive outliers, not only for determining the presence or absence

of novelty - something that is of fundamental interest - but also to examine

the normal condition set under the suspicion that it may already include

multiple abnormalities.
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Appendix A

7. Robust MCD index

The application of robust computation of location and covariance estimation

for multivariate data is of significant interest in the investigation of inclusive

outliers. The method discussed here is called the Minimum Covariance

Determinant estimator (MCD). The computation of the MCD estimator

is not a trivial procedure and requires an extensive calculation. In the

current study, the FAST-MCD algorithm is implemented [14–16, 19–22]. The

algorithm is given in detail in the references [14–16, 19–22], and the code

was provided via a statistical Matlab library called LIBRA [20]. A brief

description of the algorithm is provided by explaining the basic steps of the

FAST-MCD technique.

A multivariate data matrix [X] = ({x1}, ..., {xm})
T is assumed of m points

in n-dimensional space (n×m) where {xi} = (xi1, ..., xin)
T is an observation.

Robust estimates of the centre µ and the scatter matrix σ of X can be

calculated by the MCD estimator. The MCD tool looks for the h(> m
2
)

observations out of m whose classical covariance matrix has the lowest possible

determinant. The raw MCD estimate of location (arithmetic mean) is then

computed from the average of these h points and the raw MCD estimation of

scatter is the covariance matrix multiplied by a consistency factor.

21



The calculation of the lowest determinant is critical, as one moves from one

approximation of MCD to another one with lower determinant. This tool and

the proof that follows it are not obvious and can be found in the appendix of

[19].

Based on the raw MCD estimates, a reweighting step can be added in order to

increase the finite sampling efficiency. The advantage is that MCD estimates

can resist up to (m−h) outliers and in turn, the number h (or equally a = h
m
)

controls the robustness of the estimator. The highest resistance compared

to contamination is achieved by calculating h = (n+m+1)
2

. It is proposed that

when a large proportion of contamination is assumed then h = an with a = 0.5.

Detecting outliers can be challenging when m/n is small because some data

points can become coplanar. This is a general problem in the machine learning

community called the “curse of dimensionality”. It is recommended [20] that

when m
n

> 5, a should be 0.5. Generally, the MCD estimates of location

and scatter are affine equivariant which means that they are invariant under

affine transformation behaviour. This is crucial as the underlying model

is then immune to different variable scales and data rotations. Rousseeuw

and Van Driessen (1999) [19] developed the FAST-MCD algorithm based on

a Concentration step (C-step). C-steps select the h observations with the

smallest distances and the scatter matrix with the lower determinant [19] and

the main details are given.

Appendix B

8. Gaussian Process Regression algorithm

Rasmussen and Williams [25] define a Gaussian process (GP) as “a collection

of random variables, any finite number of which have a joint Gaussian distribu-
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tion”. In recent years GPs are gaining a lot of attention as a machine learning

approach in the area of regression (or classification) analysis as they offer fast

and simple computations. Gaussian process regression is a robust tool which

takes into account all possible functions that fit to the training data set and

gives a predictive distribution of a single prediction for a given input vector.

As result, a mean prediction and confidence intervals on this prediction can be

calculated from this predictive distribution. The basic details of the algorithm

are presented following the steps in [25]. The algorithm that was used in the

previous Sections is also coming from Rasmussen and Williams [25].

8.1. Algorithm theory

The initial and basic step in order to apply Gaussian process regression is

to obtain a mean m({x}) and covariance function k({x}, {x′}) as GPs are

completely specified by them, {x} represents the input vector. So for any

real process f({x}) one can define:

m({x}) = E[f({x})] (3)

k({x}, {x′}) = E[(f({x})−m({x}))(f({x′} −m({x′})] (4)

where E represents the expectation. Often, for practical reasons because of

notation purposes (simplicity) and little knowledge about the data at the

initial stage the prior mean function is set to zero. The Gaussian processes

can then be defined as:
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f({x}) ∼ GP (0, k({x}, {x′})) (5)

Assuming a zero-mean function, the covariance function can be described as:

cov(f({x}p), f({x}q)) = k({x}p, {x}q)

= exp

(

−
1

2

∣

∣

∣
{x}p − {x}q

∣

∣

∣

2

−
1

2

∣

∣

∣
{x}p − {x}q

∣

∣

∣

2
) (6)

This is the squared-exponential covariance function (although not the only

option). It is very important to mention an advantage of the previous equation

as the covariance is written as a function only of the inputs. For the squared-

exponential covariance, it can be noted that it takes unit values between

variables where their inputs are very close and starts to decrease as the

variable distance in the input space increases.

Assuming now that one has a set of training outputs {f} and a set of test

outputs {f}∗ one has the prior:





{f}

{f}
∗



 ∼ N



0,





K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)







 (7)

where the capital letters represent matrices. As can be seen, the covariance

matrix must be symmetrical about the main diagonal.

As the prior has been generated by the mean and covariance functions, in

order to specify the posterior distribution over the functions, one needs to

limit the prior distribution in a such a way that includes only these functions

that agree with actual data points. An obvious way to do that is by generating

24



functions from the prior and select only the ones that agree with the actual

points. Of course, this is not a realistic way of doing it as it would consume a

lot of computational power. In a probabilistic manner this can be done easily

via conditioning the joint prior on the observations and this will give (for

more details see [25, 28, 29]):

{f}∗|[X]∗, [X], {f}

∼ N





K([X∗], [X])K([X], [X])−1{f}, K([X∗], [X∗])

−K([X∗], [X])K([X], [X])−1K([X], [X∗])





(8)

Function values {f}∗ can be generated by sampling from the joint posterior

distribution and at the same time evaluating the mean and covariance matrices

from (8).

The covariance functions used in this study are usually controlled by some

parameters in order to obtain a better control over the types of functions

that are considered for the inference. As an example, the squared-exponential

covariance function can take the form (1-dimensional):

ky(kp, kq) = σ2
f exp

(

−
1

2l2
(kp − kq)

2

)

+ σ2
n δpq (9)

where ky is the covariance for the noise target set y. The length-scale l

(determines how far one needs to move in input space for the function values

to become uncorrelated), the variance σ2
f of the signal and the noise variance

σ2
n are free parameters that can be varied. These free parameters are called

hyperparameters.

The tool that has to be applied for selecting the model for choosing the optimal
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hyperparameters for GP regression, is the maximum marginal likelihood of

the predictions p({y}|[X], {θ}) with respect to the hyperparameters θ:

logp({y}|[X], {θ}) =

−1
2
{y}T [K]−1

y {y} − 1
2
log|[Ky]| −

n
2
log 2π

(10)

where [Ky] = [Kf ] + σ2
nI is the covariance matrix of the noise test set {y}

and [Kf ] is the noise noise-free covariance matrix. In order to optimise these

hyperparameters through maximising the marginal log likelihood the partial

derivatives give the solution, via gradient descent:

∂
∂θj

log p({y}|[X], {θ})

= 1
2
{y}T [K]−1 ∂[K]

∂θj
[K]−1{y} − 1

2
tr
(

[K]−1 ∂[K]
∂θj

)

= 1
2
tr
(

(ααT − [K]−1)∂[K]
∂θj

)

(11)

where α = [K]−1{y}. Of course this solution is not a trivial procedure and

for specific details readers are refereed to [25].
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