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Abstract 
 
 The field of blast protective design emerged in the late 1940s and focussed mainly on large scale 
(nuclear) explosive loading massive structures. In these situations, positive phase effects were seen to 
dominate and the negative phase could effectively be ignored. Recently, however, the threat has moved 
to smaller scale explosives and increasingly lightweight structures. Here, the negative phase becomes 
important, however despite this the negative phase is often overlooked. 
This research presents a numerical investigation on the negative phase, with a primary focus on an 
accurate numerical scheme for modelling the negative phase blast pressure. Numerical tests are 
performed on deformable targets to determine fully reflected blast parameters, with associated 
numerical modelling conducted using Abaqus/Explicit. Moreover, the failure modes are obtained for 
light-weight panel employing the Perzyna model for metallic materials. 
The computational methods are adapted for better representation of the negative phase, including mesh 
refinement strategies, modelling of the explosive event and accurate description of the air behaviour. 
The results herein can be used to inform blast resistant designers on how to accurately model negative 
phase effects.  
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1. Introduction 
 

The behaviour of the charge followed by the detonation and pressure wave propagation through the 
ambient is a complex topic. In this paper the comparison of the final failure modes are obtained for the 
light-weight panel structure, however, for three different descriptions of the explosive loading. The 
primary difference bases on the description of the negative phase on the blast pressure-time history. 

The explosion phenomenon starts from the explosive detonation through the blast wave 
propagation and finally loads the obstacle. When the process is initiated, following the explosion at the 
time of arrival ݐ௔ , the pressure suddenly increases to a peak value ௦ܲ௢  which exceeds the ambient 
pressure equals to ଴ܲ. Hence, the pressure decays to ଴ܲ in time ݐ଴, and again reaches ௦ܲ௢തതത pressure in 
order to finally reach again the barometric value, at time ݐ଴ഥ. The sum of times of over and under 
pressures is called the duration time ܶ. The value of ௦ܲ௢ is usually referred to as the peak side-on 
overpressure or incident peak overpressure, see Fig. 1. 
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where: ߪ௞௟  – Cauchy stress tensor component; ߝ௞௟ – Cauchy strain tensor component; ݑ௞,௟ – gradient of 
displacement component; ݊௟  - the normal direction; ̂ݐ௞  - traction vector; ݑ௞ ሶ௞ݑ ,  - displacement and 
velocity components on the boundary of the body; ߩ - density and ܧ௠ - specific energy. Nevertheless, 
Eq. (2) allows one to solve the linear dynamic problem. The nonlinear dynamic problems, which 
include the explosion phenomenon, must be solved with some additional modifications introduced to 
the set of equations Eq. (2). In this work, the solution of Eq. (2) is obtained using explicit finite element 
method. The widely-used Jones-Wilkins-Lee (JWL) equation of state (Sielicki 2013), as presented in 
Eq. (3), was used to describe the expansion of the combustion products of TNT. 
݌  ൌ ܣ ቀ1 െ ఠఘோభఘబቁ expቀିோభഐబഐ ቁ ൅ ܤ ቀ1 െ ఠఘோమఘబቁ expቀିோమഐబഐ ቁ ൅ ௠. (3)ܧߩ߱

 
The JWL equations describe the pressure generated by chemical energy of the condensed explosive. 
The constitutive properties: ܤ ,ܣ, ܴଵ, ܴଶ, are only available thanks to laboratory testing. ܧ௠  is the 
internal specific energy per unit mass and ߩ is the instantaneous density of the detonation products. The 
initial ratio of ߩ to ߩ଴ used in the JWL equation is assumed to be unity. In Table 1, the properties for the 
TNT and ambient domains are presented. Moreover, to reach the Eq. (1) it is necessary to derive the 
corresponding derivatives, see Eq. (4) and Eq. (5): 
ߩ߲݌߲  ൌ ൬ܴଵߩ଴ ଶߩ1 െ ܴ߱ଵߩ଴ െ ܣ൰ߩ߱ ∙ ቀିோభఘబఘ݌ݔ݁ ቁ ൅ ൬ܴଶߩ଴ ଶߩ1 െ ܴ߱ଶߩ଴ െ ܤ൰ߩ߱ ∙ ቀିோమఘబఘ݌ݔ݁ ቁ ൅ ௠ܧ߲݌߲௠, (4)ܧ߱ ൌ (5) .ߩ߱

The ambient air was modelled as an ideal gas (IG), see Eq. (8): 

 ൜݌ ൅ ௔݌ ൌ ሺߛ െ 1ሻܧߩ௠݌ ൅ ௔݌ ൌ ሺܴܶߩ െ ܶ௭ሻ  

 
(8)

Moreover, these relations depend on the specific internal energy ܧ௠. In order to most accurately reflect 
the reality the air must be initialised with both: greater than zero internal energy as well as an initial 
ambient pressure. The following equations, with  ߛ ൌ 1.4 , are used for the ideal diatomic gas 
modelling. The ݌௔ is the ambient pressure, ߩ is initial air density, ܴ is the universal gas constant, and ܶ௭ is the absolute zero on the temperature scale being used. The value of the ambient pressure is 
represented by the sea level pressure. 
The important material parameter is the specific energy, as presented in Eq. (9), which changes 
depending on the temperature and can be expressed in the following equation: 
௠ܧ  ൌ න ܿ௩ሺܶሻ்݀ܶି்೥

଴ ൅න ܿ௩ሺܶሻ்݀ܶି்೥
బ்ି்೥ , 

 
(9)

where the first part is called the initial specific energy ܧ௠଴. There is the initial specific energy at room 
temperature ଴ܶ and ܿ௩ is the specific heat at constant volume. This discretisation of the surrounding air 
is very important while the material model includes the principles presented in Eq. (2). The critical size 
of Eulerian finite elements is fixed and it equals 0.005 m. These assumptions were adopted for the two 
following domains: ambient air and charge domains. 
 

Table 1: Material property for TNT and air mediums (Sielicki 2013) 

JWL properties for TNT Explosive 
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