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Abstract

The field of blast protective design emerged in the late 1940s and focussed mainly on large scale
(nuclear) explosive loading massive structures. In these situations, positive phase effects were seen to
dominate and the negative phase could effectively be ignored. Recently, however, the threat has moved
to smaller scale explosives and increasingly lightweight structures. Here, the negative phase becomes
important, however despite this the negative phase is often overlooked.

This research presents a numerical investigation on the negative phase, with a primary focus on an
accurate numerical scheme for modelling the negative phase blast pressure. Numerical tests are
performed on deformable targets to determine fully reflected blast parameters, with associated
numerical modelling conducted using Abaqus/Explicit. Moreover, the failure modes are obtained for
light-weight panel employing the Perzyna model for metallic materials.

The computational methods are adapted for better representation of the negative phase, including mesh
refinement strategies, modelling of the explosive event and accurate description of the air behaviour.
The results herein can be used to inform blast resistant designers on how to accurately model negative
phase effects.

Keywords: Blast loading; Negative phase; EOS modeling

1. Introduction

The behaviour of the charge followed by the detonation and pressure wave propagation through the
ambient is a complex topic. In this paper the comparison of the final failure modes are obtained for the
light-weight panel structure, however, for three different descriptions of the explosive loading. The
primary difference bases on the description of the negative phase on the blast pressure-time history.

The explosion phenomenon starts from the explosive detonation through the blast wave
propagation and finally loads the obstacle. When the process is initiated, following the explosion at the
time of arrival t,, the pressure suddenly increases to a peak value P;, which exceeds the ambient
pressure equals to P,. Hence, the pressure decays to Py in time t,, and again reaches Ps; pressure in
order to finally reach again the barometric value, at time t5. The sum of times of over and under
pressures is called the duration time T. The value of P, is usually referred to as the peak side-on
overpressure or incident peak overpressure, see Fig. 1.
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Fig. 1: Standard blast pressure as a function of time

The knowledge of the instantaneous pressure changes and the duration of the positive phase allows us to
calculate the blast impulse of an explosion Ig. It is noticed that the positive phase and its impulse are
highly important for the structural strength for any kind of obstacle. In fact the blast resistance capacity
of any structure can be presented as lying along a curve drawn in P-I space (Sielicki 2013, UFC 2008).
Moreover, considering numerically the different equations of the state it is necessary to take into
account the equation for conservation of energy, see Eq.(1).
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The above relation equates the increase in internal energy per unit mass E,,, to the rate at which work is
being done by the stresses and the rate at which heat is being added. Moreover, p is the pressure stress
defined as positive in compression, py, is the pressure stress due to the bulk viscosity, S is the
deviatoric stress tensor, € is the deviatoric part of strain rate, and @Q is the heat rate per unit mass. The
equation of state is assumed for the pressure as a function of the current density, p, and the internal
energy per unit mass, E,,.

The equations of the motions that are necessary to describe the blast waves of explosion are complex. It
means, that it is not possible to obtain the analytical solution of spatial explosion phenomena, and that is
why a numerical approach is used, i.e. finite elements modelling as a highly elaborated tool for solving
blast challenges. These equations were first solved by Brode (1995) and then verified numerically by
Kingery (1984). Additionally, such problems frequently incorporate the analysis of the target loading
and its response. In this paper the numerical FEM analysis are performed with the use of finite elements
code ABAQUS Explicit v.6.13 (Sielicki 2013, Abaqus Documentation 2012). The primary study
assumes the propagation of the explosive pressure wave through a pure medium like an ambient air.
Implementing the set of equations (Sielicki 2013, Belytschko et al. 2000, Eftis et al. 2003), it is possible
to evaluate the problem using the following system of equations:

Equation of motion Ok + pfi = pliy

Geometric equation &l = O.S(uk,l + ul,k)

Equation of state p =p(o,Ep) )
Stress boundary conditions Oy = ty

Displacement boundary conditions u, = Uy

Initial conditions w, = A9, 0y = 1y



where: gy, — Cauchy stress tensor component; &; — Cauchy strain tensor component; uy ; — gradient of
displacement component; n; - the normal direction; £, - traction vector; uy, 1 - displacement and
velocity components on the boundary of the body; p - density and E,, - specific energy. Nevertheless,
Eq. (2) allows one to solve the linear dynamic problem. The nonlinear dynamic problems, which
include the explosion phenomenon, must be solved with some additional modifications introduced to
the set of equations Eq. (2). In this work, the solution of Eq. (2) is obtained using explicit finite element
method. The widely-used Jones-Wilkins-Lee (JWL) equation of state (Sielicki 2013), as presented in
Eq. (3), was used to describe the expansion of the combustion products of TNT.
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The JWL equations describe the pressure generated by chemical energy of the condensed explosive.
The constitutive properties: A, B, Ry, R,, are only available thanks to laboratory testing. E,,, is the
internal specific energy per unit mass and p is the instantaneous density of the detonation products. The
initial ratio of p to py used in the JWL equation is assumed to be unity. In Table 1, the properties for the
TNT and ambient domains are presented. Moreover, to reach the Eq. (1) it is necessary to derive the
corresponding derivatives, see Eq. (4) and Eq. (5):
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The ambient air was modelled as an ideal gas (I1G), see Eq. (8):

{p +pg, = (V - 1)pEm
P+ pa = pR(T —T?) (8)

Moreover, these relations depend on the specific internal energy E,,,. In order to most accurately reflect
the reality the air must be initialised with both: greater than zero internal energy as well as an initial
ambient pressure. The following equations, with y = 1.4, are used for the ideal diatomic gas
modelling. The p, is the ambient pressure, p is initial air density, R is the universal gas constant, and
TZ? is the absolute zero on the temperature scale being used. The value of the ambient pressure is
represented by the sea level pressure.

The important material parameter is the specific energy, as presented in Eq. (9), which changes
depending on the temperature and can be expressed in the following equation:

T-T? T-T*
E = fo ¢, (TYdT + j ¢, (T)dT, ©)

Ty—TZ

where the first part is called the initial specific energy E,,,o. There is the initial specific energy at room
temperature T and c,, is the specific heat at constant volume. This discretisation of the surrounding air
is very important while the material model includes the principles presented in Eq. (2). The critical size
of Eulerian finite elements is fixed and it equals 0.005 m. These assumptions were adopted for the two
following domains: ambient air and charge domains.

Table 1: Material property for TNT and air mediums (Sielicki 2013)

JWL properties for TNT Explosive




A |3.4x101 | Pa
B |3.75x10° | Pa
R; | 415 -
R, 109 -
E, | 4.2 x10° J X kgt
w |0.35 —
Cy | 6930 mx st
Po | 1630 kg x m™3
1G properties for Ambient Air
R | 287 J x (kg xK)~1
p | 1.297 kg x m~3
pg | 101325 Pa
Epn | 0193 x10° | J X kg™?
T2 | 0 K
T, | 288.4 K
c, | 717.6 J X (kg x K)~1

Solving the above equation system numerically it is possible to obtain a reliable results of the
pressure-time history followed by the load distribution on the obstacle.

2. Blast Loading
2.1 Positive phase

The typical model of the blast loading is similar to Fig. 2a which bases on the experimental results.
The explosion of 6kg of TNT in 1.5 stand-off. Nevertheless, during the preliminary study the authors
loaded the structure only by the positive phase according to the Figs. 2b and 2c.

2E 2E+08 = 2E08

B2 8 8 8

Prowsrs [Pa]
Prossss [Pa)

1Evs @ ) e \‘ 25 3 as 1E-08 a5 ) neu i 2 3
308 . \/— 3 Es08 | |
s E08

Tiee [ s ]

Tine [ ] b) Time [ e ]

a) c)

Fig. 2: Overpressure loading: a) Actual result, b) Triangle simplification, ¢) Logarithmic simplification

2.2 Negative phase

As mentioned previously, a full pressure-time history includes overpressure and under-pressure.
This is the reason, according the title of the paper, to take into account the second loading phase. The
authors introduced four different shape of the negative phase, however, preserving constant negative
impulse values, see Fig. 3.
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Fig. 3: Negative phases: a) Actual results, b) Triangular 1/2 simplification, ¢) Triangular 1/3 simplification, d) Triangular

1/4 simplification.
3. Metallic obstacle behaviour

Explosive loading induces thermomechanical process in the obstacle (Sumelka et al. 2013). This
process is highly rapid in time, and is considerably influenced by wave effects (Lodygowski et al. 2012).
To describe the behaviour of the obstacle within the continuum mechanics framework we obtain
complex models, with huge number of material parameters (Eftis 2003, Lodygowski et al. 2013,
Sumelka et al. 2013). It is clear, that identification/calibration of such models needs many sophisticated
experimental tests under different loading rates, and temperatures levels (Neat-Nasser et al. 2003,
Neat-Nasser et al. 2005, Mocko et al. 2013).

As mentioned, in this paper the metallic obstacle is modelled in the framework of Perzyna's type
viscoplasticy accounting for anisotropic damage description. It is important to emphasise that although
Perzyna model is commonly associated with famous definition of rate of viscoplastic strains in terms of
overstress function only, in its present form belongs to most general and elegant formulations in
mechanics (Perzyna 2008, Glema et al. 2009). One can point out at least the following original features:
(1) invariance with respect to any diffeomorphism (covariant material model) (Sumelka 2013), (ii)
well-posedness of evolution problem, (iii) sensitivity to the rate of deformation, (iv) finite
elasto-viscoplastic deformations, (v) plastic non-normality, (vi) dissipation effects (anisotropic
description of damage) (Sumelka et al. 2011), (vii) thermo-mechanical couplings (viii) length scale
sensitivity are included. On the other hand, it is important that the viscoplasticity theory, being a
physical one, has a deep physical interpretation derived from the analysis of a single crystal and a
polycrislal behaviour (Perzyna 2005).

The evolution problem is described by the following governing equations (for comprehensive study the
reader should follow recent papers in the subject cf. (Sumelka et al. 2013):

find @ as function of 7 and x satisfying.

i) =AM +19);
(ii) 9(0) = ¢’ (x); (10)
(ii1) The boundary conditions;

where ¢ is the unknown vector, A(f, @) is a spatial linear differential operator depending on ¢ and ¢,
f is a nonlinear function, and the dot denotes the material derivative. In Eq. (10) we have

p=[bpré 97,
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other denotes: v is a material point velocity, p is a current density, t is a Kirchhoff stress tensor, & is a
damage variable, q is a temperature, ® is an overstress function, f is a yield function, « is a work
hardening-softening function, T}, is a relaxation time, L* is a stiffness tensor, 5 and y ~ are irreversibility
coefficients, prer is a reference density, L™ is a thermal tensor, g is a metric tensor, P is a direction of a
viscoplastic flow, and ¢, denotes a specific heat.

The material properties for the 18G2A steel are presented in Table 2.

Table 2: Material property for 18G2A steel

Material parameters for 18G2A steel

A =121.154 GPa | p = 80.769 GPa | pg.; = 7800 ke /m? Mopd = 1
c = 0.067 by = 0.02 by = 0.5 b =10
¢F* =0.33 & =0 mp — ||ILové.|| — s™!
0* =506 o ="1.26 T = 2.5 ps mpy = 0.14
k% = 342 MPa Ky =77 MPa Ky = 274 MPa Kk = 62 MPa
#*=11.0 pri=12.5 np =10 no = 0.25
vt = 0.8 v** = 0.1 | #=107°K"! cp = 470 J /kgK

4. Numerical example

The authors computed the light panel structure, according to Fig. 4, however, for a different loading
conditions. Three take into account only the positive phase. Moreover, another four the positive phase —
base on the actual results — and negative phases in addition. Nevertheless, the shapes of the negative
phase were different, according to the Fig. 3.



Fig. 4: Light-weight panel structure subjected to the different kinds of the negative phase loading

The numerical solution is obtained using Abaqus Explicit v.6.13. Moreover, the JWL equation was
introduced by the author in VUEOS subroutine base on the Fortran coding. In the Fig. 4 the
displacement, velocity and Misses stresses are presented. The main goal of this study dealt with the steel
frame which is embedded inside the panel structure.

5. Conclusions

A series of numerical experiments were conducted where different loading description of the
negative phase were used. All results were obtained for 6kg of TNT box charge in 1.5m stand-off.
The authors presented the failure of the metallic structure under blast wave action. Furthermore, this
failure strictly depends on the loading conditions which are applied. The introducing the negative
phases influences strongly on the deformation mode followed by failure of the obstacle. This is an
important feature especially for the lightweight structures. This outcome was prowved in series on FEM
examples.
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