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THE WIDER APPLICATION OF MULTIPASS SYSTEMS THEORY

Part 1. Multimachine and Multicell Systems

%
J. B. Edwards, B.Sc.(Eng.), M.Sc., A.M.E.M.E., C.Eng., M.I.E.E,

Abstract

A general time-(distance-) domain representation of unidirectional
multipass processes is presented which describes all previously identified
examplesl. It is then shown that systems of multiple machines in which the
signal flow is unidirectional can be simulated by the repeated simulation of
a single machine and that such a procedure is described by the same general
time~domain formulation. The stability of this multipass simulation sequence,
and hence that of the multimachine system, can therefore be investigated analy-
tically using the frequency-response approach previously appliedl to real-life-
multipass processes. It is demonstrated how the approach can be applied also
to discretised spatially-distributed processes, provided again that signal flow
is unidirectional.

The modelling and analysis techniques presented in this first paper are
shown to be unsuitable, however, in the presence of either counterflow signals
or feedback controllers which are not of a local nature and uniformly distri-
buted along the process. The identification of these:limitations is an impor-
tant objective and provides the motivation and starting point for a companion
paper in which the multipass systems approach is adapted to cope with this much

wider class of processes.

* .
University of Sheffield, Department of Control Engineering,

Mappin Street, Sheffield S1 3JD.
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List of Symbols and Abbreviations

PRINTER'S NOTE: A bar under a symbol denotes a matrix and the symbol

=T =<

= =

should be printed in heavy type without the bar.

Transfer function

Transfer function matrix.

desired spatial rate of change of flame front depth (sinter process).

D, ¥, J, K, K, = constant coefficient matrices in the time (distance)

=1 =2
domain representation.

constant parameters of the steel rolling process.

process disturbance vector produced by the previous pass.
matrix of elements = o and exp(-Ls).

aerodynamic coefficient,

tractive effort on n'th vehicle

T.F.M. of an individual machine, (cell), in a cascade of such
machines, (cells).

T.F.M. of a single pass.

T.F.M. of any interpass shaping process.

open-loop T.F. of the entire interpass-process loop.

square, diagoﬁal,unity matrix,

gain parameter of sinter process.

gains of coal cutter steering controller.

proportional and integral gains of local sinter process controllers.
gain of controller for steel rolling process, velocity gain of
vehicle controller.

positional gain of vehicle controller.

distance traversed along a particular pass.

distance travelled by n'th vehicle.

cell length.

total pass length, process length.

mass of vehicle.

suffix denoting pass, machine or cell number.

total number of passes, machines or cells.

temperature perturbations of the two liquid streams in the n'th
cell of the heat exchanger.

steady-state temperature difference between the two streams.
slope of radius vector describing an excursion around the positive

half s-plane.
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length of this radius vector.

Laplace wvariable.

entire solution period for multimachine (multicell) system.
time.

driver reaction time, time parameter of heat exchanger.
integral acting time of vehicle and sinter process controllers.
mechanical time constant of vehicle.

residence time per cell in sintering process.

manipulable input vector.

control applied to nth machine, (cell), wind speed in sinter process.
total distance passed.

velocity of sinter strand.

liquid flow rate perturbations in heat exchanger.
steady—-state flow rate.

angular frequency.

mechanical natural frequency of steel rolling process.

state wvector.

headway between n-1 and nth vehicles,’

measurement delay, distance parameter of heat exchanger.
distance constants of coal cutter steering dynamics.

output vector disturbing the next pass, via E(s) and EQ(S) :
depth of -flame-front in nth cell of sinter process.
desired depth.

vector of state, output and interpass input variables.

mechanical damping ratio of steel rolling process.
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Introduction

The description "Multipass process" has hitherto been restricted to

processes operated repetitively over a large number of sweeps (or passes)

between which strong interaction occurs.

It has previously been Shown(l’z)

that the small perturbation dynamic behaviour of unidirectional multipass

processes can be modelled by means of the transfer-function network of Fig. 1

in which gés) describes the
response to the disturbance
is a matrix of elements = 0
EQ(S) describes any shaping

Laplace transforms in s are

dynamics of a single pass of the process in

vector d(s) arising from the previous pass. E(s)
and exp(-Ls) , where L is the pass-length and
of the output vector y(s) between passes. The

taken with respect to the total distance, v,

passed where, if n is the pass number and, &, the distance traversed along

that particular pass, then

v = (n-1)L + &

(1)

The model is valid so long as the transients under investigation occur at

distances far from both ends of the pass.

In general EQ(S) may, when considered in isolation from E(s), take on

a non-realisable form as in the case of direction-insensitive interpass

smoothing phenom.ena2 but otherwise we can put QQ(S) =1 and E(s) =

exp(-Ls)I

by lumping any conventional dynamic or algebraic interpass effects within

91(5) so that the process block diagram reduces to the form shown in Fig. 2.

A time(distance)-domain formulation.

In general the single-pass process El(s) will involve not merely the

vectors d and y circulating the interpass loop of Fig. 2 but also a state-

vector x, and a control input vector u.

Control can be based on feedback

of current or delayed measurements of state or output or could take a feed-

forward format based on previous pass information (d).

these control techniques is, of course, also possible.

A combination of

A time-(or more

precisely, distance-), domain formulation for the process Gl(s) sufficiently

general to cover all previously identified unidirectional multipass processes

may therefore be expressed thus:

i
[ >

E() =Ax (@) +3B

gﬂ(ﬂ)

E
Abd

(2) + F

(2)

(3)




_its elementary form first examined by the author

= 3 =
u(a) =K 2z @ +K =z (2 = X) (4)
_}_cn(ﬁ)
2,8 =y (5)
d ()

where X represents the measurement delay distance and A, B, C, F, J, El
and EQ are constant matrices. (The multipass process description is then
completed by the equation

4@ =y @ (6)
all provided that the interpass process is realisable and therefore embraced
by equations 2 to 5). By Laplace transformation and elimination of the
unwanted vectors ¥, u and z between equations 2 to 5 the single-pass process
transfer—function matrix Gl(s) may be calculated in any specific case.

Fig. 3 for instance illustrates the coal-cutter steering process model in
LA but here enhanced by
inclusion of sensor and actuator dynamics. The diagram shows the allocation
of state, input and output variables to this second-order process which in

general suffers multipass interaction through its height y and tilt "as JFrom

Fig. 3 therefore the distance domain description can be expressed:

) [ A
-1 1 1 1 (
e ‘s g I+ g 0
1 il 1 1

X = X + d + u. )

5 o L, M |T o o T iy

2 i

3 ( ( A

o , 1 s SRR | 0
y = X + d + u 68D

0 , 1 0 O 0

J L L J

and conventional analog control is based on the law

u(2) =~kg dz(l) -k Xl(ﬁ - X) 9)

Equations 7, 8 and 9 yield the result




e

y(s) = G, (s d(s)

. (1+sX1)(1+sX2),(1-—kg + st)(1+sX1)
B {kh exp(—sX)+(1+sX1)(1+sX2)}

where Gl(s)
Hkh exp (-sX) ,(l—kg + SXZ)(1+SX1)

(10)
Another example previously studied in cietail1 is the multipass steel-rolling
%
process illustrated by the state-variable diagram of Fig. 4 and which is

described in the distance domain by the equations:

.
0 w 2 0 0
X o]
x = X + d + u (11)
L_l ""ZEUJO _Cl 1
(
y = —1 M (0] J _}E + CZ d G (O) u : (12)
and
uﬂ(l) = kl yn(z - X) (13)

from which it is readily shown that

y(s) = 6,(s) d(s)

where, in this case,

2
]

2
w, (cl + c2) + 2cmo c, s + c
G () = —

s +2rCw s + mz {1 + k
0 ()

2
exp(-sX)}

(14)
1
S Gl(s) being merely a scalar in this case since there is only one interpass
dependence.

It will shortly be demonstrated that other classes of process which are
not multipass processes in the physical sense nevertheless share the general
mathematical structure described a@bove thus permitting their analysis by
multipass theory. Furthermore the T.F.M., El(s), can often be reduced to
scalar form like the last example and like the coal cutter in the special

case kg = 1.0 and X2 = 0 (see equation 10). Before proceeding therefore we

A

" In which the steel strip is rolled repetatively through a
single pair of rolls.
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first examine the special case of a scalar El(s)'

The Stability of a Single Multipass Loop.

Opening the interpass loop in Fig. 2 the inverse open-loop transfer-

function in this scalar case is clearly

H_l(s) = - Gzl(s) exp (L s) (15)
and with s = ju, (w real), the locus of Hﬁl(s) clearly takes a spiral form as
illustrated in Fig. 5, the radius vector rotating rapidly anticlockwise about
the origin (at one revolution per frequency increment Aw = 27/L) and under-
going gradual modulation since the vector length = |G;1 (jw)|. Setting
s = R exp(jo), (R+o and %—> 8 > - %J and letting s complete the usual clock-
wise contour around the right hand half s-plane will generate an equal number
of clockwise revolutions about the origin as were produced by w describing the
range =R < w < + R and these will clearly have infinite radius. If there are
no zeros of Gl(s) in the right hand half s—-plane, multipass stability is
therefore ensured by siting the eritical -1 + jo point inside the annulus
shown in Fig. 5 thus requiring that

!Gl(jw)’_l > 1.0 , for all real w : (16)
This alternative approach of opening the interpass loop rather than the
author's usual technique of opening the control loop has been briefly reported
before and equation 16 presented without proof. In yielding result
(16) this approach has the advantage of gemerality within the field of scalar
multipass systems.

Clearly in the above-mentioned steel rolling example it follows that, if

dynamics are neglected, then for stability

l(c1 +c)) /Al + ky exp (-jwx)}| < 1.0
so that kl <1 - (c1 + cz) (17)
and, for the stability of the coal cutter reduced to a single interpass loop
problem by setting kg = 1.0 and X, = 0,
it follows that:

(150 xi)/'{1+m2 2

Xl + 2 kh(cosz + wX. sin wX) + kﬁ} % 1,0
(18)

Both

1
which is impossible to achieve with any finite choice of gain kh.
results have been previously derivedl by the alternative method.

Multimachine Systems

The Analogy with Multipass Systems

The time domain formulation expressed by equations '2 to 6, (with time t
substituted for distance &), could equally well describe systems of the sort

shown in block diagram form by Fig. 6 which shows a chain of identical machines,
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each of transfer-function matrix G(s), each interacting in an identical
manner with one of its two neighbours. The T.F.M. G(s) could include the
effects of any local control acting on each machine. In such a system 4
however, suffix n denotes machine number and not pass number as previously

and the individual subsystems G(s) operate in time-parallel in the physical
world whereas gl(s) in the multipass system is a single process operated
sequentially over long intervals. In simulation, however, there is no reason
why an individual G(s), representing, say, machine n, should not be run as an
individual process over any desired interval t provided its execitation vector
zn_l(t) , {= gﬂ(t)}, had been previously stored away for the period T.
Furthermore, if output zﬂ(t) were now stored away in place of zn_l(t) for the
same period, then the cycle could be repeated. Operated in this way, G(s)
generates the entire output of each machine individually and sequentially at
intervals t. Fig. 7 clearly describes such a sequential simulation and is
identical but for the choice of symbols to the multipass system representation
of Fig. 2. Indeed the sequential simulation (as opposed to the physical
process) is a multipass process and the stability of the system of Fig. 6

is determined by the stability of the system of Fig. 7 so that such multi-
machine systems may be analysed as multipass processes.

This concept is not entirely new and was first brought to the author's
attention in conversation with Professor J. L. Douce of the University of
Warwick. Whilst significantly widening the scope of multipass systems theory
it does nevertheless have important limitations which become obvious when we
examine multimachine and multicell systems of a more general class than that
shown in Fig. 6. For the moment however we consider an important example to
which Fig. 6 is appropriate and for which the approach outlined above is
successful.

A Vehicle Convoy

Consider the convoy illustrated diagramatically in Fig. 8 described
by the equation:

xn(t)

anml(t) - Rn(t) (19)

F_(t) Mﬁn(t) + fin(t) (20)

where ln and X denote respectively the position of vehicle number n and the

headway of its leader, n~1 , F is the applied tractive effort and M and £
* P
are constant coefficients of inertial and aerodynamic drag respectively.

! ; i . ; 2
Aerodynamic drag is strictly proportional to (velocity)”™ but
equation 20 is nevertheless appropriate for small perturbations
about a nominal speed.
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Suppose vehicle n is controlled omly in response to its neighbour n-1 such
that
Fn(t) = klxn(t—T) + kz{xn(t—T) - xr(t—T)} (21)

where kl and k2 are constant positive gains, Xr(t) is the desired headway,
here assumed constant, and T is the fixed reaction time of the driver/control
system. Fig. 9 is a block diagram showing the allocation of state-and
interpass—variables to this second-order system which clearly exhibits only
one interpass loop so that, in accordance with the multipass time—domain
formulation of Section 1.1, the system may be described thus, (if reference

X is ignored):

0 1 1 0
x(t) = x(E) + d(t) + u(t) (22)
0 _f/M 0 1/M
y(t) = [0, - 1] x(©) + [0] d&) + [0] u(e) (23)
and u(e) =L %, , k] x(t-T) =k d(t-1T) (24)

and from these equations it is readily shown that the G(s) of Fig. 7 is
given by the scalar expression:

—exp( - T s)(k;s + kz)

Bls)Y =6(s) = (25)

M52 + fs + (kls + kz) exp(- Ts)

Application of the general single loop criteriomn, (16) yields the results
that, for the stability of the system, then:

2 2 I |
2 i
fw (1+THP ) » kz{(Tm Ti)wcos Tw + (1+Tmiiw ) sin T w} , £#0

(26)

for all real w, where _
Tm = M/f and Ti = k1/k2 (27)
and Mmz > 2 k2 (cos Tw + Ti w sin T w) , £ =0 (28)

again for all real w.
Although an analytical solution of (26) is not possible ingeneral a
number of interesting special case results can be derived from (26) and (28)

viz:
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Suppose vehicle n is controlled only in response to its neighbour n-1 such
that
= k& (&~T P - o
F(£) = k& (e=T) + k {x (£~F) - x (£-T)} (21)

where kl and k2 are constant positive gains, Xr(t) is the desired headway,
here assumed constant, and T is the fixed reaction time of the driver/control
system. Fig. 9 is a block diagram showing the allocation of state-and
interpass—variables to this second-order system which clearly exhibits only
one interpass loop so that, in accordance with the multipass time-domain
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X is ignored):
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and from these equations it is readily shown that the G(s) of Fig. 7 is

given by the scalar expression:

—exp( - T s)(ks + k)
G(s) = G(s) = 5 (25)
Ms® + fs + (kls + k2) exp(- Ts)

Application of the general single loop criterion, (16) yields the results

that, for the stability of the system, then:

2 2 B |
2 4
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viz:
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Suppose vehicle n is controlled only in response to its neighbour n-1 such
that
Fn(t) = klxn(t—T) + kz{xn(t—T) - xr(t—T)} (21)

where kl and k, are constant positive gains, xr(t) is the desired headway,

2
here assumed constant, and T is the fixed reaction time of the driver/control
system. Fig. 9 is a block diagram showing the allocation of state-and
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one interpass loop so that, in accordance with the multipass time-domain
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fw (1+T§92) 5 kz{(Tmei)wcos Tw + (1+Tmiiw2) sin T w} , f£#0

(26)

for all real w, where _
Tm = M/f and Ti = kl/k2 (27)
and W > 2k (cos Tw + T, w sinTw) , £ =0 (28)

again for all real w.
Although an analytical solution of (26) is not possible ingeneral a
number of interesting special case results can be derived from (26) and (28)

viz:
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(a) for convoy stability , kl < 0.5 £ , M= k2 =0
" 1" " 5
(b) & . k2T< 0.5 £ , T, = Tm
() " " i , kT<0.5M , f£=k =0

and (d) convoy stability cannot be achieved if f = 0 and k2 # 0 , irrespective
of the values of M, T and kl.

The same results are obtainable by the alternative approach of opening
the control loop at, say, the point X in Fig. 9 and investigating the
resulting open-loop transfer function:

(k; + k,/8){1 = exp(-ts)} exp (-Ts)

" ==
G (=) F(L + Ms/D) L28
where t = the solution interval, >> T, T  and Ti' Special case (a), for
instance, yields
gl(g) = kl {1=exp (-18)} exp (-Ts)/f (30)

the Nyquist plot for which, with s = jw, the familiar clover-leaf shape

shown in Fig., 10. For the infinite semi-circular contour around the positive
half s-plane, G'(s) clearly tends to zero and since G'(s) has no poles within
the s-contour, for stability, upon closure of the control loop, the critical

-1 + j O point must lie outside the locus and hence

1.5 2 kl/f or kl < 0:5 £,
as before.

In a previous paperl the stability of a multipass metal rolling process
has been considered. In that process, the metal strip passes repeatedly
through a single stand rolling-mill but, quite obviously, the same stability
conclusions are obtained if the strip is processed by a spatial sequence of

identical mills, O, 1 ... n, ... N, running in time-parallel provided that

stand n+l exercises zero influence on the behaviour of stand n by virtue of,

say, interstand tension affecting the strip thickness. Likewise, the approach
to the vehicle problem above would have required modification had the control
law (equation 21) taken account of the behaviour of both the leading and
following vehicles. In such situations neither the time-domain répresentation
of Section 1.1 nor the block diagram of Fig. 6 are applicable because of the
counterflow of signals between the individual machines.

Multicell Systems

The multimachine approach above may be applied to continuous spatially
distributed processes, (within limitations to be identified), if these are
first represented by a series of discrete identical cells each described

by algebraic and ordinary differential equations.
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An Ore Sintering Process

Consider, for instance, the process illustrated diagramatically

by Fig. 11 which shows the downward progress of the flame-front through
the ore-coke mixture which is first ignited at the top left hand corner,
The burning mixture is conveyed from left to right as shown during the course
of combustion, and the object being to achieve complete burn-through at the
fixed right-hand end of the process. In Fig. 11, the process has been sub-
divided into N conceptual cells. It serves our purpose here to consider
control by manipulation of the individual and independently adjustable wind
speeds Ups Uy eee Uy to which the velocity of the flame-front segments in
cells 1, 2 ... N are respectively proportional. An elementary model for the
discretised process is simply

¥ i) = yn_l(t) + k Atu (1) (31)
where . denotes the depth of the flame front in cell n, k is a constant
dependent of mixture permeability and At is the residence time of material in
any cell. 1In an attempt to force combustion to follow the desired staircase

reference pattern n(t), where
|

Yy o8 =y, (0 +a (32)

a being a fixed increment, ( = depth of bed/N), suppose N local P + I

controllers are employed such that

N t
() = [l {y, (©) -y ()} + K, r {yr’n(t)—yn(t)}]/kAt(33)

then clearly the behaviour of cell n could be computed for any period T having
previously computed and stored the solution yn—l(t) , 0 < t< 1, from cell
n-1l. The process clearly belongs to the category of Fig. 3 and has the format
of Section 1.1. A block diagram for such a sequence of simulations

is given in Fig. 12, the stability of which may be determined by examination
of the inverse open-loop transfer-function:

=1
¢ (s) = {1 - exp( -18)} 5/ Tk, (1 +7T;9)} (34)
where integral—acting time, Ti = kp/ki (35)

Now Ti >> At if the discretising of the process model is to remain valid

and T >> Ti for a meaningful concept of process stability, viz: the non-
propogation of divergent waves along the process irrespective of the obger-
vation period. It is readily deduced from the inverse Nyquist diagram that
no stability problem exists with this process and provided kP * 1.0 no

significant transient oscillation will occur either.
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Owing to the difficulty in obtaining the necessary N measurements of
flame-front depth,distributed feedback control of the sort outlined above
is not very practicable generally but could form the basis of a feedforward
computer control system for manipulation of the N windboxes in response to
; synthésized values of Yqs e Ypo cer Yy A far simpler technique, however,

would involve setting
¥ = =
u () =u () =ul) , lsn<N (36)

and manipulating the single distributed control, u(t), in response to the
single point measurement, yN(t). Alternatively u(t) may be set at a constant
value and the conveyor speed v(t) manipulated instead, although the process
model, (31) would require adaptation for this situation. The majority of
distributed processes are controllable only in this manner, i.e., in a
continuous spatial process, the spatial modulation £1(2) s 0 2o f 'Ehe
distributed control function u(f,t) = EI(E) fz(t) is not manipulable and only
a single output vector y(f',t) is available for measurement, &' being some
particular value of %&. Under such circumstances the nature of the control
system renders the process unsuitable for representation by Fig. 3 or by the
- formulation of section 1.1.

%
Consider as a second example a symmetrical parallel flow 1liquid/liquid

v heat exchanger conceptually discretised in space and hence described by
T &;n(t) = —X{¢n(t)—¢n,_1(t)}/m + en(t)—¢n(t) + (Aen/w){o.Gwl‘(t)-O.4w2(t)}
(37)
i én(t) = -X{o_(£)-0__, (£)}/A% + ¢_(£)-0_(t) + (Aen/W){0.4wl(t)-0.6w2(t)}
(38)

where ¢n and Gn respectively denote the temperature perturbations in the liquid
streams 1 and 2, T and X are quasi-constants depending upon the operating
conditions, W denotes the quiesent flow rate of both streams, Wy and w, are
the small manipulable perturbations in these, A% is the cell length (=L/N),
and Aﬁn is the steady-state temperature difference between the two streams.
If only open-loop stability studies were required, i.e. W, =W, = 0 , then
clearly the multimachine approach based on Fig. 3 may be adopted since cells
may be computed individually for any period T in the sequence n =1, 2 ...N.

. since the boundary conditions are here fixed at n = 0 {¢0(t) = eo(t) = 0}.

The approach as it stands would not be applicable to the controlled system

ot

" Parallel is a term used to describe flows occuring side by side
in the same direction, as opposed to the flows occuring in opposite
directions and termed counter flows.
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however since Aen is non-manipulable and @, and w, are functions only of
t thus precluding any form of local control around each cell even if mul-
tiple measurements were available for the purpose.
A further problem arises when the counterflow heat exchanger is
considered, this being described by
3 e - A% +6 (t)- A8 -
T ¢ (t) x{o_(t) ¢n_l(t)}/ +68_(£)-¢_(t) + (80/W){0.6 w, (t) 0.4w, (£)}
(39)
é = = B = t - —Ua
T8 e} X{en+1(t) rl(t)}/M + ¢ _(£)-6_(£) + (48/W){0.4 w, (£)-0 6w, ()}

(40)
with boundary conditions now fixed at opposite ends of the process, viz:
= 0 =
b (£) =9,,(8) =0 (41)

An added difficulty now arises in that the two-point boundary conditions
prevent this process from being computed in a single sequence of simulations
for cells 1 to N consecutively. Instead computations must proceed in the form
of repetative sweeps in alternate directions, along the process, individual cell
computations now being effected for only very short intervals of time. This
problem introduced by the counterflow of signals between simulation cells,
(and encountered earlier at the end of Section 2.2) further invalidates the
generality of the simple approach based on Fig. 3. Some enhancement of the multi-
pass system concept is clearly required for general distributed processes
to fall within its scope.

Conclusions

It has been shown that multimachine systems and spatially discretised

distributed processes can be simulated by a sequence of simulations of
merely one machine (or one discrete cell of the process) by first storing
the previous output function to provide the subsequent excitation signal.
Such a simulation/i%e%PiRﬁ%ipass process which may be analysed for stability
via, say, the inverse Nyquist method using long time delays to represent
the interpass coupling. Stability (or instability) of the multipass simu-
lation implies stability, (or instability), of the real life process.
The approach has been successfully applied to a vehicle convoy and an ore-
sintering process and indeed could be applied to any multimachine or multi-
cell process in which the signal flow between the individual machine or
cell dynamics is unidirectional and any controllocal to that cell.

The approach outlined in this paper has been shown not to cope with the

counterflow of signals between cells (machines) nor with control systems of




= A us

a non-distributed, non-local nature. One of the main objectives of this

paper has indeed been to identify these very difficulties because their

solutions widen the scope of multipass sytems analysis enormously to

embrace virtually the whole field of controlled distributed processes.

Such difficulties can in fact be overcome quite readily and the methods

for so doing are presented in a companion paper4 for which the present

paper is intended to pave the way.
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