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SIMULTANEOUS NUMERICAL DETERMINATION OF A CORRODED BOUNDARY AND

ITS ADMITTANCE

A. KARAGEORGHIS, B. BIN-MOHSIN, D. LESNIC, AND L. MARIN

Abstract. In this paper, an inverse geometric problem for Laplace’s equation arising in boundary corrosion de-
tection is considered. This problem, which consists of determining an unknown corroded portion of the boundary

of a bounded domain and its admittance Robin coefficient from two pairs of boundary Cauchy data (boundary
temperature and heat flux), is solved numerically using the meshless method of fundamental solutions. A nonlinear
minimisation of the objective function is regularised, and the stability of the numerical results is investigated with

respect to noise in the input data and various values of the regularisation parameters involved.

1. Introduction

When surfaces of a specimen which have been damaged by a corrosion aggressive attack are not accessible to
direct inspection, one is forced to rely on overdetermined non-invasive measurements performed on the accessible
part of the boundary. In this study, we consider such a non-destructive inspection technique modelled as an
inverse geometric problem which consists of determining an unknown part of the boundary Γ2 ⊂ ∂Ω assuming
that the dependent variable (electric potential or steady-state temperature) u satisfies the Laplace equation in a
simply-connected bounded domain Ω, namely

∆u = 0, in Ω, (1.1)

from the knowledge of the Dirichlet boundary data u and the Neumann flux data ∂u/∂n, i.e. Cauchy data, on a
known part of the boundary Γ1 = ∂Ω \ Γ2, where n is the outward unit normal to the boundary, together with a
Robin boundary condition on the unknown part of the boundary Γ2 whose Robin coupling coefficient, called herein
admittance, is also treated as unknown. A similar inverse problem arises from the non-destructive evaluation of
the metal-to-silicon non-perfect interface in semiconductor devices [25].
Prior to this study, there were recent applications of the method of fundamental solutions (MFS) to solving the
inverse boundary corrosion problem in electrostatics, [26, 28, 29, 32, 37], but the unknown boundary was restricted
to be either perfectly conducting or insulated. In the case that a Robin convective boundary condition applies, the
uniqueness of Γ2 no longer holds and more measurements are necessary.
The inverse, nonlinear and ill-posed problem of determining the unknown (inaccessible) corroded portion of the
boundary Γ2 and its admittance coefficient is approached using a regularised minimisation procedure which employs
the MFS. We mention that the analogous inverse corrosion problem in heat transfer governed by the modified
Helmholtz equation was recently solved numerically in [3]. However, in comparison with other related works
on the subject of simultaneous determination of a corroded boundary and its Robin coefficient, [3, 10, 24], the
present study contributes as follows. Firstly, we employ a flexible dynamic pseudo-boundary MFS approach which
allows for the distance between the boundary and the fictitious curve on which the source are positioned to be
optimised. This approach has recently been proved to be successful in related applications of the MFS for solving
shape identification problems in both two and three dimensions, [20, 21]. Secondly, the nonlinear minimization is
performed using the MATLAB c⃝ [31] optimization toolbox routine lsqnonlin. In contrast to the more classical
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Fortran NAG [33] routines, e.g. E04FCF, which do not require the gradient of the objective function to be supplied by
the user, the routine lsqnonlin allows simple bounds on the unknown variables to be imposed. This is particularly
useful and important because we know beforehand that certain physical or geometrical quantities are positive for
example. There exist other NAG routines that allow the user to supply bounds on the unknowns, e. g. E04UCF,

E04UNF. However, these require the user to provide as many components of the gradient of the objective functional
as possible and, most importantly, they are computationally very expensive. The outline of this paper is as follows.
In section 2 we introduce and discuss the mathematical formulation, whilst in section 3 we present the regularised
MFS for the solving the inverse problem. In section 4 we present and discuss the numerically obtained results,
whilst section 5 gives conclusions and possible future work.

2. Mathematical formulation

We consider that the solution domain Ω is simply-connected and bounded by a piecewise smooth curve ∂Ω, such
that ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, and Γ1 and Γ2 are of positive measure without cusps at the intersection Γ1 ∩ Γ2.
The function u satisfies the Laplace equation (1.1) subject to the boundary conditions

u = f on Γ1, (2.1)

and
∂u

∂n
+ αu = 0 on Γ2, (2.2)

where f ∈ H1/2(∂Ω) is a given non-constant function and α ∈ L∞(Γ2) is the non-negative surface admittance
in electrostatics, or the surface heat transfer coefficient in heat conduction. In equations (1.1) and (2.2) we have
assumed that, for simplicity, the conductivity is constant and equal to unity. Here H1/2(∂Ω) denotes the space of
traces of functions u ∈ H1(Ω) restricted to the boundary ∂Ω, and H−1/2(∂Ω) denotes the dual space of H1/2(∂Ω).
Equation (2.2) represents a homogeneous Robin boundary condition and, based on Newton’s law of cooling, it
expresses that the ambient effects (thermal or electrostatic) are uniform and, for simplicity, taken to be zero.
We mention that in some papers the admittance is often called impedance and although there is some physical
distinction between them, e.g. one is the reciprocal of the other, mathematically this is equivalent as we can always
rewrite equation (2.2) as α−1∂u/∂n+ u = 0.
It is well-known that the direct Dirichlet-Robin problem given by equations (1.1), (2.1) and (2.2) has a unique
solution u ∈ H1(Ω), when Γ2 is known. Since we want to use non-destructive testing, we then define a nonlinear
operator which maps the set of admissible C1-corroded boundary Γ2 with admittance α ∈ L∞(Γ2), α > 0, to the
data space of Neumann flux in H−1/2(Γ1), as follows:

Ff (Γ2, α) :=
∂u

∂n

∣

∣

∣

Γ1

= g ∈ H−1/2(Γ1). (2.3)

In the inverse boundary corrosion problem setting, [22], Γ2 is some unknown and inaccessible corroded boundary
portion of ∂Ω, whilst Γ1 is known and accessible for input-output measurements, i.e. Cauchy data prescription.
Then the inverse problem under consideration consists of extracting some information about the boundary Γ2 and
its admittance α from a couple of data g1 = Ff1(Γ2, α) and g2 = Ff2(Γ2, α). The data (2.3) may also be only
partial, i.e. the flux being measured on a non-zero measure portion Γ ⊂ Γ1, instead of the whole boundary Γ1. It
is well-known that this inverse problem is nonlinear and ill-posed, as opposed to the direct problem which is linear
and well-posed.
We briefly note that the situation regarding the uniqueness/non-uniqueness of solution is much more settled in the
case of the inverse shape boundary determination of Γ2 when α is known, [6, 7, 9, 17, 18], or in the case of the
inverse admittance determination of α when Γ2 is known, [11, 16]. We also mention that the case of the inverse
determination of Γ2 with α unknown but being either 0, i.e. a perfectly insulating boundary corrosion, or ∞, i.e. a
perfectly conducting boundary corrosion, has recently been investigated in [30]. However, it is not always physically
realistic to assume that the boundary condition on the corroded boundary is known, e.g. on a rough metal surface
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covered by a layer of a corrosive fluid, in which situation the coefficient α in (2.2) together with the boundary Γ2

are to be simultaneously determined. Then, clearly one set of Cauchy boundary measurements (2.1) and (2.3) is
not sufficient to simultaneously recover the boundary Γ2 affected by a corrosion attack and its corrosion coefficient
α. Even when α is known, one set of Cauchy data (2.1) and (2.3) may not be enough to determine uniquely
the corroded boundary Γ2, as shown by the counterexamples given in [7, 9, 35] and some thorough numerical
investigation reported in [15]. However, it turns out that two linearly independent boundary data f1 and f2, one
of which is positive, inducing, via (2.3), two corresponding flux measurements g1 and g2, are sufficient to provide
a unique solution for the pair (Γ2, α), [1, 34, 35]. The stability issue has also been recently addressed in [36] and
numerical results based either on a potential approach or on a Green’s integral formulation have been reported in
[10].
Summing up, the mathematical formulation of the inverse problem under investigation requires determining the
corroded boundary Γ2, the admittance coefficient α, and the electrostatic potentials uℓ for ℓ = 1, 2, satisfying the
two-Cauchy data Robin problem

∆uℓ = 0, in Ω, (2.4)

∂uℓ

∂n
+ αuℓ = 0, on Γ2, (2.5)

uℓ = fℓ, on Γ1, (2.6)

∂uℓ

∂n
= gℓ, on Γ1, (2.7)

for ℓ = 1, 2.
In the next section we describe the MFS and the nonlinear minimization employed for solving the inverse geometric
problem (2.4)-(2.7).

3. The method of fundamental solutions (MFS)

For simplicity, we describe the analysis in two dimensions with the mention that the extension to three dimensions
is reasonably straight-forward, but for a higher computational effort involved. In the application of the MFS to
(2.4), we seek an approximation as a linear combination of fundamental solutions of the form [14]

uN (c, ξ;x) =

2N
∑

k=1

ck G(ξk,x), x ∈ Ω, (3.1)

where (ξk)
2N
k=1 are source points located outside Ω and G is the fundamental solution of the two-dimensional Laplace

equation, given by

G(ξ,x) = −
1

2π
ln | ξ − x | . (3.2)

Assume that Ω is a star-shaped domain with respect to the origin and has a smooth boundary ∂Ω parametrised by

∂Ω = {r(ϑ)(cos(ϑ), sin(ϑ))| ϑ ∈ [0, 2π)}, (3.3)

where r(ϑ) is a 2π−periodic smooth function. We take the accessible part of the boundary

Γ1 = {r(ϑ)(cosϑ, sinϑ)| ϑ ∈ [0, π]} , (3.4)

where r(ϑ) is known for ϑ ∈ [0, π]. We further assume that the corroded part of the boundary can be parametrised
by

Γ2 = {r(ϑ)(cosϑ, sinϑ)|ϑ ∈ (π, 2π)} , (3.5)

where now r(ϑ) is not known for ϑ ∈ (π, 2π).
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We choose the collocation points on Γ1 to be

xk = rk (cosϑk, sinϑk) , ϑk =
π(k − 1)

M
, k = 1,M + 1, (3.6)

and the collocation points on Γ2 to be

xk = rk (cosϑk, sinϑk) , ϑk = π +
π(k −M − 1)

N
, k = M + 2,M +N. (3.7)

where rk = r(ϑk), k = 1,M +N . The rk, k = 1,M + 1 are known, whereas the rk, k = M + 2,M +N are
unknown. We further choose the source points corresponding to Γ1 to be

ξk = η rk (cosϕk, sinϕk) , ϕk =
π(k − 1)

N
, k = 1, N + 1, (3.8)

and the source points corresponding to Γ2 to be

ξℓ = η rℓ (cosϑℓ, sinϑℓ) , ϑℓ = π +
π(ℓ−N − 1)

N
, ℓ = N + 2, 2N, (3.9)

where the (unknown) dilation parameter η > 1.

3.1. Finite-dimensional parametrisation. In order to improve the accuracy and stability of the numerical
results, we introduce an additional finite-dimensional trigonometric polynomial approximations for Γ2 and α, as
[12],

rK(ϑ) = a0 +
K
∑

j=1

aj cos(jϑ) +
K
∑

j=1

bj sin(jϑ), ϑ ∈ (π, 2π), (3.10)

αL(ϑ) = C0 +
L
∑

j=1

Cj cos(jϑ) +
L
∑

j=1

Dj sin(jϑ), ϑ ∈ (π, 2π). (3.11)

Alternatively, cubic B-splines can also be used, [15], in place of the trigonometric approximation (3.10).

3.2. Nonlinear Minimization. In the application of the MFS to the inverse problem (2.4)-(2.7), there are now
4N+2K+2L+2 unknowns consisting of the 4N coefficients

(

cℓk
)

k=1,2N
, ℓ = 1, 2, in (3.1), the 2K+1 coefficients in

(3.10), the 2L+1 coefficients in (3.11) and the dilation coefficient η in (3.9). These can be determined by imposing
the boundary conditions (2.5)-(2.7) in a least-squares sense. This leads to the minimization of the functional

S(c1, c2, r,α, η) :=
∑2

ℓ=1

∑M+1
j=1

[

uℓN (cℓ, ξ;xj)− fℓ(xj)
]2

+
∑2

ℓ=1

∑M+1
j=1

[

∂uℓN

∂n
(cℓ, ξ;xj)− gεℓ (xj)

]2

+
∑2

ℓ=1

∑N
j=2

[

∂uℓN

∂n
(cℓ, ξ;xM+1+j) + αuℓN (c, ξ;xM+1+j)

]2

+
[

a0 +
∑K

j=1 aj − r(0)
]2

+
[

a0 +
∑K

j=1(−1)jaj − r(π)
]2

, (3.12)

where cℓ = [cℓ1, c
ℓ
2, . . . , c

ℓ
2N ], ℓ = 1, 2, r = [a0, a1, . . . aK , b1, . . . , bK ] and α = [C0, C1, . . . CL, D1, . . . , DL] .

Note that the last two terms in (3.12) correspond to the specification of r(0) and r(π) such that there is no
discontinuity at the intersection points of Γ1 ∩ Γ1.
The functional S in (3.12) imposes 2N + 4M + 4 conditions and we thus require 2N + 4M + 4 ≥ 4N + 2K +
2L + 2 or 2M ≥ N + K + L − 1. It is easy to imagine how functional (3.12) can be generalized, through the
MFS formulation, to naturally incorporate additional Cauchy data should multiple, say more than two, sets of
independent measurements become available to yield more information and hence even better reconstructions of
the unknown corroded boundary Γ2, its admittance coefficient α, and possibly other additional parameters, see
e.g. [4].



DETERMINATION OF A CORRODED BOUNDARY 5

Remarks.

(i) The flux data (2.7) comes from practical measurements which is inherently contaminated with noisy errors,
and therefore we replace gl by gϵl given by

gϵl (xj) = (1 + ρjp)gl(xj), j = 1, (M + 1), (3.13)

where p represents the percentage of noise and ρj is a pseudo-random noisy variable drawn from a uniform
distribution in [−1, 1] using the MATLAB c⃝ command -1+2*rand(1,M).

(ii) Since the inverse problem is ill-posed, in order to achieve the stability of the numerical MFS solution for noisy
data (2.7), in (3.12), we can add the regularization terms

λ1

(

|c1|2 + |c2|2
)

+ λ2

(

K
∑

j=0

a2j +
K
∑

j=1

b2j

)

+ λ3

(

L
∑

j=0

C2
j +

L
∑

j=1

D2
j

)

(3.14)

where λ1, λ2, λ3 ≥ 0 are regularization parameters to be prescribed.
(iii) In (3.12), the outward normal vector n is defined as follows:

n(ϑ) =
1

√

r2(ϑ) + r′2(ϑ)
[(r′(ϑ) sinϑ+ r(ϑ) cosϑ) i− (r′(ϑ) cosϑ− r(ϑ) sinϑ) j] , (3.15)

where i = (1, 0) and j = (0, 1). As a result, from (3.1) the normal derivative ∂nuN is evaluated as

∂nuN = n · ∇uN = −
1

2π

2N
∑

k=1

ck
(x− ξk) · n

|x− ξk|
2

. (3.16)

In (3.15), for the unknown part of the boundary Γ2, we use

r′(ϑ) = −
K
∑

j=1

jaj sin(jϑ) +

K
∑

j=1

jbj cos(jϑ), ϑ ∈ (π, 2π), (3.17)

while for the known part of the boundary Γ1, we simply calculate the derivative r′(ϑ) since we know the
expansion of r(ϑ) there.

(iv) The minimization of functional (3.12) is carried out using the MATLAB c⃝ optimization toolbox routine
lsqnonlin which solves nonlinear least squares problems. The routine lsqnonlin does not require the user
to provide the gradient and, in addition, it offers the option of imposing lower and upper bounds on the
elements of the vector of unknowns (c1, c2, r,α, η) through the vectors lb and up.

4. Numerical examples

4.1. Construction of appropriate harmonic functions. Suppose that we now consider the general curve r(ϑ)
and want to construct a harmonic function u satisfying the homogeneous Robin condition (2.2) on the lower
boundary Γ2. We first remark that because of the singularities of the solution of the direct Dirichlet-Robin
problem (1.1), (2.1) and (2.2) at the two intersection points Γ1∩Γ2, any numerical method discretizing/collocating
boundaries (3.4) and (3.5) with equidistant points on [0, 2π) will lead to inaccuracies. A graded mesh towards the
intersection points may be employed as in [23], but in this section a simpler construction method of appropriate
harmonic functions is proposed to fit our purpose of generating accurate numerically simulated data (2.6) and (2.7).
For given A,B, C, consider the harmonic function

u(r, ϑ) = A+ Br cosϑ+ Cr sinϑ+

L
∑

ℓ=2

rℓ [Aℓ cos(ℓϑ) +Bℓ sin(ℓϑ)] , (4.1)

for a fixed L ∈ N
∗.
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Then

∂u

∂r
(r, ϑ) = B cosϑ+ C sinϑ+

L
∑

ℓ=2

ℓrℓ−1 [Aℓ cos(ℓϑ) +Bℓ sin(ℓϑ)] , (4.2)

and

∂u

∂ϑ
(r, ϑ) = −Br sinϑ+ Cr cosϑ+

L
∑

ℓ=2

ℓrℓ [−Aℓ sin(ℓϑ) +Bℓ cos(ℓϑ)] . (4.3)

We can now find the normal derivative on the boundary from

∂u

∂n
(r, ϑ) = nx

∂u

∂x
+ ny

∂u

∂y
=

[

cosϑ
∂u

∂r
−

sinϑ

r

∂u

∂ϑ

]

nx +

[

sinϑ
∂u

∂r
+

cosϑ

r

∂u

∂ϑ

]

ny, (4.4)

where from (3.15),

nx(ϑ) =
1

√

r2(ϑ) + r′2(ϑ)
(r′(ϑ) sinϑ+ r(ϑ) cosϑ) , ny(ϑ) = −

1
√

r2(ϑ) + r′2(ϑ)
(r′(ϑ) cosϑ− r(ϑ) sinϑ) . (4.5)

After some manipulations we obtain that

∂u

∂n
(r, ϑ) =

{

B +

L
∑

ℓ=2

ℓrℓ−1 [Aℓ cos((ℓ− 1)ϑ) +Bℓ sin((ℓ− 1)ϑ)]

}

nx

+

{

C +

L
∑

ℓ=2

ℓrℓ−1 [−Aℓ sin((ℓ− 1)ϑ) +Bℓ cos((ℓ− 1)ϑ)]

}

ny. (4.6)

The boundary condition
∂u

∂n
+ αu = 0 thus becomes

L
∑

ℓ=2

{

ℓrℓ−1 [cos((ℓ− 1)ϑ)nx(ϑ)− sin((ℓ− 1)ϑ)ny(ϑ)] + α(ϑ)rℓ cos(ℓϑ)
}

Aℓ

+

L
∑

ℓ=2

{

ℓrℓ−1 [sin((ℓ− 1)ϑ)nx(ϑ) + cos((ℓ− 1)ϑ)ny(ϑ)] + α(ϑ)rℓ sin(ℓϑ)
}

Bℓ

= −Bnx(ϑ)− Cny(ϑ)− α(ϑ) (A+ Br cosϑ+ Cr sinϑ) . (4.7)

The 2(L− 1) coefficients (Aℓ)
L
ℓ=2 and (Bℓ)

L
ℓ=2 can be determined by collocating equation (4.7) at the M− 1 points

ϑ̃i = π + i
M

, i = 1, . . . ,M− 1. Taking M ≥ 2L − 1 this yields the overdetermined system of linear equations

L
∑

ℓ=2

{

ℓrℓ−1
i

[

cos((ℓ− 1)ϑ̃i)nx(ϑ̃i)− sin((ℓ− 1)ϑ̃i)ny(ϑ̃i)
]

+ α(ϑ̃i)r
ℓ
i cos(ℓϑ̃i)

}

Aℓ

+

L
∑

ℓ=2

{

ℓrℓ−1
i

[

sin((ℓ− 1)ϑ̃i)nx(ϑ̃i) + cos((ℓ− 1)ϑ̃i)ny(ϑ̃i)
]

+ α(ϑ̃i)r
ℓ
i sin(ℓϑ̃i)

}

Bℓ

= −Bnx(ϑ̃i)− Cny(ϑ̃i)− α(ϑ̃i)
(

A+ Bri cos ϑ̃i + Cri sin ϑ̃i

)

, i = 1, . . . ,M− 1, (4.8)

where ri = r(ϑ̃i).

Having determined the coefficients (Aℓ)
L
ℓ=2 , (Bℓ)

L
ℓ=2 we can then calculate from (4.1) the Cauchy data on Γ1.
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4.2. Example 1. In this example, the unit disk domain Ω = B(0; 1) is considered, and its boundary is divided
into two parts, namely,

Γ1 = {(x, y) ∈ R
2| x = cos(ϑ); y = sin(ϑ); ϑ ∈ [0, π]}, (4.9)

and
Γ2 = {(x, y) ∈ R

2| x = r(ϑ) cos(ϑ); y = r(ϑ) sin(ϑ); ϑ ∈ (π, 2π), r(ϑ) = 1}. (4.10)

First, we take the Dirichlet data (2.1) on Γ1 given by

u1(1, ϑ) = f1(ϑ) = eγ sin(ϑ) cos
(

γ cos(ϑ)
)

, ϑ ∈ [0, π], (4.11)

where γ = π/4, and the Neumann data (2.3) on Γ1 given by

∂u1

∂n
(1, ϑ) =

∂u1

∂r
(1, ϑ) = g1(ϑ) = γeγ sin(ϑ) sin

(

ϑ− γ cos(ϑ)
)

, ϑ ∈ [0, π]. (4.12)

We also take the positive Robin coefficient given by

α(ϑ) = −
γ sin

(

ϑ− γ cos(ϑ)
)

cos
(

γ cos(ϑ)
) , ϑ ∈ (π, 2π). (4.13)

Graphs of the Dirichlet data (4.11) and the Robin coefficient (4.13) are presented in Figures 1(a) and 2(b), respec-
tively, showing that they are positive.
Note that the analytical solution of the direct problem (1.1), (2.1) and (2.2) with the data given by (4.9)-(4.11)
and (4.13) is given by

u1(r, ϑ) = eγr sin(ϑ) cos
(

γr cos(ϑ)
)

, (r, ϑ) ∈ Ω. (4.14)

0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

θ/π

f
1

(a)

1 1.2 1.4 1.6 1.8 2
0.75

0.8

0.85

0.9

0.95

θ/π

α

(b)

Figure 1. (a) The Dirichlet boundary data (4.11) and (b) the Robin coefficient (4.13) for γ = π/4.

We also need a second set of Cauchy data (2.1) and (2.3) on Γ1 linearly independent of (4.11) and (4.12). We
generate such a function u2 given from (4.1) with A = B = C = 1 and L = 8. The unknown coefficients

(Aℓ)
8
ℓ=2 , (Bℓ)

8
ℓ=2 are determined by collocating equation (4.8) with M = 800.

In the inverse problem, both the corroded boundary Γ2 and its admittance coefficient α are unknown. In order to
ensure the uniqueness of solution we combine the Cauchy data (4.11), (4.12) and those in Figure 2 on Γ1. These
Dirichlet boundary data are linearly independent with at least one of them positive, see Figure 1(a). Further, the
way in which this data has been generated (one analytically and the other one using a Trefftz-type search) clearly
avoids committing an inverse crime because the inverse solver is based on a nonlinear iterative minimization. We
take K = 3 and L = 3 in (3.10) and (3.11), respectively. As initial guesses for the iterative nonlinear minimization
of the objective functional (3.12), we take a0 = 1, b1 = 0.5 and all other coefficients to be zero in (3.10), while in
(3.11) we take C0 = 0.85 and all other coefficients are be equal to zero, and η0 = 1.1.
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In the subsequent Figures 3-6, 9-11 and 13-14 where we present Γ2 and α, the initial guess, the numerical recon-
struction and the exact solution are shown in blue (− − −), in red (· · · ) and in black (−), respectively. We first
consider the case of no noise and no regularization. In Figure 3(a) we present the initial guess and numerically
reconstructed boundary Γ2 with M = 80, N = 40 for various numbers of iterations. We also take the initial guesses
for the MFS coefficients c1 and c2 to be zero. The corresponding results for the admittance coefficient α are
presented in Figure 3(b). The results with the same initial parameters but with M = 100, N = 50 are presented
in Figure 4. From both Figures 3(a) and 4(a) it can be seen that the semi-circular lower boundary (3.5) is very
accurately retrieved in less than 100 iterations. Furthermore, by comparing Figures 3(b) and 4(b) it can be seen
that the accuracy in the retrieved admittance coefficient increases as M and N increase.
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Figure 2. Example 1: (a) The Dirichlet boundary data (2.6), and (b) the Neumann boundary
data (2.7) determined from the system of equations (4.8) with L = 8,M = 800.
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Figure 3. Example 1: Numerically reconstructed (a) boundary Γ2, and (b) the admittance coef-
ficient α, for various numbers of iterations for no noise and no regularization with M = 80, N = 40.
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Figure 4. Example 1: Numerically reconstructed (a) boundary Γ2, and (b) the admittance coef-
ficient α, for various numbers of iterations for no noise and no regularization with M = 100, N = 50.

We also add noise in the fluxes g1 and g2 as in (3.13). The numerically obtained results for noise p = 5% with
M = 80, N = 40 and no regularization for various numbers of iterations are shown in Figure 5. From this figure we
observe that as the number of iterations increases the numerical solutions for Γ1 and especially for α become less
accurate. In fact, from Figure 5(b) it can be seen that the retrieval of the admittance coefficient α when the input
data is contaminated with 5% noise and no regularization is employed, is not accurate. Such a retrieval is expected
because our inverse problem is ill-posed and nonlinear, hence some sort of regularization needs to be employed in
order to obtain stable and accurate solutions.

iter=10 iter=100 iter=500

iter=1000 iter=5000 iter=10000

(a)

1 1.5 2
0.4

0.6

0.8

1

θ/π

α

iter=10

1 1.5 2
0.4

0.6

0.8

1

θ/π

iter=100

1 1.5 2
0.4

0.6

0.8

1

θ/π

iter=500

1 1.5 2
0.4

0.6

0.8

1

α

θ/π

iter=1000

1 1.5 2
0.4

0.6

0.8

1

θ/π

iter=5000

1 1.5 2
0.4

0.6

0.8

1

θ/π

iter=10000

(b)

Figure 5. Example 1: Numerically reconstructed (a) boundary Γ2, and (b) the admittance coef-
ficient α, for various numbers of iterations for noise p = 5% and no regularization with M =
80, N = 40.
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The corresponding results obtained with different values of the regularization parameters λ2 and λ3 (λ1 was taken
to be equal to zero) after 10000 iterations are shown in Figure 6. From this figure we observe that the combination
λ2 = 10−3, λ3 = 10−2 yields the most accurate results.
Finally, we present some results for various values of K and L in (3.10) and (3.11). In particular, in Figure
7 we present the results obtained after a maximum of 1000 iterations for no noise and no regularization with
M = 80, N = 40 when K = L = 5, 7, 9 and 11. We observe that the results for the boundary Γ2 are excellent for
all choices of K and L, while slight instabilities appear in the reconstructed admittance coefficient for the cases
K = L = 5 and 7. Of course, especially when we invert noisy data, instabilities will start to manifest as K and/or
L increase and choosing appropriate values for these parameters plays the role of regularization.
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Figure 6. Example 1: Numerically reconstructed (a) boundary Γ2, and (b) the admittance coef-
ficient α, after 10000 iterations for noise p = 5% and regularization with M = 80, N = 40.
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Figure 7. Example 1: Numerically reconstructed (a) boundary Γ2, and (b) the admittance co-
efficient α, after 10000 iterations for no noise and no regularization with M = 80, N = 40 and
K = L = 5, 7, 9 and 11.
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4.3. Example 2. In this example, we consider the solution domain Ω whose boundary ∂Ω is the peanut shape
defined by

r(ϑ) =

√

cos2(ϑ) +
1

4
sin2(ϑ), ϑ ∈ [0, 2π). (4.15)

The boundary ∂Ω is divided into two parts, namely

Γ1 = {(x, y) ∈ R
2| x = r(ϑ) cos(ϑ); y = r(ϑ) sin(ϑ); ϑ ∈ [0, π]}, (4.16)

and

Γ2 = {(x, y) ∈ R
2| x = r(ϑ) cos(ϑ); y = r(ϑ) sin(ϑ); ϑ ∈ (π, 2π)}. (4.17)

This is a more complicated non-convex geometry to be reconstructed and hence a more severe test example than
Example 1. Also, unlike Example 1, no exact solution is available for the inverse problem in the peanut shaped
domain, so we construct solutions u1 and u2 following the technique presented in Section 4.1. For u1 we take (4.1)
with A = 1/2,B = C = 0 and L = 8, while for u2 we take (4.1) with A = C = 1,B = 0 and L = 8. The unknown

coefficients (Aℓ)
8
ℓ=2 , (Bℓ)

8
ℓ=2 are determined by collocating equation (4.8) with M = 800. The Dirichlet boundary

data (2.6) generated in this way are linearly independent with at least one positive, see Figure 8.
The values of K,L, S and the initial guesses for the unknown vector (c1, c2, r,α, η) are the same as in Example 1.
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Figure 8. Example 2: The Dirichlet boundary data (2.6) for (a) u1 and (b) u2.

In Figure 9(a) we present the initial guess and numerically reconstructed boundary Γ2 with M = 120, N = 60
for various numbers of iterations, no noise and no regularization. The corresponding results for the admittance
coefficient α are presented in Figure 9(b). From this figure it can be seen that for exact data the numerical
solutions for both Γ2 and α converge to their exact values, as the number of iterations increases. Furthermore, no
regularization was necessary.
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Figure 9. Example 2: Numerically reconstructed (a) boundary Γ2, and (b) the admittance coef-
ficient α, for various numbers of iterations for no noise and no regularization with M = 120, N = 60.

The numerically obtained results for noise p = 3% added to the fluxes g1 and g2 in (3.13) with no regularization
and M = 120, N = 60 for various numbers of iterations are shown in Figure 10. As in Figure 5 for Example 1,
the unregularised numerical results for Γ2 seem reasonably stable and accurate, whilst the retrieval of accurate
numerical results for α is more difficult.
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Figure 10. Example 2: Numerically reconstructed (a) boundary Γ2, and (b) the admittance
coefficient α, for various numbers of iterations for noise p = 3% and no regularization with M =
120, N = 60.

The corresponding results obtained with different values of the regularization parameter λ3 (λ1 and λ2 were taken
to be equal to zero) after 10000 iterations are shown in Figure 11. From this figure we observe that for λ3 between
2× 10−3 and 10−2 we obtain improved results.
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Figure 11. Example 2: Numerically reconstructed (a) boundary Γ2, and (b) the admittance
coefficient α, after 10000 iterations for noise p = 3% and regularization with M = 120, N = 60.

4.4. Example 3. We finally consider the test example of [10] involving an apple-shaped contour ∂Ω defined by

r(ϑ) =
1 + 0.8 cos(ϑ) + 0.2 sin(2ϑ)

1 + 0.8 cos(ϑ)
, ϑ ∈ [0, 2π), (4.18)

with sub-boundaries Γ1 and Γ2 given by (4.16) and (4.17), respectively. We generate the Cauchy data (2.6) and
(2.7) in the same way as in Example 2. In particular, for u1 we take (4.1) with A = 1/2,B = C = 0 and L = 8,

while for u2 we take (4.1) with A = C = 1,B = 0 and L = 8. The unknown coefficients (Aℓ)
8
ℓ=2 , (Bℓ)

8
ℓ=2 are

determined by collocating equation (4.8) with M = 800. The Dirichlet boundary data (2.6) generated in this way
are linearly independent with at least one positive, see Figure 12. We also take the admittance function α(ϑ) to
be retrieved to be the same as in Examples 1 and 2. The values of K,L, S and the initial guesses for the unknown
vector (c1, c2, r,α, η) are the same as in Examples 1 and 2.
The numerically obtained results for noise p = 5% added to the fluxes g1 and g2 in (3.13) with no regularization
and M = 100, N = 50 for various numbers of iterations are shown in Figure 13. As in the corresponding figures
for Examples 1 and 2, the unregularised numerical results for Γ2 seem reasonably stable and accurate whilst the
retrieval of accurate numerical results for α is more difficult. The corresponding results obtained with different
values of the regularization parameter λ1 (λ2 and λ3 were taken to be equal to zero) after 10000 iterations are
shown in Figure 14. From this figure we observe that for λ1 between 10−5 and 10−4 we obtain improved results.

5. Conclusions

In this paper, the inverse geometric problem in corrosion engineering which consists of simultaneously determining
an unknown portion of the boundary Γ2 and its Robin admittance coefficient from two linearly independent pairs of
Cauchy data on the known boundary Γ1 = ∂Ω\Γ2, has been investigated using the MFS. More precisely, a nonlinear
regularized MFS is used in order to obtain stable and accurate numerical results for the ill-posed inverse problem
in question. Clearly, the ill-posedness requires regularization in order to achieve stability. In this study, this has
been achieved by adopting the finite-dimensional parametrisations (3.10) and (3.11) for Γ2 and α, respectively,
as well as the incorporation of the regularization terms (3.14) into the nonlinear least-squares functional (3.12).
Numerical results show satisfactory reconstructions for the corroded boundary and its admittance coefficient with
reasonable stability against noisy data. The choice of the regularization parameters K,L, λ1, λ2 and λ3 was based
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on trial and error, but it is expected that more sophisticated choices [2, 13] will lead to even better reconstructions.
Future work will consider extending the numerical method developed in this study to a similar inverse geometric
problem with a generalized impedance boundary condition, [5, 8].
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Figure 12. Example 3: The Dirichlet boundary data (2.6) for (a) u1 and (b) u2.
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Figure 13. Example 3: Numerically reconstructed (a) boundary Γ2, and (b) the admittance
coefficient α, for various numbers of iterations for noise p = 5% and no regularization with M =
100, N = 50.
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Figure 14. Example 3: Numerically reconstructed (a) boundary Γ2, and (b) the admittance
coefficient α, after 10000 iterations for noise p = 5% and regularization with M = 100, N = 50.
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